Module Code
EE5M01

Module Name
INTEGRATED SYSTEMS DESIGN

ECTS Weighting
5 ECTS

Semester taught
Semester 2

Module Coordinator/s
RHONA WADE

Module Learning Outcomes with reference to the Graduate Attributes and how they are developed in discipline

On successful completion of this module, students should be able to:

2. Build and test complex FSMs in Verilog.
3. Automate testbenches for automatic pass/fail.
5. Make design decisions for fixed point implementations given constraints.
6. Analyse memory usage/requirements for FPGA realisations.
7. Target sequential designs to FPGA hardware.

Graduate Attributes: levels of attainment

- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Enhanced

Module Content

This module builds directly on the 3C7 Digital Systems Design module from the Junior Sophister year. It will introduce more advanced topics in Verilog-based FPGA design. The approach will be from a systems perspective, looking at the implication of design trade-offs for integrated digital systems typical in DSP and consumer applications.

- Finite state machines with data path.
- Verilog HDL language.
- Automation of test benches and design of golden vectors.
- Finite precision effects and choice of bit-width in fixed-point applications.
- Translating DSP systems designed in MATLAB onto an FPGA.
- Memory on FPGAs.
- Working with FPGA board peripherals.
- Realisation of the above concepts in hardware designs.

1. *An Introduction to Module Design* from AISHE provides a great deal of information on designing and re-designing modules.
2. *TEP Glossary*
This is a highly practical module. There will be two “classic” style lectures as well as a two-hour practical session each week which will be a lecture/laboratory slot. The FPGA board used to support the practical sessions is the Basys-3 Artix-7 board. The practical sessions will require the students to complete 3 or 4 assignments outside class hours (average 4 hours extra per week), spreading the load through the year. It is critical that the student keeps up with the practical work during the semester.

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTINUOUS ASSESSMENT</td>
<td>FPGA design lab</td>
<td>1,2,7</td>
<td>30</td>
<td>Announced in the labs</td>
</tr>
<tr>
<td>Written Exam</td>
<td>End of year exams</td>
<td>2,4,5,6</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Reassessment Requirements

100% Based on Exam

Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Contact hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 (22 hour lectures, 22 hour labs)</td>
</tr>
</tbody>
</table>

| Independent Study (preparation for course and review of materials): |
| 2 hour / week for lecture review/self study [24] |

| Independent Study (preparation for assessment, incl. completion of assessment): |
| 2 hours lab prep (formative) [44] |

3 TEP Guidelines on Workload and Assessment
Recommended Reading List

- *Digital Design*, 4th edition, MM Mano and MD Ciletti, Digital Design, (Pearson) Prentice Hall, 2007, can be used if it was purchased in second year but be aware that the examples are in VHDL, not in Verilog.

Module Pre-requisite

EE3C7 or equivalent

Module Co-requisite

Module Website

On Blackboard

Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.

Module Approval Date

Approved by

Academic Start Year 20th January 2020

Academic Year of Date 2019/20