<table>
<thead>
<tr>
<th>Module Code</th>
<th>MEU44B02-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Forensic Materials Engineering</td>
</tr>
<tr>
<td>ECTS Weighting1</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Module Coordinator/s</td>
<td>David Taylor</td>
</tr>
</tbody>
</table>

Module Learning Outcomes with reference to the **Graduate Attributes** and how they are developed in discipline

On successful completion of this module, students should be able to:

- **LO1.** List and describe the various types of mechanical failure which occur in components, explaining the appearance of fracture surfaces and other relevant evidence which allows the mechanism to be diagnosed.

- **LO2.** List the various common causes of failure in engineering components and explain how components are designed so as to prevent failure.

- **LO3.** Conduct a failure investigation, as part of a team, to determine the mechanism and cause of a failure; write an appropriate report of the type used by expert witnesses in court.

- **LO4.** Determine the stress intensity of a cracked body under load and use this information to predict brittle fracture and fatigue. Estimate the fatigue strength of a structure given results from stress analysis and other relevant information. Use damage mechanics to predict failure under creep and creep/fatigue situations.

- **LO5.** Understand the importance of legal and ethical aspects of engineering failures, the significance of codes of practice and standards, the need for safe working practices and the responsibilities of the forensic engineer.

Graduate Attributes: levels of attainment
- To act responsibly - Attained
- To think independently - Attained
- To develop continuously - Attained
- To communicate effectively - Attained

1 TEP Glossary
Module Content

This module aims to advance the student’s knowledge of the mechanical properties of materials, especially in respect of the principal modes of failure of engineering components, in the context of forensic investigations. The module will be taught through a series of real-life legal cases involving material failure, giving the student experience of failure analysis and of the related methods of design and material selection as well as legal and ethical aspects relating to the preparation of reports and the giving of evidence in court.

Teaching and Learning Methods

This module is taught through a series of case studies, putting the student in the position of a forensic engineer conducting a failure analysis. Theory is introduced as required to solve particular cases. A laboratory exercise gives the student hands-on experience of examining failed items and writing a report for legal purposes. Lectures are given on the Irish legal system and European defective product legislation. COVID CONTINGENCY: In the event of restrictions due to COVID, lectures tutorials, tests and examinations may be held online, and the laboratory exercise may be replaced with an assignment.
Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Class Tests</td>
<td>Short tests to evaluate ongoing learning</td>
<td>1-4</td>
<td>10%</td>
<td>Various</td>
</tr>
<tr>
<td>Assignment</td>
<td>Product liability (group report)</td>
<td>3,5</td>
<td>10%</td>
<td>Week 8</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Failure Analysis</td>
<td>All</td>
<td>10%</td>
<td>Various</td>
</tr>
<tr>
<td>Final Assignment</td>
<td>Written assignment</td>
<td>All</td>
<td>70%</td>
<td>Week 12</td>
</tr>
</tbody>
</table>

Reassessment Requirements

Supplemental Examination

Contact Hours and Indicative Student Workload

- **Contact hours:** 36

 - **Independent Study (preparation for course and review of materials):** 30
 - **Independent Study (preparation for assessment, incl. completion of assessment):** 34

Recommended Reading List

Module Pre-requisite

3B4 Mechanical Engineering Materials or equivalent

Module Co-requisite

None

Are other Schools/Departments involved in the delivery of this module?

No

Module Approval Date

 Approved by

Academic Start Year

Academic Year of Date

2 [TEP Guidelines on Workload and Assessment](#)