Module Code: MEU44B07
Module Name: 4B7 COMPUTER AIDED DESIGN
ECTS Weighting: 5 ECTS
Semester taught: Semester 1
Module Coordinator/s: Assistant Professor Tim Persoons

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline:

On successful completion of this module, students should be able to:

- LO1. Complete an analysis cycle from drawing to calculation of a component
- LO2. Interface a finite element analysis with a CAD package
- LO3. Perform various types of mechanical engineering analysis
- LO4. Implement a design cycle
- LO5. Operate a commercial finite element package
- LO6. Understand and interpret results of finite element analysis and know how to verify and optimise the calculation procedures

Graduate Attributes: levels of attainment
- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Enhanced

Module Content:

The module is centred on the application of a complex commercial finite element programme to address a number of design problems in engineering. These may include stress analysis, heat transfer, fluid mechanics, vibration, sealing and contact problems.

Module Syllabus:

- Geometry Input/CAD interface
- Stress Analysis
- Contact Analysis
- Non-Linear and iterative calculation procedures with time step control
- Vibration Analysis
- Heat Transfer (Static and Dynamic)
- Thermal stress problems

Teaching and Learning Methods:

This module is taught primarily through assignments with supporting lectures and tutorials. Students are strongly encouraged to take self-directed learning approach to the module. An initial tutorial will be presented to students to enable problem formulation followed by a linear stress analysis. The function of this will be to establish working familiarity with the package. Further in-lab problems will be performed to build understanding of different analysis methods. Three distinct design challenges will then be presented relating to different areas of engineering.
Assessment Details

Please include the following:

- **Assessment Component**
- **Assessment Description**
- **Learning Outcome(s) addressed**
- **% of total**
- **Assessment due date**

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-class test</td>
<td>Individual test in a computer lab environment where a simplified assignment should be completed within a timed period</td>
<td>1-4,6</td>
<td>1/7 (14%)</td>
<td>Week 8</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>Report generated on engineering design problem #1, carried out in small group</td>
<td>1-6</td>
<td>2/7 (29%)</td>
<td>Week 6</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>Report generated on engineering design problem #2, carried out in small group</td>
<td>1-6</td>
<td>2/7 (29%)</td>
<td>Week 11</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>Report generated on engineering design problem #3, carried out in small group</td>
<td>1-6</td>
<td>2/7 (29%)</td>
<td>Week 14</td>
</tr>
</tbody>
</table>

Reassessment Requirements

Assignment

Contact Hours and Indicative Student Workload

- **Contact hours:** 44 (1 lecture slot and 3 tutorials per week)
- **Independent Study (preparation for course and review of materials):** 32
- **Independent Study (preparation for assessment, incl. completion of assessment):** 44

Recommended Reading List

- ANSYS Training materials (available in electronic format on Blackboard)

Module Pre-requisite

- Not applicable

Module Co-requisite

- Not applicable

Module Website

Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.

- No