Skip to main content

Trinity College Dublin, The University of Dublin

Menu Search



You are here Research > Facilities > SNIAM

SNIAM

In the SNIAMS building we have a well stocked chemistry lab for sample preparation, material studies and electrochemistry.

The facilities in the SNIAM include:

  • SQUID Magnetometer
  • VSM
  • Vector VSM
  • Potentiostats
  • AFM
  • RT Rig
  • 2 Large Volume Electromagnets
  • Numerous Variable Magnetic Field Multimags
  • Large variety of permanent magnets with:
    1. Uniform field (B)
    2. Uniform field gradient (∇B)
    3. Uniform B∇B

Magnetometry

DC Magnetometry

  • Quantum Design MPMS XL 5
  • VSM - single axis, room temperature
  • Vector VSM - 2 + 1 axis, room temperature
  • VSM - single axis, high temperature

AC Magnetometry

  • Quantum Design MPMS XL 5
  • AC susceptometer - high temperature
  • AC Susceptometer - low temperature

Electrochemistry

In the electrochemistry group we have the ability to electrodeposit thin films/nanowires, and perform electrochemical analysis (cyclic voltammograms, chronoamperometry, impedance spectroscopy, etc.) with and without magnetic fields (0 - 1.5 T in SNIAMS, 0 - 5 T in CRANN). Currently we have:

  • Solartron SL280B potentiostat / impedance spectroscope
  • CHI 660B potentiostat / impedance spectroscope
  • EG&G M273 potentiostat
  • EG&G 263A potentiostat
  • Quartz microbalance
  • Rotating disc electrodes

AFM

The MultiMode produced by Digital Instruments (now Veeco) is the world's best-selling scanning probe microscope. This versatile imaging tool is able to perform all conventional AFM techniques, e.g. contact mode, tapping mode, MFM, EFM, electrochemistry AFM. A vibration isolation system was recently purchased from Ambios Technology with the support from MANSE.


Pulsed Laser Deposition

The MANSE group has access to two PLD chambers managed by Prof. J. Lunney and Prof. Coey's groups.

The Hedgehog

The Hedgehog PLD chamber can reach a base pressure of ~10-6 mbar. It has been used to deposit binary oxide films such as TiO2, In2O3, SnO2, and also CuAlO2. A Compex 248nm KrF excimer laser, with a repetition rate in the range 1 - 20 Hz, is employed for deposition of thin films. The target-to-substrate distance is 5 cm. The substrate can be heated to 1000oC (by resistive heating). The chamber is equipped with a Langmuir probe for determination of the ablation threshold, and in situ reflectivity for thickness monitoring.


Heloïse

Heloïse PLD chamber (designed by Surface) can reach a (HV) base pressure of ~10 -7 mbar. This versatile chamber has been used for the deposition of HfO 2 , ZnO, SrTiO 3 , LaAlO 3 , CoO, some N-doped oxides, more complex oxides, and even sellenides. A four-target carrousel allows deposition of multilayered films in a one-step process. The substrate is heated by radiation (up to 950 o C) and a thermocouple is used to monitor and control the temperature. A mass flow controller is used to control oxygen pressure in the chamber, while a baratron accurately gauges the pressure during deposition. The system is equipped with a high pressure RHEED, a RF plasma source for oxygen- and nitrogen-doping, a Langmuir probe, in situ reflectivity, and uses the same KrF excimer laser as the ‘Hedgehog’ above.


Class 100 Microfabrication Cleanroom

  • 30m2
  • Dedicated Acid and Solvent Wet Benches
  • Resist Spinner and Hot Plate
  • 2 Karl Suss MJB3 Mask Aligners (0.8-2µm resolution)
  • Reactive Ion Etcher
  • E-Beam Evaporator
  • Ar+ Ion Beam Etching

Millatron (The ion milling tool) & End point detector

The Millatron system consists of a vacuum chamber with a rotational sample stage and end point detector, an plasma bean source with an RF power supply, a DC supply which controls a magnet (Helmholtz coils) in the ion gun and a MFC with lets high purity Ar into the system.

The ion milling tools - Millatron

COPRA 260 has been selected as the plasma bean source in our Millatron. COPRA is a filamentless, radio frequency (RF) driven, low-pressure plasma beam source. The RF power is inductively coupled to the plasma through a matching network and a single-turn excitation electrode. An essential feature of the design is the tunable matching Network which is incorporated into the source. The matching network comprises two resonant circuits which employ variable capacitors to match impedance and hence maximize the power transfer efficiency to the plasma. Remotely matched sources are also available upon request. The necessary “resonant” excitation of the plasma is achieved by applying a weak transverse magnetic field generated by means of a series of built-in Helmholtz coils. The strength of the magnetic field is controlled by an auxiliary power supply. The beam produced by the COPRA is also quasi-neutral i.e. it contains roughly the same number of ions and electrons permitting deposition, etching and surface modification of both conducting and insulating substrate materials without significant charge build-up. The plasma is typically ignited by the creation of a pressure pulse. The process gas is fed directly into the excitation cavity of the plasma source.

The base pressure of the system is typically 2 x 10-7 mToor and the working pressure is 5 x 10-5 mTorr using 0.14 sccm of argon. RF power of 400 W is used with a magnet current of 3.5 A. The sample is rotated in a planetary fashion at 45° to the ion beam and the etch rate is material specific.

Hiden end point detector

One of the most important issues in ion milling process is how to precisely control and stop the milling process at certain layers in the mutil-layer stacks. In the case of MgO-based MTJs, the ideal end point for the definition the small junction is the 0.8 nm Ru in the AAF layers (IrMn/CoFe/Ru/CoFeB). For this purpose, a high sensitive Hiden end point detector (EPD) was installed on the top of Millartron.

The Hiden EPD consists of ion milling probe, radio frequency (RF) head with amplifier and PC running MASsoft. The ion milling probe contains an energy filter, a quadrupole mass spectrometer and a secondary electron multiplier detector. Any ions entering the quadrupole field experience potential differences deflecting them from their original trajectory. The extent of deflection of any ion entering the field is related to its mass: charge (m/e) ratio. At each interval on the RF scan only one m/e ratio resonates with the field allowing the ion to pass along the z-axis. All other species are deflected and neutralized by impact upon the rods of the quadrupole. The ion signal then collected and displayed by the MASsoft. By the monitor of the software, a certain end point of the ion milling process can be easily set.