<table>
<thead>
<tr>
<th>Module Code</th>
<th>MEU33B05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Mechanics of Machines</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Professor Ciaran Simms</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On successful completion of this module, students should be able to:

LO1. Apply the principles of mechanics and vector analysis to real machine configurations and human body motion.
LO2. Analyse common elements in machine design and human motion.
LO3. Apply and develop computer programmes to study kinematics and dynamics of machines.
LO4. Understand how to account for the effects of friction and balancing requirements in common machine components.

Graduate Attributes: levels of attainment

- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Enhanced

Module Content

This module addresses the theory and application of fundamental mechanics to machine configurations. This includes engines, whole body human and vehicle motion, linkages and friction devices. Together with the accompanying Mechanics of Solids module, the analysis provides the link between component motion and the resulting internal stresses due to inertia and contact forces. Modelling skills are developed together with the use of vector and matrix algebra in the synthesis of solutions to rigid body problems. The subject also introduces computing as a tool for the solution machine/linkage problems.

This module completes the essential requirements of an Engineer in the machine dynamics area and prepares students for project work focused on machine design and human movement. This subject also provides a good basis for study in multibody dynamics and robotics and biomechanics. It builds on earlier introductory modules in mechanics, mathematics and programming.
Teaching and Learning Methods
This module uses Blackboard, podium lectures, self-directed assignments, a laboratory and tutorials to help students achieve the required learning outcomes.

Assessment Details
Please include the following:
- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due (provisional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>End of semester examination</td>
<td>1-4</td>
<td>70</td>
<td>Exam period</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Vibrating Beam report</td>
<td>2 & 3</td>
<td>10</td>
<td>2 weeks after taking lab</td>
</tr>
<tr>
<td>Assignments</td>
<td>Software based assignments</td>
<td>1-3</td>
<td>20</td>
<td>Staggered in Weeks 3-8</td>
</tr>
</tbody>
</table>

Reassessment Requirements
Written Examination

Contact Hours and Indicative Student Workload
Contact hours: 46 (33 Lectures, 11 tutorials, 2 Lab)

- Independent Study (preparation for course and review of materials): 30
- Independent Study (preparation for assessment, incl. completion of assessment): 44

Recommended Reading List
- Kinematics and Dynamics of Machines, CE Wilson and J.P. Sadler (Pearson Prentice Hall)
- Dynamics, JL Meriam (Wiley)

Module Pre-requisite
MEU11E07 Mechanics

Module Co-requisite
NA

Module Website

Are other Schools/Departments involved in the delivery of this module? If yes, please provide
No
details.

Module Approval Date

Approved by

Academic Start Year

Academic Year of Date