Optical Communications: Detection
- Holes and electrons generated in the depletion region
- Optical Beam induced current

Zero Bias

Reverse Bias
Photodiodes and wavelength

• Si photodiodes: 0.8–0.9 μm (up to 1.1 μm maximum)
• Ge photodiodes: 1.1-1.6 μm..........but large dark currents
• So........Ill-V alloys: tailor the bandgap to suit absorption wavelength eg. InGaAs lattice matched to InP, useful up to 1.7 μm
Absorption

• Absorption coefficient, α, depends on λ

• $I_p = P_0 e^{(1-r)(1-\exp(-\alpha d))}/hf$

• r: Fresnel reflection coefficient at the air/semiconductor interface

• d: width of the absorption region
Responsivity, R

- $r_e = \eta \cdot r_p = \eta \frac{P_0}{(hf)}$

- $I_p = e \cdot r_e = \eta \frac{P_0 \cdot e}{(hf)}$

- $R = \frac{I_p}{P_0} = \eta \frac{e}{(hf)} = \eta \frac{e\lambda}{(hc)}$

- Note that η depends on the wavelength and is zero below the band-edge
Long Wavelength Cut-off

For absorption \(hf = \frac{hc}{\lambda} \geq E_g \)

Threshold for detection: long wavelength cut-off point, \(\lambda_c = \frac{hc}{E_g} \)
Example

• A photodiode has a quantum efficiency of 65% when photons of energy \(1.5 \times 10^{-19}\) are incident on it.

• (a) At what wavelength is the photodiode operating?

• (b) Calculate the incident optical power required to obtain a photocurrent of 2.5 \(\mu\)A
Example

• (a) $E = \frac{hc}{\lambda}$ hence $\lambda = 1.32 \mu m$

• (b) $R = \frac{\eta e}{(hf)} = 0.694 \text{ A/W}$
• $R = \frac{I_p}{P_0}$
• $P_0 = \frac{2.5 \times 10^{-6}}{0.694} = 3.6 \mu W$
Figure 8.2 Optical absorption curves for some common semiconductor photodiode materials (silicon, germanium, gallium arsenide, indium gallium arsenide and indium gallium arsenide phosphide).
<table>
<thead>
<tr>
<th>Material</th>
<th>Indirect (eV)</th>
<th>Direct (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.14</td>
<td>4.10</td>
</tr>
<tr>
<td>Ge</td>
<td>0.67</td>
<td>0.81</td>
</tr>
<tr>
<td>GaAs</td>
<td></td>
<td>1.43</td>
</tr>
<tr>
<td>InAs</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>InP</td>
<td></td>
<td>1.35</td>
</tr>
<tr>
<td>GaSb</td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>In${0.53}$Ga${0.47}$As</td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>In${0.5}$Ga${0.5}$As</td>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td>GaAs${0.69}$Sb${0.12}$</td>
<td></td>
<td>1.15</td>
</tr>
</tbody>
</table>
Semiconductor Photodiode Without Internal Gain

Depletion Region

Diffusion Region
Semiconductor photodiode without internal gain

• In depletion region: Carrier pairs separate and drift under influence of E field.
• In diffusion region: Diffusion until carriers are collected.
• Diffusion slow compared to drift
• Limits speed of the device.
• So......try to assure photons are absorbed in the depletion region
To achieve longer wavelength operation when light penetrates the semiconductor more deeply, we want a wider depletion region. For a pin photodiode, get most absorption in the depletion region.

PIN PHOTODIODE
FRONT ILLUMINATED SILICON PIN PHOTODIODE

Standard operation at approx. 0.9 micron
Depletion width: 20-50 micron
Dark current: due to surface leakage currents and generation/recombination currents in the depletion region
Large absorption width (approx. 500 micron)
Very sensitive to wavelengths close to the bandgap limit (approx. 1.09 micron for Si) where absorption is small

SIDE-ILLUMINATED PIN PHOTODIORDE
Other detection materials...

• Ge photodiodes: high dark currents

• III-V: eg. InGaAs/InP
 – Detects up to 1.67 micron
 – Epitaxial growth on InP substrate
 – Light absorbed in InGaAs
Semiconductor photodiode with internal gain, Avalanche Photodiode

APD: more efficient structure than pin structure to create an extremely high electric field region (3×10^5 V/cm)
APD

• In the high field region electrons and holes can acquire sufficient energy to excite new electron-hole pairs i.e. impact ionisation
• Need high reverse voltages ed. 15-25V
• Get carrier multiplication up to 10^4 times using defect-free materials.
Response Time

- Need full depletion in the absorption region to avoid the slower process of diffusion.
- Response time:
 - (a) Transit time of carriers across the absorption region (depletion width)
 - (b) Time taken by carriers to perform the avalanche process.
 - (c) RC time constant due to the junction capacitance.
Benefits & Disadvantages of Avalanche Photodiodes

• +
 • + Useful to detect very low light levels used in optical communications
 • + Often give wider dynamic range
• –
 • More difficult to fabricate
 • Random nature of gain: added noise
 • High bias voltage
 • Need temperature stabilisation
Noise

• Overall sensitivity of a photodiode results from random fluctuations in I and V at device output terminals both with & without an optical signal.

• To reduce dark current:
 • Use high-quality, defect free materials
 • Careful fabrication: Reduces surface currents
Noise

• But....
• Still have a **Quantum Detection Process**
• - Statistical Nature
• - Average detector current exhibits a fluctuation about a mean value
• **Noise:** \((I_s^2)^{1/2} = (2eB\bar{I})^{1/2}\)

 \(I_s\): rms value of this shot noise current
 \(B\): photodiode received bandwidth
 \(\bar{I}\): average photocurrent
Shot Noise

\[i_{\text{rms shot}} = (2eB|I|)^{1/2} \]
Johnson Noise

• Due to thermal agitation of charge carriers in a conducting medium
• Random nature => fluctuating voltage appears across the medium
• The rms value of this voltage across a resistor, R, at temp, T, having frequency components between f and f+Δf is:
 \[\Delta V_f = (4kTRΔf)^{1/2} \]
• In practice Johnson noise is often smaller than Shot noise
To assess the noise performance

- Noise equivalent Power (NEP)
- NEP = incident optical power (at a particular wavelength) to produce a photodetector current equal to the r.m.s. noise within a unit bandwidth.
- $I_p = \text{photocurrent} = e r_e = \eta P_0 e/(hf)$
- $P_0 = I_p hf / (\eta e) = I_p hc / (\eta e \lambda)$
NEP

• [Put Ip = rms shot noise current]
• Ip = \((2eB_i)^{1/2}\)
• Where \(I_\text{=} = Ip + Id = \) photodiode average current
• If we put rms shot noise current equal to the photocurrent to get an expression for NEP
• \(I_e. \) Set Ip to approximately equal \((2eB \ I_p)^{1/2}\)
NEP

• $I_p^2 = 2eB I_p$
• $I_p = 2eB$
• Now NEP is the power, P_0, when $I_p = 2eB$ and when $B=1$Hz
• Since $P_0 = I_p \frac{hc}{(\eta e \lambda)}$ then
• $\text{NEP} = \frac{2hc}{(\eta \lambda)}$
• For an ideal detector, $\eta = 1$ and $\text{NEP} = \frac{2hc}{\lambda}$
• Above true when photocurrent dominates ie. I_p much greater than I_d
If dark current dominates...

• ie. Ip much less than Id
• Then Ip = (2eB Id)^{1/2}
• So if dark current dominates, using B=1Hz
• NEP = P_0 = (2e Id)^{1/2}hc / (\eta e \lambda)
DETECTIVITY

- DETECTIVITY, $D = \frac{1}{NEP}$
Fundamental limitations on signal size

Consider a digitally coded optical signal:
For a low photon arrival rate... statistics are important
Say the average power transmitted corresponds to approximately 20 photons/pulse:
Pulses arrive at the detector with mostly 17 to 24 photons, but some pulses will contain zero or one photons......Poisson statistics
Poisson statistics

• The probability of detecting n photons/s when the mean arrival rate is n_m is:
• $P(n,n_m) = (n_m)^n \exp(-n_m)/n!$
• What is the probability a pulse will contain zero photons when $n_m = 20$?
• $P(0,20) = (20)^0 \exp(-20)/0! = 2 \times 10^{-9}$
So if we have a signal with equal numbers of ones and zeros where:

- “one”: pulse with an average of 20 photons
- “zero”: pulse with zero photons

The probability of a “one” being mistaken for a ‘zero’ is: \(P(0, 20) = 2 \times 10^{-9} \)

ie. A signal containing an average of 10 photons has a BIT ERROR RATE (BER) = \(\text{approx } 10^{-9} \)
BER and frequency

• The average number of photons emitted in time τ: $P \tau /hf$
• The av. number of detected photons in τ: $\eta P \tau /hf = n_m$
• So n_m is proportional to τ
• So n_m is proportional to $1/f$
• As f increases, n_m decreases, $\exp (-n_m)$increases and BER increases
Receiver sensitivity comparison

Receiver Sensitivity Comparison of pin PD and APD devices at

\[\text{BER} = (0.9) \]

Bit error rate (using Si detectors at 0.82 μm)

\[M = \frac{I}{I_p} \]

M: total output current where we get carrier multiplication

Ip: initial or primary photocurrent before carrier multiplication
Minimum power for analog transmission

• For digital transmission $BER =_{\text{approx}} 10^{-9}$
• The corresponding quantity in analog transmission is: $S/N = 50\text{dB}$
• The limiting factor on S/N will be Shot noise
• $(S/N)_{\text{max}} = \frac{i_{\text{sig}}^2}{i_{\text{shot}}^2} = \frac{i_{\text{sig}}^2}{(2ei_{\text{sig}}\Delta f)} = i_{\text{sig}}/(2e\Delta f)$
• $i_{\text{sig}} = \eta Pe / hf = \eta Pe\lambda / hc$
Minimum power for analog transmission

- \((S/N) = \frac{i_{\text{sig}}}{2e\Delta df} = \eta \frac{P\lambda}{2hc\Delta f} \) equivalent to 50dB
- or... \(10\log_{10}(S/N) = 50 \)
- \(\log_{10}(S/N) = 5 \)
- \(S/N = 10^5 \)
- \(\eta \frac{P\lambda}{2hc\Delta f} = 10^5 \)
- \(P = 2 \times 10^5 \frac{hc\Delta f}{\eta \lambda} \)
- If \(\lambda = 0.85\mu m, \eta = 1, \Delta f = 6.25\text{MHz}, P_{\text{min}} = 0.3\mu W \)
- (Digital systems better for low-noise, long-distance communications)
Optical transmission systems

• Losses:
 • Laser – fibre coupling loss : 10dB
 • 10 slices (0.5dB x 10) : 5dB
 • Fibre detection coupling loss : 5dB
 • Fibre attenuation (0.3dB/km) : 0.3L
 • Total attenuation: 20+0.3L
Optical transmission systems

• Say receiver sensitivity is -50dBm
• 1 mW corresponds to 0dBm
• So we must keep 20+0.3L less than 50
• ie. 0.3L less than 30
• Keep L below 100km
Power margin

• Say the total attenuation is 41dB
• Then the excess power margin for the last example is 9dB = 50dB-41dB
• An “excess power margin” of 9dB is sufficient for optical link operation