Module Code	CEU33A09
Module Name | 3A9 GROUP DESIGN PROJECT
ECTS Weighting | 10 ECTS
Semester taught | Semester 1 & 2
Module Coordinator/s | Professor Margaret O’Mahony

Module Learning Outcomes with reference to the [Graduate Attributes](#) and how they are developed in discipline

On successful completion of this module:

1. The student will be able to function as a member of a design team. Specifically, students will be able to:
 a. Allocate work between members of a group
 b. Plan as a member of a group
 c. Prepare oral and written presentations as member of a group

2. The student will be able to apply engineering knowledge gained in other modules to formulate solutions to multidisciplinary design problems

3. The student will be able to communicate the details of their design solutions effectively, both verbally and in writing.

4. The students will be able to interpret the requirements from a design brief and formulate and appraise potential solutions. In the case of a construction project, this involves the ability to:
 a. Identify functional and operational requirements
 b. Identify the transport and other infrastructural requirements
 c. Appraise the environmental and social impact of the development
 d. Identify and appraise potential sites before making a selection
 e. Develop general arrangement drawings, ensuring that the functional requirements are satisfied
 f. Refine and develop plans to produce detailed structural plans and a viable construction sequence, usually presented in the form of a Gantt Chart
 g. Write a technical specification
h. Produce a bill of quantities and calculate approximate construction costs
i. Question the wider responsibilities of the engineering profession

Graduate Attributes: levels of attainment
To act responsibly - Attained
To think independently - Attained
To develop continuously - Attained
To communicate effectively - Attained

Module Content
Please provide a brief overview of the module of no more than 350 words written so that someone outside of your discipline will understand it.

The group design project replicates all the key stages in a real civil engineering project. The groups are given a series of design briefs and are required to develop solutions, critically evaluating and refining them as the project develops. At the end of each of the three design phases each group produces a written report. During the project, relevant experts are invited to speak to the students on aspects of the design relevant to the particular project.

The project comprises three stages: preliminary planning, structural design and construction planning.

Module content
Lectures on the module are directly related to, and are sequenced with the required outputs of the project phases. In this regard on completion of the module, the student will be able to:-

- Describe the roles and obligations of the various parties to a contract in civil engineering and building
- Take off quantities and prepare a Bill of Quantities in accordance with the Civil Engineering Standard Method of Measurement for a simple structural element.
- Write a specification for a concrete or steel structure and have an appreciation of some of the forthcoming changes arising from the introduction of Eurocodes.
- Prepare a reinforced concrete detail drawing and from this prepare a bar bending schedule in accordance with standard principles.
• Develop an understanding of the properties of the ingredients of a concrete mix and be capable of designing a concrete mix to meet certain requirements in terms of durability, strength and workability.
• Identify the various formwork materials and support systems and be able to design formwork to resist certain concrete pressures to produce a finished structure to meet the specified dimensional tolerances.
• Analyse and explain the principles of construction, particularly within the context of the current building regulations
• Identify and design the detailed techniques and/or materials commonly used in the construction of buildings in Ireland.
• Recognise the symptoms of common defects in buildings and specify available remedial measures which may be used.
• Evaluate the environmental principles and practices underlying the construction of buildings.
• Develop a specification for and design environmental services for domestic, commercial and industrial buildings.
• Develop a specification for and design renewable energy options for domestic, commercial and industrial buildings.
• Design timber flooring systems for domestic and industrial use.

In addition, this module introduces other relevant content related to project management, for example, the development of Gantt charts. The majority of the module is concerned with developing communication skills, problem solving skills and group working skills.

The content summary that follows details the individual phases of the group project and describes the group debates.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Site selection, planning and outline design. Access, traffic management and economic and environmental impacts.</td>
</tr>
<tr>
<td>2</td>
<td>Structural design linking with other modules in structural analysis undertaken by the students. Detailed reinforced concrete and structural steelwork for large spans which may require innovative solutions and the use of computer software for drawing and calculation.</td>
</tr>
<tr>
<td>3</td>
<td>Construction management and planning including the use of bar charts and critical path networks. Taking off quantities and preparation of a Bill of Quantities using the Standard Method of Measurement, preparation of</td>
</tr>
</tbody>
</table>
materials specifications and the calculation of an overall cost estimate for the project.

Teaching and Learning Methods

- Lectures and Group Design Sessions

Assessment Details

Please include the following:

- Assessment Component
- Assessment description
- Learning Outcome(s) addressed
- % of total
- Assessment due date

<table>
<thead>
<tr>
<th>Assessment Component</th>
<th>Assessment Description</th>
<th>LO Addressed</th>
<th>% of total</th>
<th>Week due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 Report</td>
<td>Written Report</td>
<td>All</td>
<td>27.75%</td>
<td></td>
</tr>
<tr>
<td>Phase 2 Report</td>
<td>Written Report</td>
<td>All</td>
<td>27.75%</td>
<td></td>
</tr>
<tr>
<td>Phase 3 Report</td>
<td>Written Report</td>
<td>All</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Phase 1 Presentation</td>
<td>Group Presentation</td>
<td>All</td>
<td>2.25%</td>
<td></td>
</tr>
<tr>
<td>Final Presentation</td>
<td>Group Presentation</td>
<td>All</td>
<td>2.25%</td>
<td></td>
</tr>
<tr>
<td>Site Visit Reports</td>
<td>Written Reports</td>
<td>All</td>
<td>9%</td>
<td>Various</td>
</tr>
<tr>
<td>End of Semester Test</td>
<td>Class Test</td>
<td>All</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Tutorials</td>
<td>Tutorial Submissions</td>
<td>All</td>
<td>8%</td>
<td>Various</td>
</tr>
</tbody>
</table>

Reassessment Requirements

- Coursework Assignment

1 [TEP Guidelines on Workload and Assessment](#)
Contact Hours and Indicative Student Workload

<table>
<thead>
<tr>
<th>Contact hours: 44 lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study (preparation for course and review of materials): 44 hours of supervised Group Design Sessions</td>
</tr>
<tr>
<td>Independent Study (preparation for assessment, incl. completion of assessment): 37</td>
</tr>
</tbody>
</table>

Recommended Reading List

- Philosophy of Structures, Eduardo Torroja, University of California Press, 1958
- Aesthetics and Technology in Building, P.L. Nervi, Harvard University Press, 1966
- Structures: from theory to practice, Alan Jennings, Spon Press
- Structures: of why things don’t fall down, J.E. Gordon, Penguin
- The new science of strong materials: or why you don’t fall through the floor, J.E. Gordon, Penguin
- DOE/BRE/TRRL. *Design of Normal Concrete Mixes*. HMSO
- *Standard Method of detailing structural concrete*. 1 Struct.E.
- *Civil Engineering Standard Method of Measurement*. CESMM3. ICE
- *Building Standards/ Regulation:*
- *National Sustainable Development Policy:*
- *Building Conservation Guidelines:*
COVID-19 contingency statement:

While the intention is to deliver some lectures, tutorials and labs face-to-face, there is uncertainty due to the Covid-19 situation and the entire module delivery may need to change to an online delivery if required by government restrictions. In the case of a possible new lockdown scenario during teaching term:

- All lectures, tutorials and labs will be delivered online using Blackboard. Some of these sessions will be *live* sessions and your attendance at live sessions is required.
- Assignments and examinations will be conducted and submitted online.