Module Code	CE7J06
Module Name | J6: Wave and Hydro Energy
ECTS Weighting | 5 ECTS
Semester taught | Semester 2
Module Coordinator/s | Prof. Biswajit Basu (basub@tcd.ie)
Lecturer(s): Prof. Biswajit Basu (basub@tcd.ie)
Asst. Prof. Aonghus McNabola (amcnabol@tcd.ie)

Module Learning Outcomes with reference to the **Graduate Attributes** and how they are developed in discipline

On successful completion of this module, students should be able to:

LO1. Carry out assessment of wave energy, applying wave equations and wave theory.
LO2. Carry out simplified analysis using linear wave theory.
LO3. Carry out nonlinear wave analysis.
LO4. Analyse oscillating body systems.
LO5. Analyse fixed and floating wave energy devices.
LO6. Analyse mooring systems.
LO8. Explain hydro-power – basic equations; types of turbines; Micro-hydropower, multipurpose hydropower and pumped storage.
LO9. Carry out the basic design of hydro power and wave energy power systems.
LO10. Calculate resource and potential outputs for particular ocean and hydro systems.
LO11. Articulate the social and environmental aspect of hydro and wave power systems.
LO12. Describe legislative and economic drivers in these renewable technology industries.

Graduate Attributes: levels of attainment
To act responsibly - Enhanced
To think independently - Enhanced
To develop continuously - Enhanced
To communicate effectively - Enhanced
Module Content

To introduce the students about the theory, technology and engineering associated with wave, hydro-power, tidal and ocean energy. The topics covered are:

- Introduction to wave energy resource
- Hydrodynamics – Theoretical and numerical, model testing
- Controls
- Oscillating water column – Fixed, Floating
- Oscillating body systems – single, multiple, pitching, many body
- Overtopping devices
- Power equipment
- Moorings
- Introduction to hydropower
- Principles of hydropower, Turbines, pump-as-turbines

The aims of the module are:

1. To foster problem solving and critical thinking skills by requiring students to apply the theory learnt on wave, tidal and hydro energy to real life projects and engage in discussions with other experts.

2. To enable students to communicate well in engineering contests in relation to ocean energy, both when discussing about projects, plans and problems, and when writing, reporting and communicating about these.

3. To achieve a pro-active engagement in wave, tidal and hydro energy problems.

4. To enable students to identity, formulate, analyse and solve engineering problems by applying the theory of ocean energy both analytically and computationally.

5. To solve real world engineering problems by carrying out analysis using real data such as those available from tank tests or sea trials.

6. To solve real world engineering problems by applying the theory and employing software packages WecSim, Nemoh and DynaMOOC.
Teaching and Learning Methods
- Lectures
- Tutorials
- Labs

Assessment Details

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>3 hours written examination</td>
<td>LO1-12</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>3Coursework/project work (1 Theoretical assignment - 7.5%, 1 Lab exercise – 5%, 1 Computer assignment – 7.5%)</td>
<td>Coursework and project work during the semester</td>
<td>LO1-5, 8,9</td>
<td>20%</td>
<td>5,8,12</td>
</tr>
</tbody>
</table>

Reassessment Requirements
None

Contact Hours and Indicative Student Workload

- **Contact hours**: 33
- **Independent Study (preparation for course and review of materials)**: 47
- **Independent Study (preparation for assessment, incl. completion of assessment)**: 45

Recommended Reading List
<table>
<thead>
<tr>
<th>Module Pre-requisite</th>
<th>Mechanics (1st year), Fluid Mechanics (2nd or 3rd year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Co-requisite</td>
<td></td>
</tr>
<tr>
<td>Module Website</td>
<td></td>
</tr>
<tr>
<td>Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.</td>
<td></td>
</tr>
<tr>
<td>Module Approval Date</td>
<td></td>
</tr>
<tr>
<td>Approved by</td>
<td></td>
</tr>
<tr>
<td>Academic Start Year</td>
<td>1st September 2019</td>
</tr>
<tr>
<td>Academic Year of Date</td>
<td>2019/2020</td>
</tr>
</tbody>
</table>