E&M Lecture 7

Topics:
(1) Polar dielectrics
(2) Potential energy of dipole in electric field
(3) Random orientation expression
(4) “low E - high T” approximation
(5) Langevin Equation
Polar dielectrics

…….molecules possess *permanent* dipole moment but, in the absence of an electric field, dipoles are randomly oriented by thermal motion: hence, no polarisation.

- e.g. HCl and H$_2$O
- …..but not CS$_2$
 no *net* dipole moment

zero field, random net $P=0$

preferential alignment but $P \neq Np$
The effect of alignment is to oppose the applied field, that is, to **reduce** the net field

The tendency to alignment is opposed by thermal effects, the balance between these two effects is determined by Boltzmann statistics: key factor is ratio of the potential energy of the dipole \((U)\) (a measure of \(E\)) to the temperature \((T)\), which enters as \(\exp(-U/kT)\)
Potential energy of dipole in E field (U)
determines the balance between “random” and “alignment”:
U depends on θ.
Natural choice: $U(\theta) = 0$ when $\theta = 0$
Convention: $U(\theta) = 0$ when $\theta = 90^\circ$
Why? $\theta = 90^\circ$ is an equipotential line:
no work creating extra dipole moment,
but $U(\theta)$ is then -ve in range $0<\theta<90^\circ$
Write $U(\theta) = U(90^\circ)$ - (energy lost in rotating $90^\circ \rightarrow \theta$)
$= 0$ - (horiz. force by dist.)

$$U = -QEs\cos\theta = -pE\cos\theta$$

$$U = -p\cdot E$$

(of course, E should be E_{loc} - later!)
Number Distribution function

Molecular density: N

Distribution function: $N(\theta)$

density of dipoles oriented between θ and $\theta + d\theta$: $N(\theta)d\theta$

density of dipoles oriented between θ_1 and θ_2?

Define $\theta = 0$ axis along E

Note width of annulus between θ and $\theta + d\theta$: $rd\theta$

$$\int_{\theta_1}^{\theta_2} N(\theta)d\theta$$

$$\int_{all \ \theta} N(\theta)d\theta = N$$
Random \((E=0)\) Distribution

No field: prop. to solid angle

\[N(\theta)d\theta = Cd\Omega \]

\[\frac{d\Omega}{4\pi} \text{ area annulus} \quad = \quad \frac{2\pi(r \sin \theta)(rd\theta)}{4\pi r^2} \quad = \quad \frac{\sin \theta d\theta}{2} \]

\[d\Omega = 2\pi \sin \theta d\theta \quad \Rightarrow \quad N(\theta)d\theta = C2\pi \sin \theta d\theta \]

Find \(C\) by integrating \(N(\theta)d\theta\) between \(0\) and \(\pi\):

\[N = \int_{0}^{\pi} N(\theta)d\theta = 2\pi C \int_{0}^{\pi} \sin \theta d\theta = 2\pi C \left[-\cos \theta\right]^{\pi}_{0} \]

\[C = \frac{N}{4\pi} \quad \Rightarrow \quad N(\theta)d\theta = \frac{N}{2} \sin \theta d\theta \quad \text{(random)} \]
Distribution in presence of Field

Include Boltzmann term:

\[N(\theta)d\theta = A \exp\left(-\frac{U}{kT}\right) d\Omega \]

\[= 2\pi A \exp\left(-\frac{U}{kT}\right) \sin \theta d\theta \]

Find A by integrating \(N(\theta)d\theta \) between 0 and \(\pi \), as before?

Complex integral, simplifies when \(U/kT \) is small:

\[\exp\left(-\frac{U}{kT}\right) \approx 1 - \frac{U}{kT} = 1 + \frac{pE \cos \theta}{kT} \]

This is a “low E, high T” approximation……..
Low E, high T approximation

\[N = \int_0^\pi N(\theta)\,d\theta = 2\pi A \int_0^\pi \sin\theta \left(1 + \frac{pE \cos\theta}{kT}\right) \,d\theta \]

\[= 2\pi A \left[-\cos \theta + \frac{pE}{2kT} \sin^2 \theta\right]_0^\pi \]

\[A = \frac{N}{4\pi} \quad (\text{as for random!}) \]

\[\Rightarrow N(\theta)\,d\theta = \frac{N}{2} \sin\theta \left(1 + \frac{pE}{kT} \cos\theta\right) \,d\theta \]

Now Polarisation distribution:
(component of p along E)

\[P(\theta) = N(\theta)\,p \cos\theta \]
Net Polarisation

\[P = \int_{0}^{\pi} P(\theta)d\theta = \frac{N}{2} \int_{0}^{\pi} \sin \theta \left(1 + \frac{pE \cos \theta}{kT} \right) p \cos \theta d\theta \]

\[= \frac{Np^2E}{3kT} \quad \Rightarrow \quad P = \frac{Np^2}{3kT} E \]

Recall \(P = \chi e \varepsilon_o E \) \(\Rightarrow \) \([\chi_e]_{\text{polar}} = \frac{Np^2}{3\varepsilon_o kT} \)

But all molecules acquire induced dipole moment:
Assuming \(E_{loc} = E \) :

\([\chi_e]_{\text{non-polar}} = N\alpha \)

\([\chi_e]_{\text{general}} = N \left(\alpha + \frac{p^2}{3\varepsilon_o kT} \right) \)
Plotting χ_e vs $1/T$

Works well for gases where $E_{loc} = E$ is a good approximation; Otherwise, must use

$$P = \frac{Np^2}{3\varepsilon_o kT} E_{loc}$$

Unfortunately, there is no simple expression, as for non-polar:

(partly because E_{loc} rotates with the dipole!)
The Langevin Equation

When U/kT is not small, integration of $N(\theta)d\theta$ yields:

$$P = Np \left[\coth \left(\frac{pE}{kT} \right) - \frac{kT}{pE} \right]$$

Plotting P vs pE/kT
shows two distinct regimes:

1. High E, low T: all dipoles aligned:
 $$P = Np$$

2. Low E, high T: small U/kT approximation:
 (strictly E_{loc})
 $$P = \frac{Np^2}{3kT} E$$