<table>
<thead>
<tr>
<th>Module Code</th>
<th>CEU22E04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Solids and Structures</td>
</tr>
<tr>
<td>ECTS Weighting</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>Semester taught</td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
| Module Coordinator/s | Professor Alan O’Connor
| | Dr. Rui Teixeira |

Module Learning Outcomes with reference to the [Graduate Attributes](#) and how they are developed in discipline

- Calculate section properties.
- Calculate stress, deformation and strain responses of structural members under a system of applied loads.
- Analyse structural systems to determine sectional forces and demonstrate an understanding of their influence on overall structural response.
- Examine possibilities for alternate structural arrangements where the structure as detailed is insufficient.
- Differentiate between various limit states in structural analysis.
- Analyse bolted connections.
- Demonstrate an ability to visualize, understand and appraise structural behaviour in statically determinate structures.

Graduate Attributes: levels of attainment

To act responsibly - Enhanced
To think independently - Enhanced
To develop continuously - Enhanced
To communicate effectively - Enhanced
Module Content

Mechanics of Solids
- Elastic Plastic Behaviour
 Stress, strain, elasticity and plasticity; one-dimensional stress–strain relationships; Young’s modulus of elasticity, shear modulus and Poisson’s ratio; two-dimensional elasticity; isotropic and homogeneous materials; ductile and brittle materials; transformation of stress and strain; properties of sections (A and I); axial, shear and bending distortions.

- Analysis of Structural Members
 Connection design in trusses; torsion of shafts; buckling of struts; lateral torsional buckling; factors of safety

Structures
- Statically determinate pin-jointed structures
 Analysis using joint-equilibrium, method of sections and by inspection; statical determinacy; deflection of trusses using principle of virtual work

- Analysis of Beams and Frames
 Axial, shear force and bending moment diagrams; equation of condition, load function equation, qualitative analysis for two-dimensional frames; analysis for bending stress; cover plate design; analysis for shear stress and torsional stress

- Beam Deformations
 Bending deflections using moment-curvature equation; Mohr’s moment area theorems; shear deformations, torsional deformations

Teaching and Learning Methods

The module is taught using a combination of lectures, laboratories and tutorials. Most material (notes, textbook, tutorials, examinations) is provided on the College network. Students work in tutorial and laboratory groups in solving problems thereby encouraging teamwork and cooperation whereas the research reports are carried out individually.

Associated laboratory/project/tutorial programme
- Beam bending (laboratory experiment and research report);
• Buckling of slender columns (laboratory experiment and research report);
• Tutorial assignments (1 - 10).
Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>-</td>
<td></td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>Labs + Tutorials</td>
<td>Lab report + tutorial assignment</td>
<td>20</td>
<td></td>
<td>2-11</td>
</tr>
</tbody>
</table>

Reassessment Requirements

Contact Hours and Indicative Student Workload

Contact hours: 45h (33 classes + 10 tutorials + 2 lab)

Independent Study (preparation for course and review of materials): 40h Independent study (review of materials, lab and tutorial assessment)

Independent Study (preparation for assessment, incl. completion of assessment): 35h Independent study (preparation for assessment including completion)

Recommended Reading List

- Strength of Materials, Timoshenko
- Strength of Materials, GH Ryder, Macmillan
- Mechanics of Materials, EJ Hearn, Pergamon
- Mechanics of Material, Gere and Timoshenko, Wadsorth
- Introduction to Structural Mechanics, Reynolds, Kent and Lazenby
- Mechanics of Engineering Materials, Bowes, Russell and Suter
- Structural Mechanics, Williams, Morgan and Durka

Module Pre-requisite

Module Co-requisite

Module Website

See Blackboard
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are other Schools/Departments involved in</td>
<td></td>
</tr>
<tr>
<td>the delivery of this module? If yes,</td>
<td></td>
</tr>
<tr>
<td>please provide details.</td>
<td></td>
</tr>
<tr>
<td>Module Approval Date</td>
<td></td>
</tr>
<tr>
<td>Approved by</td>
<td></td>
</tr>
<tr>
<td>Academic Start Year</td>
<td>9th September 2019</td>
</tr>
<tr>
<td>Academic Year of Date</td>
<td>2019/2020</td>
</tr>
</tbody>
</table>