
Explicit scheme

So far considered a fully explicit scheme to numerically solve the
diffusion equation:

T n+1
j = (1− 2s)T n

j + s(T n
j+1 + T n

j−1) (1)

with s = κ∆t
(∆x)2 .

Only stable for s < 1/2. This scheme is sometimes referred to as
FTCS (forward time centered space). It is fully explicit, since T n+1

j

can be computed from known quantities at time n∆t.

Advantage: Easy to solve numerically, because it’s explicit.
Disadvantage: Usually interested in features of size λ� ∆x . Let
tλ be the time to diffuse a distance λ, which is ∝ λ2/κ. In order to
satisfy stability criterion, need
∝ tλ/∆t ∝ (λ2/κ)/(∆x2/κ) ∝ λ2/∆x2 � 1 time steps before
things happen on the scale of interest. Computationally
expensive/prohibitive.

Fully implicit scheme

There are other ways to discretize the diffusion equation. Consider
the following difference scheme:

T n+1
j − T n

j

∆t
= κ

T n+1
j+1 − 2T n+1

j + T n+1
j−1

(∆x)2
(2)

This is very similar to FTCS, except that the spatial derivative on
the RHS is evaluated at time step (n + 1), not n.

This scheme is called fully implicit or backward time. In contrast
to the fully explicit scheme, T n=1

j cannot be solved purely in terms
of function values at time step n

Fully implicit scheme

Why is it called backward time ? Rearranging yields

T n
j = −sT n+1

j−1 + (1 + 2s)T n+1
j − sT n+1

j+1 (3)

where s = κ∆t/∆x2.

Therefore, one can obtain (explicitly) T n
j in terms of values of the

next time step (n + 1). This is not what we want, however.

Fully implicit scheme

In order to obtain the function values at time step (n + 1) need to
solve a set of simultaneous linear equations (eq.(3)), which can be
cast in matrix form:
−s (1 + 2s) −s 0 · · ·
0 −s (1 + 2s) −s · · ·
...

. . .
. . . · · ·

...
. . .

. . . · · ·
· · · −s (1 + 2s) −s

T n+1

0

T n+1
1

T n+1
2
...

T n+1
J

 =

T n

0

T n
1

T n
2
...
T n
J

Notes

Notes

Notes

Notes

Fully implicit scheme

Do matrix inversion to obtain the function values at time step
(n + 1).

T n+1

0

T n+1
1

T n+1
2
...

T n+1
J

 =

−s (1 + 2s) −s 0 · · ·
0 −s (1 + 2s) −s · · ·
...

. . .
. . . · · ·

...
. . .

. . . · · ·
· · · −s (1 + 2s) −s

−1
T n

0

T n
1

T n
2
...
T n
J

Since matrix is tridiagonal, efficient algorithms exist to invert
matrix. Also, if κ is a constant, s is constant and inversion only
has to be done once.

Fully implicit scheme

Is it stable? Let’s do von Neumann stability analysis:
Substitute T n

j = ξne ikj∆x into the difference scheme:

T n
j = −sT n+1

j−1 + (1 + 2s)T n+1
j − sT n+1

j+1

ξne ikj∆x = −sξn+1e ik(j−1)∆x + (1 + 2s)ξn+1 − sξn+1e ik(j+1)∆x

1 = −sξe−ik∆x + (1 + 2s)ξ − sξe ik∆x

ξ =
1

1 + 2s − s(e ik∆x + e−ik∆x)

ξ =
1

1 + 2s(1− cos(k∆x))

ξ =
1

1 + 4s(sin(k∆x/2))2

Since sin2 ≥ 0, ξ ≤ 1 for all k , the fully implicit scheme is
unconditionally stable.

Improving upon the implicit scheme

Even though the fully implicit scheme is unconditionally stable, the
accuracy has not improved. While it is second order accurate in
the spatial part, it is only first order accurate in the temporal part.

We can improve the fully implicit scheme by averaging the explicit
and implicit difference scheme:

T n+1
j − T n

j

∆t
=
κ

2
[(δ2T)n+1

j + (δ2T)nj] (4)

where

(δ2T)nj =
T n
j+1 − 2T n

j + T n
j−1

(∆x)2

Both the LHS and RHS are now centered around (n + 1/2), which
makes the scheme second order accurate in time.
This scheme is known as the Crank Nicholson scheme.

Stability of Crank-Nicholson

How stable is it? Substituting T n
j = ξne ikj∆x into the difference

scheme yields an amplification factor

ξ =
1− 2s

(
sin(k∆x

2)
)2

1 + 2s
(
sin(k∆x

2)
)2

(5)

which is ≤ 1 for all k .

So the Crank-Nicholson scheme has unconditional stability just like
the fully implicit scheme. In addition it is second order accurate in
both time and space.
Is therefore the recommended method for these types of PDE’s.

Notes

Notes

Notes

Notes

Computational implementation

Since the scheme is not fully explicit, we need to solve a set of
coupled linear equations.

T n+1
j − T n

j

∆t
=

κ

2
[(δ2T)n+1

j + (δ2T)nj]

T n+1
j − T n

j

∆t
=

κ

2

[
(T n+1

j+1 − 2T n+1
j + T n+1

j−1) + (T n
j+1 − 2T n

j + T n
j−1)

(∆x)2

]

Regrouping the terms yields

− s

2
T n+1
j−1 + (1 + s)T n+1

j − s

2
T n+1
j−1 =

s

2
T n
j−1 + (1− s)T n

j +
s

2
T n
j−1

Computational implementation

Again, we can cast the coupled equations into a matrix:
− s

2 (1 + s) − s
2 0 · · ·

0 − s
2 (1 + s) − s

2 · · ·
...

. . .
. . . · · ·

...
. . .

. . . · · ·
· · · − s

2 (1 + s) − s
2

T n+1

0

T n+1
1

T n+1
2
...

T n+1
J

=

s
2 (1− s) s

2 0 · · ·
0 s

2 (1− s) s
2 · · ·

...
. . .

. . . · · ·
...

. . .
. . . · · ·

· · · s
2 (1− s) s

2

T n

0

T n
1

T n
2
...
T n
J

Multiplying by the inverse of the first matrix allows us to compute
the T n+1

j .

Summary

FTCS (fully explicit):First order accurate in time, second order

accurate in space.Conditionally stable: κ∆t/∆x2 ≤ 1/2.Even
though easy to implement, the stability criterion imposes small
time steps, which is computationally extensive.

Fully implicit:Unconditionally stable, but accuracy is the same as
for FTCS.

Crank Nicholson:Combines the fully implicit and explicit
scheme.The spatial and time derivative are both centered around
n + 1/2.Therefore, the method is second order accurate in time
(and space).Unconditionally stable.

Crank Nicholson is the recommended method for solving diffusive
type equations due to accuracy and stability.

Higher dimensions

So far considered only one spatial dimension for simplicity.
Extensions to higher dimensions is straightforward.Consider the
diffusion equation in two dimensions:

∂T

∂t
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
Approximating T (x , y , t) ≈ T (j∆x , l∆y , n∆t) and implementing
the Crank-Nicholson scheme gives us

T n+1
j ,l − T n

j ,l

∆t
=
κ

2
[(δ2

xT)nj ,l + (δ2
xT)n+1

j ,l + (δ2
yT)nj ,l + (δ2

yT)n+1
j ,l]

where

(δ2
xT)nj ,l =

T n
j+1,l − 2T n

j ,l + T n
j−1,l

(∆x)2

and similarly for (δ2
yT)nj ,l

Notes

Notes

Notes

Notes

Higher dimensions

Note: Even though the coupled linear equations can be cast into a
matrix that is sparse, it is not tridiagonal anymore as for the one
dimensional case.

Therefore, computation time can increase significantly.

Note: Methods exits to circumvent this problem (see Numerical
recipes book).

Numerically solving the time-dependent Schrodinger
equation

The time-dependent Schrödinger equation has similar structure as
the diffusion equation.However, it is not diffusive, but dispersive.
Solution tends to break up into oscillatory wave packets.

In one spatial dimension the equation reads (with ~ = 1 and
m = 1/2)

i
∂ψ

∂t
= Hψ (6)

where H = − ∂2

∂x2 + V (x).
If one is given the (normalized) initial wave packet ψ(x , t = 0), we
may use the finite difference scheme we developed for the diffusion
equation.(e.g. BC is that ψ → 0 as x → ±∞).We then
numerically integrate the Schrödinger’s equation in order to find
the wave function ψ(x , t) at later times.

Implicit scheme for the Schrödinger equation

Analogous to the heat equation we can apply the implicit
difference scheme.

i
ψn+1
j − ψn

j

∆t
= −

ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2
+ Vjψ

n+1
j (7)

The von Neumann stability analysis yields

ξ =
1

1 + i
[

4∆t
(∆x)2 sin2

(
k∆x

2

)
+ Vj∆t

] (8)

Therefore,

|ξ| =
1√

1 +
[

4∆t
(∆x)2 sin2

(
k∆x

2

)
+ Vj∆t

]2
≤ 1 (9)

Implicit scheme for the Schrödinger equation

Despite the unconditional stability of the implicit scheme, it is not
appropriate for solving the Schrödinger equation.

The reason is that the wave function ψ needs to remain normalized
at all times during the time evolution:∫ +∞

−∞
|ψ|2dx = 1 (10)

If the initial condition/wave function ψ(x , t = 0) is normalized,
then the Schrödinger equation ensures this normalization condition
during the time evolution of the wave packet.

Notes

Notes

Notes

Notes

Unitary requirement

Formally, this can be shown. Let’s integrate the Schrödinger
equation,

i
∂ψ

∂t
= Hψ (11)

where the Hamiltonian operator is H = − ∂2

∂x2 + V (x).

The formal solution is simply

ψ(x , t) = e−iHtψ(x , 0)

|ψ(t)〉 = e−i Ĥt |ψ(0)〉 bra-ket notation

〈ψ(t)| = 〈ψ(0)|e i Ĥt the conjugate

Note, that Ĥ is self-adjoint Ĥ+ = Ĥ and unitary HH+ = H+H = I

Unitary requirement

Normalization is guaranteed, since the time evolution operator

e−i Ĥt is unitary.∫ +∞

−∞
|ψ|2dx = 〈ψ(t)|ψ(t)〉

= 〈ψ(0)|e i Ĥte−i Ĥt |ψ(0)〉
= 〈ψ(0)|ψ(0)〉 = 1

The implicit scheme approximates the time evolution
ψ(x , t) = e−iHtψ(x , 0) as

ψ(x , t) =
1

e iHt
ψ(x , 0)

ψn+1
j ≈ 1

1 + iH∆t
ψn
j

But the approximation of the time evolution operator
(1 + iH∆t)−1 is not unitary.

Unitary requirement

Let’s show briefly that this approximation is indeed the implicit
scheme:

(1 + iH∆t)ψn+1
j = ψn

j

ψn+1
j − ψn

j

∆t
= −iHψn+1

j

where

Hφnj = −
ψn
j+1 − 2ψn

j + ψn
j−1

(∆x)2
+ Vjψ

n
j

Therefore, we have

i
ψn+1
j − ψn

j

∆t
= −

ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

(∆x)2
+ Vjψ

n+1
j

which is equivalent to eq. (7)

Caley’s form

The FTCS scheme suffers from the same problem. Here, the time
evolution is approximated as

ψ(x , t) = e−iHtψ(x , 0)

ψn+1
j ≈ (1− iH∆t)ψn

j

Again, (1− iH∆t) is not unitary.

We can remedy this problem by using Caley’s form for the finite
difference approximation of e−iHt :

ψ(x , t) = e−iHtψ(x , 0)

ψ(x , t) =
e−iHt/2

e iHt/2
ψ(x , 0)

ψn+1
j ≈ (1− iH∆t/2)

(1 + iH∆t/2)
ψn
j

Notes

Notes

Notes

Notes

Caley’s form

The approximation of the time evolution operator

e−iHt ≈ (1− iH∆t/2)

(1 + iH∆t/2)

is unitary.

The difference scheme is then

(1 + iH∆t/2)ψn+1
j = (1− iH∆t/2)ψn

j (12)

which is unconditionally stable, unitary and and second order
accurate in space and time. In fact it is the Crank-Nicholson
scheme. Rearranging yields

i
ψn+1
j − ψn

j

∆t
=

1

2
(Hψn+1

j + Hψn
j) (13)

Summary

The Schrödinger equation is an example where stability of the
numerical solution alone is not sufficient to obtain good results.

We also want the numerical scheme to obey the unitarity
requirement, such that the total probability remains 1.

It happens that the Crank-Nicholson scheme does just that. It
interpolates the Hamiltonian between time step n (FTCS) and
(n + 1) (implicit).
Example - applet:

http://www.lifelong-learners.com/pde/com/SYL/s2node7.php

Notes

Notes

Notes

Notes

