Skip to main content

Trinity College Dublin, The University of Dublin

Trinity Menu Trinity Search



You are here Postgraduate Research > Research Groups > Energy Science & Low Carbon Technologies Research Group > Models

Models

This page contains compact kinetic models produced using the Machine Learned Optimisation of Chemical Kinetics (MLOCK) coded algorithm. These models have been validated against their respective parent detailed model's calculations across a range of zero-dimensional (0-D) and one-dimensional (1-D) reactor geometries at the operating conditions denoted. For full validation documentation see the reference material.

Compacted Models

Fuel

NOx

Parent Detailed Model

Validation Range

Reference

15 Node

Methane

No

NUIG18_17_C3

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5  

1

19 Node

Methane

No

NUIG18_17_C3

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5   

1

15 Node

Methane

No

NUIGMECH1.0

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5   

2

15 Node + 3 NOx

Methane

Yes

NUIGMECH1.0

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5 

3

16 Node + 3 NOx 1

Methane

Yes

NUIGMECH1.1

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5   

3

17 Node + 3 NOx 2

Methane

Yes

NUIGMECH1.2

IDT: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5.          
PSR: 1- 40 atm, 1100 - 2000 K, phi = 0.4 - 1.5         
Flame: 1- 40 atm, 473 - 573 K, phi = 0.4 - 1.5   

3

References:
[1]. Kelly M, Fortune M, Bourque G, Dooley S. Toward Development of Machine Learned Techniques for
Production of Compact Kinetic Models arXiv preprint arXiv:220208021. 2022.

[2]. Kelly M, Dooley S, Bourque G. Toward Machine Learned Highly Reduced Kinetic Models for Methane/Air
Combustion. ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition 2021.

[3]. Kelly M, Dunne H, Dooley S, Bourque G. T Low-Dimensional High-Fidelity Kinetic Models for NOX Formation by a Compute Intensification Method . preprint arXiv:2202.10194. 2022.

[4]. Curran H. Personal Communication henry.curran@nuigalway.ie. 2018.

[5]. Baigmohammadi M, Patel V, Martinez S, Panigrahy S, Ramalingam A, Burke U, et al. A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C1–C2 Hydrocarbons over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions. Energy & Fuels. 2020;34:3755-71