<table>
<thead>
<tr>
<th>Module Code</th>
<th>CEU44A02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>4A2 Hydrogeology and Engineering Geology</td>
</tr>
<tr>
<td>ECTS Weighting¹</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Lecturer(s): Asst. Prof. David O'Connell (oconnedw@tcd.ie) ; Dr. Rosanne Walker (WALKERRO@tcd.ie)</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the **Graduate Attributes** and how they are developed in discipline

On successful completion of this module, students should be able to:

LO1. Solve mathematical problems concerned with groundwater flow, geophysical surveys, rock discontinuities and slope stability.

LO2. Question the assumptions underlying common methods of groundwater analysis, particularly in the context of the heterogeneous nature of the bedrock aquifers found in Ireland.

LO3. Develop a conceptual model of an aquifer system and plan a groundwater investigation programme, including identification of suitable drilling, geophysical and other investigation techniques.

LO4. Appraise rock behaviour in a variety of contexts, such as how to identify and then deal with the occurrence of karst features when designing a road.

Graduate Attributes: levels of attainment

- To act responsibly - Enhanced
- To think independently - Enhanced
- To develop continuously - Enhanced
- To communicate effectively - Introduced
This is an applied geology module aimed at civil engineers, geologists and environmental scientists. The hydrogeology component covers the analysis of groundwater flow, both regional flow and radial flow to wells, with an emphasis on teaching the student to compare and evaluate different methods of analysis, and to critically examine the underlying assumptions. Students are introduced to various techniques in groundwater investigation, borehole drilling, geophysical logging methods, well design, profile sampling. Students are also taught how to plan groundwater investigations in a systematic manner, with the aid of case studies. The engineering geology component deals with the analysis of rock properties and their application to geotechnical problems (as such, this module component is complementary to compulsory modules in the students third and fourth years which focus on geotechnical issues in soils).

Module content

- Groundwater concepts [Prof. David O’Connell]
 - Aquifers, aquitards and aquicludes
 - Confined and unconfined aquifers
 - Aquifer properties
- Groundwater flow [Prof. David O’Connell]
 - General flow equations
 - Methods of solution: flow nets, analytical solutions, numerical methods
 - Analytical solutions for regional flow in confined and unconfined aquifers
 - Radial flow to wells under steady state and transient conditions
 - Multiple wells: principle of superposition
 - Hydraulic boundary effects
 - Introduction to the use of distributed groundwater models
- Groundwater exploration and development [Asst. Prof. David O’Connell]
 - Hydrogeological surveys
 - Geophysical techniques: resistivity, EM, seismic refraction
 - Exploratory drilling methods
 - Formation sampling and geophysical logging
 - Introduction to well design
- Properties of rock and rock mass [Prof Rosanne Walker]
 - Engineering geology terminology
 - Standard laboratory tests
 - Logging and discontinuity analysis
 - Stereographic projection
 - Behaviour of rock samples: strength and deformation
 - Behaviour of rock mass
 - Slope failures in rock
 - Analysis of slope stability
- Hazardous rock conditions, such as karst and pyrite, and their implications for design.

The module outcomes are targeted at analysis and evaluation, and the implications of this evaluation for engineering design and practice. It aims to motivate students to develop an interest in the subject matter, but also to enhance their skills in critical thinking within an engineering context. The applications to engineering practice consider the social and business context.

| Teaching and Learning Methods | Lectures, tutorials, labs. |
Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>2 hour written examination</td>
<td>LO1-4</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reassessment Requirements

100% Written Examination

Contact Hours and Indicative Student Workload

Contact hours: 39 hours lectures including lectures, tutorials, labs.

Independent Study (preparation for course and review of materials): 40 hours; Researching journals; reading text books recommended in module booklist; reviewing lecture material and class notes

Independent Study (preparation for assessment, incl. completion of assessment): 30 hours; literature review, review of lectures and tutorial questions.

Recommended Reading List

Hydrogeology

Engineering geology
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Co-requisite</td>
<td>No co-requisite</td>
</tr>
<tr>
<td>Are other Schools/Departments involved in the delivery of this module? If yes, please provide details.</td>
<td>No</td>
</tr>
<tr>
<td>Module Approval Date</td>
<td></td>
</tr>
<tr>
<td>Approved by</td>
<td></td>
</tr>
<tr>
<td>Academic Start Year</td>
<td>September 2019</td>
</tr>
<tr>
<td>Academic Year of Date</td>
<td>2019-20</td>
</tr>
</tbody>
</table>