<table>
<thead>
<tr>
<th>Module Code</th>
<th>CEU44A04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>4A4 Hydraulics</td>
</tr>
<tr>
<td>ECTS Weighting²</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Aonghus McNabola</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the [Graduate Attributes](#) and how they are developed in discipline

On successful completion of this module, students should be able to:

1. To predict the performance of hydraulic prototypes from simple hydraulic models.
2. To demonstrate an understanding of open channel flow in relation to natural channels.
3. To categorise turbines and to design the hydraulic aspects of a small scale hydro electric scheme.
4. To calculate the forces on sediment on the bed of a river and to design river bank slope protection measures.
5. To analyse river hydrographs and to relate the river response to rainfall data.
6. To interpret the results from a network of rain gauges and synthesise the data for use in a hydrological study of a river catchment.
7. To evaluate the translation and attenuation of a flood hydrograph down a river channel using hydrologic flood routing techniques.
8. To demonstrate an understanding of and formulate design solutions for problems involving unsteady flows.
9. To predict the transformation of waves using linear wave theory

Graduate Attributes: levels of attainment

To act responsibly - Enhanced
To think independently - Enhanced
To develop continuously - Enhanced
To communicate effectively - Enhanced

1. [An Introduction to Module Design](#) from AISHE provides a great deal of information on designing and re-designing modules.
2. [TEP Glossary](#)
This is a one semester module. It explains the use of dimensional analysis in predicting the performance of prototypes from model studies and in the analysis of significant variables in hydraulic experiments. The module reviews the important relationship of open channel flow in natural channels and uses these relationships to study the water profiles to be expected in various design situations. The module explains the concepts behind hydraulic turbines and categorises turbines in relation to the specific head and usage. The design of small scale hydro schemes is also formulated. The module develops design methods for river protection measures by analysing the stability of sediment on the river bed. The hydrology section of the course begins by describing how to quantify the water mass balance on a catchment by rainfall and evaporation measurement and analysis. The measurement of flow in rivers is then explained by various gauging methods before the concept of a hydrograph is detailed. The design technique of the Unit Hydrograph is then developed before finally explaining different methods which can be used to route a flood down through a river channel. The module also examines the behaviour of sea-water waves using linear wave theory, predicting their speed, power and energy among other factors. Students will be able to apply this theory to the design of coastal structures or wave energy devices. Finally, the module examines analysis of engineering problems involving unsteady flow, such as pressure transient in pipelines.

Module content

- **Dimensional analysis and similarity**
 - Indical method and Buckingham’s theory
 - Prediction of the performance of prototypes from models
 - Simplification of experimental studies.

- **Open channel flow in Natural Channels**
 - Velocity Distributions in Natural Channels
 - Flow in Compound Channels
 - Conveyance

- **Turbines and hydro schemes**
 - Engineering characteristics of turbines
 - Analytical methods of predicting the performance of turbines

- **River protection**
 - Analysis of forces on sediment in rivers
Analytical methods of designing river protection systems

- **Hydrology**
 - Precipitation measurement and analysis
 - Evaporation measurement and calculation
 - River gauging and flow measurement
 - Hydrograph analysis
 - Unit Hydrograph
 - Flood routing.

- **Unsteady Flow**
 - Types of unsteady flow
 - Pressure Transients
 - Surge Towers
 - Quasi-steady flow

- **Linear Wave Theory**
 - Wave transformation processes
 - Wave Energy
 - Coastal Protection

Teaching and Learning Methods

This module is taught by a combination of lectures, laboratory classes and tutorials.
Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>2 hour written examination</td>
<td>LO1-9</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Coursework</td>
<td>3 laboratories & 2 assignments</td>
<td>LO1-9</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>

Reassessment Requirements

100% written examination

Contact Hours and Indicative Student Workload

Contact hours: 27 lectures, 3 lab sessions

Independent Study (preparation for course and review of materials): 30 hrs

Independent Study (preparation for assessment, incl. completion of assessment): 60 hrs

Recommended Reading List

- *Hydraulics in civil and environmental engineering* - Chadwick & Morfett (E & FN Spon)
- *Hydrology in practice* – Shaw (Chapman & Hall)
- *Engineering Hydrology* – Wilson (Scholium International)
- *Mechanics of Fluids* – Massey (Taylor & Francis)

Module Pre-requisite

Module Co-requisite

Module Website

3 TEPS Guidelines on Workload and Assessment
<table>
<thead>
<tr>
<th>Approved by</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Start Year</td>
<td>1<sup>st</sup> September 2019</td>
</tr>
<tr>
<td>Academic Year of Date</td>
<td>2019-20</td>
</tr>
</tbody>
</table>