CRITICAL REVIEW

212

Improvements in the direct analysis of advanced materials using ICP-based measurement techniques
Andreas Limbeck,* Maximilian Bonta and Winfried Nischkauer

The analysis of advanced materials using ICP-based solid sampling approaches offers many advantages and possibilities. Recent developments are discussed in this review.

TUTORIAL REVIEW

233

Inductively coupled plasma-mass spectrometry: insights through computer modeling
Annemie Bogaerts and Maryam Aghaei

We illustrate how modeling can give better insight in ICP-MS, by showing calculated plasma characteristics, gas flow patterns and sample behavior.
JAAS
Journal of Analytical Atomic Spectrometry
rsc.li/jaas

Innovative research on the fundamental theory and application of spectrometric techniques.

Editorial Board

Chair
Martin Resano, University of Zaragoza, Spain

Members
Dmitry R. Bandura, Fluidigm Canada, Canada
Owen Butler, Health and Safety Laboratory, UK
Carsten Engeland, University of Siegen, Germany
Joerg Feldmann, University of Aberdeen, UK
Eric Marlon Moraes Flores, Universidade Federal de Santa Maria, Brazil
Heidi Goenaga-Infante, LGC, Middlesex, UK
Wei Hang, Xiamen University, China
George Havrila, Los Alamos National Laboratory, USA

Gunda Köllensperger, University of Vienna, Austria
David W. Kippelen, Pacific Northwest National Laboratory, USA
Kerstin Leopold, University of Ulm, Germany
Kelvin Leung, Hong Kong Baptist University, Hong Kong, China
Heung Bin Lim, Dankook University, South Korea
Yu Li, Sichuan University, China
R. Kenneth Marcus, Clemson University, USA
John W Olesik, Ohio State University, USA
Richard Ortega, CNRS, France
Christophe Pecheyran, University of Pau and Pays de l’Adour, France
Spros Pergantis, University of Crete, Greece

Pavel Pohl, Wroclaw University of Technology, Poland
Mark Renkamper, Imperial College London
Rick Russo, Lawrence Berkeley National Laboratory, USA
Attiya Siripinyanond, Mahidol University, Thailand
Patricia Smichowski, National Atomic Energy Commission, Argentina
Ralph E. Streete, National Research Council of Canada, Canada
Joanna Szpunar, University of Pau, France
Scott Tanner, University of Toronto, Canada
José Luis Todoli, University of Alicante, Spain
Johannes van Eelen, National Institute of Chemistry, Slovenia
Frank Vanhaecke, University of Ghent, Belgium

Advisory Board

Marco Aruda, UNICAMP, Brazil
Ramón M. Barnes, University Research Institute for Analytical Chemistry, USA
Annamie Bogaerts, University of Antwerp, Belgium
Jose Broekaert, University of Hamburg, Germany
Detlef Günther, ETH Zürich, Switzerland
George Havrila, Los Alamos National Laboratory, USA
Gary M. Hiethe, Indiana University, USA
Xiandeng Hou, Sichuan University, China
Bin Hu, Wuhan University, China
Zhaochu Hu, China University of Geosciences, China
Norbert Jakubowski, Federal Institute for Materials Research and Testing (BAM), Germany

Atomic Spectrometry Updates Editorial Board

Chair
*O. T. Butler, Health & Safety Laboratory, UK
J. R. Bacon, Aberdeen, UK
N. Bartow, Sandwell General Hospital, UK
S. Branch, Sonning Common, UK
W. R. L. Cairns, Institute for the Dynamics of Environmental Processes, Italy
S. Carter, BD Chemicals Limited, UK
*R. Clough, University of Plymouth, UK
*J. M. Cook, British Geological Survey, UK
C. M. Davidson, University of Strathclyde, UK
M. P. Day, The Australian Wine Research Institute, Australia
L. Elbon, Hitchin, UK
A. T. Ellis, Abingdon, UK
E. H. Evans, University of Plymouth, UK

A. Fisher, University of Plymouth, UK
B. Gibson, Intertek Testing Services, UK
D. J. Halls, DJH Web, UK
C. Harrington, University of Surrey, UK
S. Hill, LGC, UK
*S. J. Hill, University of Plymouth, UK
F. Madrid, Universidad Complutense de Madrid, Spain
J. Marshall, Glasgow Caledonian University, UK
*D. L. Miles, Keyworth, UK
J. Murphy, National Nuclear Laboratory Limited, UK
M. Patrignani, Istituto Superiore di Sanita, Italy
J. Piskorowski, University of Oviedo, Spain
P. J. Potts, Open University, UK

C. M. M. Smith, St Ambrose High School, UK
C. Striel, AtomInstitut TU Vienna, Austria
*A. T. Taylor, University of Surrey, UK
R. Taylor, University of Southampton, UK
J. F. Tyson, University of Massachusetts, USA
C. Vanhoof, Flemish Institute for Technological Research (VITO), Belgium
*H. M. West, Sheffield, UK
M. White, Health and Safety Laboratory, UK
I. Whiteside, MPI, Middlesbrough, UK
P. Wobrubaeske, AtomInstitut TU Vienna, Austria

*Members of the ASU Executive Committee

Information for Authors

Full details on how to submit material for publication in JAAS are given in the Instructions for Authors (available from http://www.rsc.org/authors). Submissions should be made via the journal’s homepage: rsc.li/jaas

Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form (Original Citation)–Reproduced by permission of the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2017. Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the Publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA. The paper used in this publication meets the requirements of ANSI/ISO Z39.48–1992 (Permanence of Paper).

Registered charity number: 207890
PAPERS

262

Rapid high-resolution U–Pb LA-Q-ICPMS age mapping of zircon

David M. Chew,* Joseph A. Petrus, Gavin G. Kenny and Niall McEvoy

$^{206}\text{Pb} - ^{238}\text{U}$ LA-ICPMS image map of a complex, polyphase zircon produced using 7 micron rasters.

277

Impact of Laser-Induced Breakdown Spectroscopy data normalization on multivariate classification accuracy

Normalization of data is significant and should be chosen according to the sample matrix under investigation.

289

Imaging the 3D trace metal and metalloid distribution in mature wheat and rye grains via laser ablation-ICP-mass spectrometry and micro-X-ray fluorescence spectrometry

Stijn J. M. Van Malderen, Brecht Laforce, Thibaut Van Acker, Laszlo Vincze and Frank Vanhaecke*

In this work, a serial sectioning approach, based on polishing an epoxy-embedded sample, is used to image trace metals in cereal grains in 3D.

299

Microanalysis of arsenic in solid samples by laser ablation-atomic fluorescence spectrometry

Zdenka Člejkovec,* Johannes T. van Elteren, Vid S. Šelih, Martin Šala and Warren T. Corns

A spot mode-LA-AFS method has been developed for localised microanalysis of arsenic in biological tissues.
In situ Rb–Sr and K–Ca dating by LA-ICP-MS/MS: an evaluation of N₂O and SF₆ as reaction gases

Significant improvements to the analytics and calibration of in situ Rb–Sr dating; extending the concept to in situ K–Ca dating.

Iron isotopic analysis of finger-prick and venous blood by multi-collector inductively coupled plasma-mass spectrometry after volumetric absorptive microsampling

Yulia Anoshkina, Marta Costas-Rodríguez and Frank Vanhaecke*

The use of VAMS – volumetric absorptive microsampling – of finger-prick blood was evaluated in the context of high-precision isotopic analysis of whole blood Fe by multi-collector inductively coupled plasma-mass spectrometry.

Development and validation of a new method for the precise and accurate determination of trace elements in silicon by ICP-OES in high silicon matrices

A. Rietig and J. Acker

A ready-to-use method for the precise and fast determination of impurities in silicon is presented.

FPM model calculation for micro X-ray fluorescence confocal imaging using synchrotron radiation

I. Szalóki,* A. Gerényi, G. Radócz, A. Lovas, B. De Samber and L. Vincze

A novel quantitative reconstruction model for synchrotron-based confocal X-ray fluorescence imaging has been developed and validated.
Influence of the target material on secondary plasma formation underwater and its laser induced breakdown spectroscopy (LIBS) signal

M. R. Gavrilović, V. Lazic and S. Jovičević

The significant influence of the target material properties on subsequent plasma and bubble formation in underwater laser ablation is demonstrated through the examples of α-alumina and pure Al targets.

Combined hollow cathode vs. Grimm cell: semiconductive and nonconductive samples

A. Gubal,* A. Ganeev, V. Hoffmann, M. Voronov, V. Brackmann and S. Oswald

The Grimm and the combined hollow cathode GD cells were compared in the scope of semiconductive and nonconductive sample analysis.

Optimization of distances between the target surface and focal point on spatially confined laser-induced breakdown spectroscopy with a cylindrical cavity

Jin Guo, Junfeng Shao, Tingfeng Wang, Changbin Zheng, Anmin Chen* and Mingxing Jin*

The spatial confinement effect in laser-induced plasma with different distances between the target surface and focal point is investigated by optical emission spectroscopy.

Determination of total Hg isotopic composition at ultra-trace levels by on line cold vapor generation and dual gold-amalgamation coupled to MC-ICP-MS

An online pre-concentration method was developed to directly determine Hg isotopic compositions at the ng L\(^{-1}\) level in liquid samples.
Structure of the Fe and Ni L X-ray spectra

A. Sepúlveda, T. Rodríguez, P. D. Pérez, A. P. L. Bertol, A. C. Carreras, J. Trincavelli, M. A. Z. Vasconcellos, R. Hinrichs and G. Castellano*

Diagram and satellite line parameters were obtained from Fe-L and Ni-L X-ray spectra induced by electron impact.

Measurement of uranium-236 in particles by secondary ion mass spectrometry

David S. Simons* and John D. Fassett

The determination of the relative isotopic abundance by secondary ion mass spectrometry of ^{236}U in uranium-containing material is complicated by the presence of $^{235}\text{U}^{+}$ ions at the same nominal mass as the uranium isotopic peak.

3D-reconstruction of chemical state distributions in stratified samples by spatially resolved micro-X-ray resonant Raman spectroscopy

X-ray resonant Raman scattering was used, for the first time, in a confocal setup with the aim of determining different compounds of the same element in a copper-multilayer sample.

A new approach for the digestion of diesel oil by microwave-induced combustion and determination of inorganic impurities by ICP-MS

Flavia M. Dalla Nora, Sandra M. Cruz, Cristiano K. Giesbrecht, Günter Knapp, Helmar Wiltsche, Cezar A. Bizzi, Juliano S. Barin and Erico M. M. Flores*

The presence of trace elements in fuels with high vapor pressure, such as diesel oil, can cause several problems, such as the poisoning of automotive catalysts and environmental pollution; thus strict quality control is required.
Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis

Corey Archer,* Morten B. Andersen, Christophe Cloquet, Tim M. Conway, Shuofei Dong, Michael Ellwood, Rebekah Moore, Joey Nelson, Mark Rehkämper, Olivier Rouxel, Moneesha Samanta, Ki-Cheol Shin, Yoshiki Sohrin, Shotaro Takano and Laura Wasylenki

We have prepared and calibrated a large volume of pure, concentrated and homogenous zinc standard solution.