<table>
<thead>
<tr>
<th>Module Code</th>
<th>EEU11E06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>ECTS Weighting<sup>1</sup></td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>Associate Professor Naomi Harte</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the [Graduate Attributes](#) and how they are developed in discipline

On successful completion of this module, students should be able to:

- **LO1.** Explain the fundamental concepts of electricity and magnetism and their importance.
- **LO2.** Apply fundamental circuit theory and laws to dc resistive circuits.
- **LO3.** Analyse the operation of simple circuits in RC and RL combinations.
- **LO4.** Convert between binary and decimal representations and carry out binary addition, subtraction and multiplication.
- **LO5.** Manipulate Boolean expressions so as to minimise the number of literals using algebra or Karnaugh maps.
- **LO6.** Design standard and iterative combinational logic circuits.
- **LO7.** Evaluate the complexity and speed of combinational designs.
- **LO8.** Report experimental findings from a laboratory in a clear, concise and communicative manner, interpreting the findings.

Students are expected to be self-motivated and take joint responsibility for their learning, and demonstrate this through reading and engaging with the additional course material referenced throughout the course. The course covers foundational material essential to all branches of engineering.

Graduate Attributes: levels of attainment

To act responsibly - Attained
To think independently - Attained
To develop continuously - Introduced
To communicate effectively - Enhanced
Module Content

Simple DC circuits
- Resistors in series and parallel; Kirchhoff’s voltage and current laws; power dissipation; the ideal voltage source and current source; maximum power transfer; the ideal capacitor, permittivity; the multiple-plate capacitor, variable capacitor; capacitor charging and discharging, current-voltage relationship, time-constant, rise-time, fall-time; inductor energisation and de-energisation, inductance current-voltage relationship, time-constant

Electromagnetism
- Electromagnetic induction, Fundamental relations, Faraday’s law, Lenz’s Law, simple applications: solenoids and relays

Digital Systems and Binary Numbers
- Digital signals and systems
- Number systems
- Positive/negative representation
- Binary arithmetic

Boolean Algebra
- Definitions and basic theorems
- Algebraic simplification
- Sum of products and product of sums formulations
- Gate primitives
- Karnaugh maps

Combinational Logic
- Combinational design
- Assessment of complexity and speed
- Code converters, multiplexors, decoders
- Addition circuits, priority encoder

Teaching and Learning Methods

The module is taught using a combination of lectures, tutorials and one supporting laboratories. The tutorials will develop students problem-solving skills by tackling problems based on the lecture material. Students are expected to attempt tutorial questions in advance of attending tutorial sessions. Students should use the course texts to supplement their problem solving practice.
Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>DC Circuits Laboratory</td>
<td>1,2,8</td>
<td>7</td>
<td>2 weeks after taken</td>
</tr>
<tr>
<td>Class tests</td>
<td>MCQ exams</td>
<td>1-7</td>
<td>8</td>
<td>Week 6, Week 12</td>
</tr>
<tr>
<td>Exam</td>
<td>End of year Exam</td>
<td>All</td>
<td>85</td>
<td>As per timetable</td>
</tr>
</tbody>
</table>

Reassessment Requirements

100% Exam based

Contact Hours and Indicative Student Workload

Contact hours:
45 (33hr Lecture, 10hr Tutorial, 2hr Lab)

Independent Study (preparation for course and review of materials):
- 2hr Lab prep, 2 hour lab write-up [4]
- 3 hrs/week to review lectures and attempt tutorials in advance [33]

Independent Study (preparation for assessment, incl. completion of assessment):
- 4 hr additional study in advance of class tests [8]
- Exam Preparation 10-25 hours

Recommended Reading List

- Videos and links as given in lectures

Module Pre-requisite

- Leaving Cert Honours Mathematics (or equivalent)
<table>
<thead>
<tr>
<th>Module Co-requisite</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Website</td>
<td>On Blackboard</td>
</tr>
<tr>
<td>Are other Schools/Departments involved in the delivery of this module?</td>
<td>No</td>
</tr>
<tr>
<td>If yes, please provide details.</td>
<td></td>
</tr>
<tr>
<td>Module Approval Date</td>
<td></td>
</tr>
<tr>
<td>Approved by</td>
<td></td>
</tr>
<tr>
<td>Academic Start Year</td>
<td>September 9<sup>th</sup> 2019</td>
</tr>
<tr>
<td>Academic Year of Date</td>
<td>2019/2020</td>
</tr>
</tbody>
</table>