Some Interstellar Molecules (129 in 2005)

<table>
<thead>
<tr>
<th>CH4</th>
<th>HCN</th>
<th>HNO</th>
<th>CH3N</th>
<th>CH3OH</th>
<th>CH2N2</th>
<th>HC3N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>HNC</td>
<td>HNCS</td>
<td>HNCO</td>
<td>CNHCN</td>
<td>CH3CN</td>
<td>H3CN</td>
</tr>
<tr>
<td>CN</td>
<td>HCO</td>
<td>HCN</td>
<td>CH3NH2</td>
<td>CH2NH</td>
<td>CH3NC</td>
<td>CH3NH2</td>
</tr>
<tr>
<td>CS</td>
<td>HCO</td>
<td>HCN</td>
<td>CH3NH2</td>
<td>CH2NH</td>
<td>CH3NC</td>
<td>CH3NH2</td>
</tr>
<tr>
<td>C2H2</td>
<td>CH2</td>
<td>CH3</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
</tr>
<tr>
<td>C2H</td>
<td>CH2</td>
<td>CH3</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
</tr>
<tr>
<td>C2S</td>
<td>CH2</td>
<td>CH3</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
<td>CH2</td>
</tr>
<tr>
<td>HCO+</td>
<td>CH3</td>
<td>CH3</td>
<td>CH3</td>
<td>CH3</td>
<td>CH3</td>
<td>CH3</td>
</tr>
</tbody>
</table>

Confirmed in Comet Wild-2 Stardust mission (2009)
Amino acid – glycine $\text{CH}_2\text{NH}_2\text{COOH}$?

ND_3 in Interstellar Clouds

Deuteration: deuterium species slightly more stable than hydrogen form

$\text{ND}_3/\text{NH}_3 = 8 \times 10^{-4}$, compared with $(\text{D}/\text{H})^3 \\
- 3 \times 10^{-15}$
DIB’s

The Diffuse Interstellar Bands

Interstellar Ices

Modest water ice
Substantial components:
- CO, CO₂, CH₃OH
Minor components:
- HCOOH, CH₃, H₂CO
5. Molecules in the ISM

- Simplest molecules
 - Linear, e.g., CO (carbon monoxide) [structured spectrum]
 - Symmetric top, e.g., NH$_3$ (ammonia) [more complex spectrum]
 - Asymmetric top, e.g., H$_2$O (water vapor) [forest]
- Linear molecules
 - Rotation, vibration, electronic
 - Symmetric top
 - Rotational
- Why are there any molecules?
 - Hard to form
 - Easy to destroy
- Reaction networks
 - Rate equations
 - Timescales

Linear molecules I

- Molecules (rigid rotators, linear molecules)
 - J is rotational quantum number
 - v is vibrational quantum number
 - B is rotational constant
 - I is moment of inertia
 - D is centrifugal stretching term
 - ω_0 is vibrational constant
- $E(J) = J(J+1)B - J^2(J+1)^2D + \frac{(v+1/2)\hbar\omega_0}{k}\]
Spectra: Frank Shu Vol 1 Radiation, Chap. 30

\[E(J) = B J(J+1) + (v+1/2)\hbar\omega_0 \]

- frequency \((=\Delta E/h)\) for each rovibrational line with different initial and final vibrational quantum numbers
- for example \(J \rightarrow J-1\), and \(v=2 \rightarrow v=1\)
- i.e., \(v=\Delta E/h = B [J(J+1) - (J-1)J] + \omega_0 = 2JB + \omega_0\)
- line frequency increases with \(J\)
- lines are approximately equally spaced in frequency.

Population of rotational levels

Both \(\text{H}_2\) and CO have low critical densities, and the lower rotational levels are often in thermal equilibrium: we can use this fact to measure the molecular clouds temperatures.

\[
\frac{n_j}{n_0} = \frac{g_j}{g_0} \exp\left(-\frac{\Delta E_{j0}}{kT}\right) = \frac{(2J+1)}{(2J'+1)} \exp\left[-J(J+1)B/kT\right]
\]

Ratio of any two levels can be found directly, i.e.,

\[
\frac{n_j}{n_{j'}} = \frac{(2J+1)}{(2J'+1)} \exp\left[-J(J+1)B/kT\right] / \exp\left[-J'(J'+1)B/kT\right]
\]

Population distribution

To find the partition function we sum all \(n_j\) and when \(T \gg B/k\) we replace the discrete sum with integration over continuous values.

\[
n(\nu) = \sum_{J=0}^{\infty} (2J+1) \exp\left[-J(J+1)B/kT\right]
\]
Population distribution

To find the partition function we sum all n_j and when $T \gg B/k$ we replace the discrete sum with integration over continuous values

$$n(\nu) = \sum_{J=0}^{J_{\text{max}}} (2J+1) \exp[-J(J+1)B/kT]$$

$$= \int (2J+1) \exp[-J(J+1)B/kT] dJ = kT/B$$

Which gives is an expression for the relative populations

$$\frac{n_J(\nu)}{n(\nu)} \approx \frac{(2J+1)B}{kT} \exp[-J(J+1)B/kT]$$

LTE internal energy

The mean contribution to the rotational internal energy per molecule

$$\sigma_{\text{rot}} = \sum_{J=0}^{J_{\text{max}}} (J+1)B \frac{n_J(\nu)}{n(\nu)}$$

$$= \int (J+1)B \exp[-J(J+1)B/kT] \frac{2J+1}{kT} dJ$$

$$= kT$$

So when $T \gg B/k$ there is equipartition of $kT/2$ for each of the two independent axes of rotation.
Symmetric top

- Molecules (nonlinear molecules)
 - J is total angular momentum
 - K is projection on symmetry axis
 - A, B, C are rotational constants
 - I_A, I_B, I_C are the moment of inertia,
 - prolate (cigar) $I_A < I_B = I_C$ (e.g., propyne $\text{CH}_3\text{C}≡\text{CH}$)
 - oblate (disk) $I_A = I_B < I_C$ (e.g., benzene C_6H_6)

- Prolate $E(J) = J(J+1)B + (A-B)K^2$
- Oblate $E(J) = J(J+1)B + (C-B)K^2$
- Selections rule $\Delta K = 0$
 - series of equal frequency separation lines

Symmetric top Ammonia (NH_3)

- Oblate symmetric top
 - 22\implies23 GHz (1.3 cm)
 - inversion transitions:
 - Thermometer of ISM dense molecular clouds [credit John Bally]
Formation – the problem

- Collisions (A+B)
 - No time to “relax” to energetic stable state
 - i.e., remove energy during collision
 - interaction time is about 10^{-13} s
 - the fastest “relaxation” electronic rate is 10^8 s$^{-1}$
 - So only 1 in 100,000 collisions may remove energy and lead to a molecule = radiative association
 - Alternatively a 3-body reaction may carry away energy
 - need all 3 to collide at once: A+B+C
 - rate $\approx 10^{-44}$ m6s$^{-1}$ when A+B are interacting: ISM $n\approx 10^7$ m$^{-3}$
 - this might work on/near in a star/circumstellar disk ($n\approx 10^{17}$ m$^{-3}$)
 - but not in the space between stars
 - = collisional association

Grain surface reactions

- Langmuir-Hinshelwood
 - surface diffusion

- Eley-Rideal
 - direct hit

Destruction

- Electronic photo-dissociation in the galactic ultraviolet
- Example from course book (Dyson & Williams)
 - Cross-section 10^{-21}m2 over 10 nm band
 - Number of UV photons 10^{10} m$^{-2}$ s$^{-1}$ nm$^{-1}$
 - Lifetime of 10^9s = 300 years
Destruction

- Electronic photo-dissociation in the galactic ultraviolet
- Example from course book (Dyson & Williams)
 - Cross-section 10^{-16} m2 over 10 nm band
 - Number of UV photons 10^{39} m$^{-2}$ s$^{-1}$ nm$^{-1}$
 - Lifetime of 10^{9}s = 300 years

Formation: chemical reaction $A^+ {+} B \rightarrow C^+ {+} D^+$

- Reactions between ions and molecules are rapid, e.g.,
 - $O^+ {+} H_2 \rightarrow OH^+ {+} H$ ion-molecule
 - $O + H^+ \rightarrow O^+ + H$ (ion-atom version) = charge exchange
 - Rate coefficient of 10^{-15} m3 s$^{-1}$ per molecule
 - Turns out to be a typical rate: let us see why as it applies to more than that chemical cross-sections

Neutral exchange

- Neutral exchange reactions (exothermic)
 - Final state is energetically favourable, e.g.,
 - $CH + O \rightarrow CO + H$
 - 7.6 eV
 - Departing atom carries excess energy
 - Rate coefficient of 10^{-17} m3 s$^{-1}$ per molecule (100 weaker than ion-molecule)
 - Rate depends on short range forces (van der Waals)
 - Activation energy – a problem in the very cold ISM