Representation in Linguistics

Tim O'Donnell, May 2022

What are representations?

- Just "data structures" expressed in some formalism, notation, etc.
- Some covert commitments:
 - Speaker-illegibility (weak)
 - Theoretician-legibility (strong)
 - the mind (or the outside world).

• We don't have to think about this very much since we don't ever worry about how these "representations" are "represented" anywhere else (e.g., in brains).

Interpretability: Systematic relationships (mappings) with other systems of

What are representations?

- Just "data structures" expressed in some formalism, notation, etc.
- Some covert commitments:
 - Speaker-illegibility (weak)
 - Theoretician-legibility (strong)
 - of the mind (or the outside world).

• We don't have to think about this very much since we don't ever worry about how these "representations" are "represented" anywhere else (e.g., in brains).

Interpretability: Systematic relationships (mappings) with other systems

The Y-Model

The Y-Model

The Y-Model

Compositionality

- The meaning of a sentence is some function of the meaning of its parts and the way those parts are combined.
- We imagine that the problem is to map from some space of forms U to some space of meanings M, call the map $[] : U \rightarrow M$
- Richard Montague (founder of formal semantics) suggested that compositionality in a mapping from a space (algebra) of forms to a space (algebra) meant that [] is a homomorphism (see Janssen, 1986).
 - $\llbracket F(x,y,z) \rrbracket = \llbracket F \rrbracket (\llbracket x \rrbracket , \llbracket y \rrbracket , \llbracket z \rrbracket).$

A World Model (3DP3, Gothoskar et al 2021)

Scene

find

"find a can behind a box"

Sidebar: Views

- Active versus passive views of such structures
 - Derivation structures are instantiated in memory
 - Derivation structures are merely our conventions for representing the trace of a computational process
- "Derivational" versus "Representational" theories.
 - Step-by-step, algorithmic procedures for building structures, versus constraints on sets of structures stated in a meta-language
 - Proof-theoretic versus model-theoretic
 - Directed (generative) versus undirected (random field)
- Mentalist versus realist notions of the mappings

Interpretability as Compositionality

- The meaning of a sentence is some function of the meaning of its parts and the way those parts are combined.
- We imagine that the problem is to map from some space of forms U to some space of meanings M, call the map $[[]: U \to M$
- Richard Montague (founder of formal semantics) suggested that compositionality in a mapping from a space (algebra) of forms to a space (algebra) meant that [] is a homomorphism (see Janssen, 1986).
 - $\llbracket F(x,y,z) \rrbracket = \llbracket F \rrbracket (\llbracket x \rrbracket, \llbracket y \rrbracket, \llbracket z \rrbracket).$
- This principle is too strict even for relatively simple examples in natural language.... idioms

5

Tim rocked the cradle.

Tim rocked the boat.

"Tim destabilized the situation."

Tim rocked the boat.

"Tim destabilized the situation."

Tim rocked the boat.

"Tim destabilized the situation."

- Two problems: •
- Individual words can be modified in many idioms 1. Tim managed to rock an otherwise unrockable boat.
- 2. Nevertheless, the idiomatic meaning depends on the combination of words. Tim shook the canoe.

Tim managed to shake an otherwise unshakeable canoe.

- Conclusion:
 - Individual words contribute some aspect of meaning.
 - But their combination also synergistically contributes some aspect of meaning.

Compositionality

- combination rock the boat.
- include information from rock and cradle.
- as a quantitative property:
 - How locally is meaning coded (on words, or on bigger units)?
- If we had such a definition, maybe we could put it into our objective functions...

 Different units and combinations of units seems to contribute different amounts of information about meaning: the is a contribution from *rock*, from *boat*, and **from the**

• The higher the proportion of information that comes from smaller units such as words, the more intuitively compositional the system is. *Rock the cradle* seems to mostly

• Maybe compositionality should be viewed not as a binary property of a system, but

A Simple Representional Model of Meaning The classic Montague model

- Montague introduced the idea that meaning could be captured using model theory.
- Meaning spaces are just (structured) sets of situations (cf. possible worlds).
- In our case, the meaning spaces are just target interface systems of the mind.
- The meaning of an utterance is just a subset of possible situations in these interface spaces.
- Another perspective: an utterance is a probabilistic conditioner that chooses a particular subset of possible states of interfaced systems.
- Very week notion of representation in terms of probabilistic conditioning.

A Simple Model of Meaning The classic Montague model

"Tim rocked the cradle"

All Possible Situations

Consistent Situations

A Simple Model of Meaning The classic Montague model

A natural measure of how much information was in the utterance. AIN

"Tim rocked the cradle"

Consistent Situations

A probabilistic version

Distribution on Utterances

Distribution on Possible Situations

Distribution on Consistent Situations

A Simple Model of Meaning A probabilistic version

Distribution on Utterances

Mutual Information

Distribution on Consistent Situations

Pr

A Simple Model of Meaning A probabilistic version

Distribution on Utterances

<text>

Distribution on Consistent Situations

 Consider the mutual information between verb phrases consisting of a verb and direct object, and some meaning space:

• I(VP;M)

- Let's assume that our joint RV VP decomposes in to the set of RVs {V, NP}
- There are three kinds of ways that these two random variables can contribute to the meaning.

- Unique information:
 - $I({V};M)$ and $I({NP};M)$

- Unique information:
 - $I({V};M)$ and $I({NP};M)$
- Redundant information:
 - $I({V}{NP};M)$

- Unique information:
 - $I({V};M)$ and $I({NP};M)$
- Redundant information:
 - $I({V}{NP};M)$
- Synergistic information:
- I({V, NP};M)

- Decomposition
 - I(V,NP;M) = $I({V};M) + I({NP};M) + I({V}{NP};M) + I({V},NP};M)$ $+I({V,NP};M)$
 - $I(NP;M) = I({NP};M) + I({V}{NP};M)$
 - $I(V;M) = I({V};M) + I({V}{NP};M)$

- Partial Information Decomposition: Beer and Williams, 2010.
 - I(V,NP;M) = $I({V};M) + I({NP};M) + I({V}{NP};M) + I({V}{NP};M) + I({V,NP};M)$
 - $I(NP;M) = I({NP};M) + I({V}{NP};M)$
 - $I(V;M) = I({V};M) + I({V}{NP};M)$

- Partial Infc redundancy or unique Beer and When information.
 - I(V,NP;M) = $I({V};M) + I({NP};M) + I({V}{NP};M) + I({V},NP};M)$ $+I({V,NP};M)$
 - $I(NP;M) = I({NP};M) + I({V}{NP};M)$
 - $I(V;M) = I({V};M) + I({V}{NP};M)$

- Partial Information
 Partial Information
 - I(V,NP;M) =
 I({V};M) + I({ P};M) + I({ V, NP};M) = P};M)
 - $I(NP;M) = I(\{N$
 - $I(V;M) = I({V};M) (NP};M)$

P;M)

Characterizing morphological systems using partial information decomposition Michaela Socolof and Timothy J. O'Donnell

The relation between meaning and form in morphology (word structure)

In language we have meanings that we want to express, and linguistic forms that we use to express them

Example: In English, we communicate the meaning of [plural] with -s

Meaning

APPLE-PL

Form	
apple-s	

The relation between meaning and form in morphology (word structure)

There are a variety of ways that meanings can correspond to linguistic forms, e.g.:

One-to-one correspondence

Meaning

APPLE-PL

Many-to-one correspondence

Meaning

WALK-3rd-SG

Form	
apple- s	

Form	
walk-s	

Agglutinative vs fusional

- Different relations between meaning and form can be seen clearly in morphology
- Well-known distinction between agglutinative and fusional languages
 - Highly agglutinative = a single morpheme expresses a single unit of meaning (highly compositional)
 - Highly fusional = a single morpheme bundles together multiple units of meaning (less compositional)

Agglutinative vs fusional

Agglutinative: Hungarian

Meaning	Form
girl-SG-DAT	lány-Ø-nak
girl-PL-DAT	lány-ok-nal
girl-SG-TERM	lány-Ø-ig
girl-PL-TERM	lány-ok-ig

Fusional: Russian

Meaning	Form		
cat-SG-DAT	кот-у		
cat-PL-DAT	кот-ам		
cat-SG-GEN	кот-а		
cat-PL-GEN	KOT-OB		

Methods

24 languages from UniMorph, noun paradigms

Example paradigm, Latin:

Meanir gazela-NO

gazela-NO gazela-GE gazela-GE gazela-DA gazela-DA

gazela-AC gazela-AC

gazela-AB

gazela-AB

gazela-VO gazela-VO

ng	Form
M-SG	gazela
M-PL	gazelae
N-SG	gazelae
N-PL	gazelārum
T-SG	gazelae
T-PL	gazelīs
C-SG	gazelam
C-PL	gazelās
L-SG	gazelā
BL-PL	gazelīs
C-SG	gazela
C-PL	gazelae

Methods

We have to define our source and target variables Elements of the meaning are our sources, elements of the form are our targets Meaning variables: CASE, NUMBER, DEFINITENESS (in relevant languages) Form variables: character slots in the suffix, aligned with LingPy (List and Forkel 2021)

M_1	M_2	M_3	F_1	F_2	F_3	F_4
KOT	GEN	SG	КОТ	a	-	-
KOT	DAT	PL	КОТ	a	м	-
KOT	INS	PL	кот	a	М	И

Table 6: Random variable structure for three word forms in Russian

Quantitative formalization of Compositionality

- The proportion of unique information in a system is a measure of compositionality.
- There are differentiable versions of these quantities.
- Requires some (measure on a) meaning space.

Conclusion

- Showed several different studies looking at classical linguistic concepts.
- More to say about definitions of productivity and the exact nature of linguistic generalization.
- Much more work to be done to use this definition of compositionality.
- Would love to collaborate on developing large-scale versions of these ideas.

Thank you!