PY4A04 Senior Sophister
Interstellar and Intergalactic Medium

Dr Graham M. Harper: School of Physics, SNIAM 3.03a

Michaelmas and Hilary Term 2011
MT Weeks 10-13 Mon 12:00-13:00 & Wed 14:00-15:00 SNIAM Lecture Room
HT Weeks 4-6, 8-9,11, Monday 16:00-17:00 SNIAM Lecture Theatre

Class Expectations

- 12 Lectures (PY4A04 midule)
- Reading assignments completed before class.
- Final examination/Continuous assessment =50%+50%
 - 1st in January, 2nd after midule: 1 week to complete
- Tutorials as needed, and individual assessment review
- Class participation strongly encouraged
- Professional conduct
- No cell phones (laptops are OK if they are NOT disruptive)
- Office hours: SNIAM room 3.03a
 - TBD, other times by email appointment
Overview (Lectures 1-6)

- Constituents of the Interstellar & Intergalactic Medium (ISM & IGM)
 - what are the ISM & IGM?
 - images of multi-wavelength galaxy
 - some constituents of the ISM & IGM
- How do we learn about the nature of the ISM & IGM?
 - imaging and spectroscopy
 - equation of Radiative Transfer
- Atomic Processes
 - collisional excitation
 - heating and cooling (atomic and molecular)
 - thermostatic properties
- Molecules and dust grains
 - the problem of dust and molecule formation
 - observing ISM dust
 - properties of ISM grains
- “Coexisting Phases of the ISM”

Overview (Lectures 6-12)

- Photoionization (H II) regions
- Gas dynamics
 - conservation principles, Rankine-Hugoniot conditions
 - wind-ISM interactions (Mira & Betelgeuse)
- Shock waves (time scales)
 - adiabatic
 - radiating
- Supernovae
 - multiple evolutionary phases
 - interaction with the ISM
Views of the Galaxy & Astronomy Units

• Multi-wavelength Astronomy
 • observations at different λ’s provide a deeper understanding

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>SI Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{-12}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>SI Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Ångstrom</td>
<td>10^{-10} m</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
<td>10^{-9} m</td>
</tr>
<tr>
<td>μm</td>
<td>micrometer</td>
<td>10^{-6} m</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td>10^{-2} m</td>
</tr>
</tbody>
</table>

Doppler Shifts (refresher)

- Line of sight velocity information
 - Observed radiation at frequency ν, then if an atom is moving at velocity v, it is absorbing/emitting at a frequency (first order Doppler effect)
 $$\nu - \nu\left(\frac{v}{c}\right) = \nu(1 - \frac{v}{c}) = \nu - \Delta \nu$$
 - Convention: material is moving away from the observer the velocity v is ‘ive (red-shifted, so frequency decreases) - ‘ive is blue-shifted
 - Astronomers use ν, ν, λ interchangeably.
 $$\frac{\Delta \nu}{\nu} = \frac{\Delta \nu}{c} = \frac{\Delta \lambda}{\lambda}$$
Telescopes, some examples

- Radio m/cm (ground level): Very Large Array, large single dish (Jodrell)
- Radio mm: Atacama Large Millimeter Array @ 5000 m (Chile 2012)
- Far infrared (space): Herschel, Planck, (airborne SOFIA)
- Mid infrared (space IRAS, Spitzer COBE) (airborne SOFIA)
- Near/mid infrared (ground): Mauna Kea @ 4200 m
- Optical (sea level)
- Near/Far/Extreme Ultraviolet (space IUE, HST, FUSE, EUVE)
- X-ray/Gamma Ray (space Fermi) (ground Cerenkov)
- Cosmic rays and neutrinos: e.g., IceCube Neutrino Observatory
Spiral galaxy seen from better angle

M83 Ultraviolet GALEX 2-colour image showing star formation far from where expected: red 21-cm radio shows extended spiral arms

Very Local ISM

Remarkable new results from Interstellar Boundary Explorer (IBEX)
ENA's = Energetic Neutral Atoms

Voyager 1 and 2 missed the belt!
Local ISM

Credit: (former CU graduate student) Seth Redfield

Local context

Local Bubble

- $R \sim 100$ pc; $n_e \sim 10^{-3}$ cm$^{-3}$; $T \sim 10^6$ K
- Absence of cold material (NaI spectroscopy)
- Soft X-rays (0.25 keV)
- Highly ionized absorption and emission lines (e.g., OVI, OVII, OVIII)

LISM

- $R \sim 1-10$ pc; $n \sim 0.2$ cm$^{-3}$; $T \sim 7000$ K
- He I particles (Ulysses; in situ)
- Backscattered Lyman-α emission
- Absorption line spectroscopy of neutral and singly ionized elements, e.g., Hα, Ni I, Ol, St I, Ne I, Ne II, He II, Ne II, Ne III, He I, Ne IV, Ne V, Ne VI, Ne VII, Ne VIII, Ne IX, Ne X

Cold Dense Gas

- $R \sim 1.4$ pc; $n_H \sim 30$ cm$^{-3}$; $T \sim 20$ K
- Spectroscopy of neutral ions (e.g., NaI)
- Molecules, e.g., H$_2$, CO, alcohols (ethyl alcohol; CH$_3$CH$_2$OH), acids (formic acid; HCOOH), aldehydes (formaldehyde; H$_2$CO), ketones ((CH$_3$)$_2$CO; acetone), amino acids? (H$_2$NH$_2$CCOOH; glycine)
Stellar Nursery

- Illustrates some of the problems addressed in this course
 - obscuration by dust
 - dust heating by starlight
 - photoionized nebulae

- Illustrates that images are now becoming powerful tools for studying the ISM in detail
 - images at multiple wavelengths
 - good spatial resolution

Will “this” form a star?

- Star formation
 - Stability of cold clouds against collapse
 - Dark clouds (as small as 10^{-2} pc)
 - Barnard 68 – a Bok Globule (B68)
Reflection Nebulae

- Massive stars illuminating their environs
 - Scattering of star light by dust (albedo)
 - Scorpio-Ophiuchus reflection nebulae
 - Antares (red supergiant) is the orange nebula
 - Hot stars provide other the nebulae
Stellar life – interacting with ISM

- Hydrodynamics
 - Wind-ISM interactions
 - Mira – the marvelous –
 - a pulsating red giant, very high proper motion star = large velocity

Stellar old age – planetary nebulae

- End of red giant phase
 - Jupiter’s Ghost
 - H II Region
 - Ionization Physics
 - Strömgren sphere
 - WD
 - 10^4 year phase
Stellar death - supernovae

- End of red supergiant phase
 - Supernova remnant
 - 10^4 yr SMC 0103-72.6, Chandra X-ray emitting shell
 - 10^3 yr Crab nebula (right)
 - Hot phase of ISM and element enrichment

What properties can we learn about the ISM?

- Thermodynamics
 - gas temperature
 - density and ionization
 - elemental composition
- Dynamics
 - large spatial scale velocities, i.e., shocks, winds, flows
 - small spatial scale velocities, i.e., turbulence
- ISM dust
 - dust temperature
 - ~mineralogy (composition and structure)
- Ambient radiation field
 - depends where you are in galaxy
- Galactic magnetic fields
Galactic magnetic fields

Polarization vectors (radio) follow magnetic field in the large scale spiral arms with 8 μG.

BUT highly structured magnetic fields (20 μG) also exist between the arms.

Approx. Properties of ISM phases (Tielens)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Density (cm$^{-3}$)</th>
<th>Temperature (K)</th>
<th>Sound Speed (km s$^{-1}$)</th>
<th>Total Mass ($10^8 M_{\text{Solar}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot inter-cloud</td>
<td>0.003</td>
<td>10^6</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>Warm neutral</td>
<td>0.5</td>
<td>8000</td>
<td>10</td>
<td>2.8</td>
</tr>
<tr>
<td>Warm ionized</td>
<td>0.1</td>
<td>8000</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>Cool diffuse clouds</td>
<td>50</td>
<td>80</td>
<td>1</td>
<td>2.2</td>
</tr>
<tr>
<td>Molecular clouds</td>
<td>>200</td>
<td>10</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>H II regions</td>
<td>1 - 10^5</td>
<td>10^4</td>
<td>13</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Densities are typical, but can vary by an order of magnitude.
The Interstellar Medium (ISM) is seldom homogenous!