Lecture \# 18-Optimization with Equality Constraints

- So far, we have assumed in all (economic) optimization problems we have seen that the variables to be chosen do not face any restriction.
- However, in other occassions such variables are required to satisfy certain constraints. Examples:
- A consumer chooses how much to buy of each product, such that it satisfies his budget constraint
- A firm would look to minimize its cost of production, subject to a given output level.
- What do we do? Use the Lagrange multiplier method
- Suppose we want to maximize the function $f(x, y)$ where x and y are restricted to satisfy the equality constraint $g(x, y)=c$

$$
\max f(x, y) \text { subject to } g(x, y)=c
$$

* The function $f(x, y)$ is called the objective function
- Then, we define the Lagrangian function, a modified version of the objective function that incorporates the constraint:

$$
Z(x, y, \lambda)=f(x, y)+\lambda[c-g(x, y)]
$$

where the term λ is a(n unknown) constant called a Lagragian multiplier, associated to the constraint

* Notice that $Z(\lambda, x, y)=f(x, y)$ when the constraint holds, i.e., when $g(x, y)=c$, regardless of the value of λ
- So $Z(x, y, \lambda)$ is an unconstrained function (in three variables), so we can find its maximum by finding the first order conditions:

$$
\begin{aligned}
& \frac{\partial Z}{\partial \lambda}=c-g(x, y)=0 \\
& \frac{\partial Z}{\partial x}=f_{x}-\lambda g_{x}=0 \\
& \frac{\partial Z}{\partial y}=f_{y}-\lambda g_{y}=0
\end{aligned}
$$

The first equation automatically ensures that the constraint is satisfied

- So we have a system of 3 equations and 3 unknowns \rightarrow Find the stationary point
* So we obtain the stationary points of the constraint function $f(\cdot)$ (with two choice variables), by looking at the stationary points of the unscontrained function $Z(\cdot)$ (three choice variables, one of which is associated with the constraint).

Example 1 Suppose we want to find the extrema of $f(x, y)=x y$ subject to the constraint $x+y=6$

The Lagrangian is: $Z(x, y, \lambda)=x y+\lambda[6-x-y]$, so the first order conditions are:

$$
\begin{aligned}
x+y & =6 \\
\frac{\partial Z}{\partial x} & =y-\lambda=0 \\
\frac{\partial Z}{\partial y} & =x-\lambda=0
\end{aligned}
$$

There is then a stationary point at $x^{*}=y^{*}=\lambda^{*}=3$

Example 2 Suppose a consumer has utility function $U(x, y)=A x^{\alpha} y^{1-\alpha}$ and faces the budget constraint $p_{x} \cdot x+p_{y} \cdot y=m$

The Lagrangian is: $Z(x, y, \lambda)=A x^{\alpha} y^{1-\alpha}+\lambda\left[m-p_{x} \cdot x-p_{y} \cdot y\right]$, so the first order conditions are:

$$
\begin{aligned}
p_{x} \cdot x+p_{y} \cdot y & =m \\
\frac{\partial Z}{\partial x} & =\alpha A x^{\alpha-1} y^{1-\alpha}-\lambda p_{x}=0 \\
\frac{\partial Z}{\partial y} & =(1-\alpha) A x^{\alpha} y^{-\alpha}-\lambda p_{y}=0
\end{aligned}
$$

We can express the last two equations as follows:

$$
\lambda=\frac{\alpha A x^{\alpha-1} y^{1-\alpha}}{p_{x}}=\frac{(1-\alpha) A x^{\alpha} y^{-\alpha}}{p_{y}}
$$

Simplifying:

$$
\alpha p_{y} y=(1-\alpha) p_{x} x
$$

Replacing it in the budget constraint, we obtain the demand functions:

$$
\begin{aligned}
x\left(p_{x}, p_{y}, m\right) & =\alpha \frac{m}{p_{x}} \\
y\left(p_{x}, p_{y}, m\right) & =(1-\alpha) \frac{m}{p_{y}}
\end{aligned}
$$

General case:

- I just introduced an example where the objective function has:
- Two choice variables: $f(x, y)$
- One constraint: $g(x, y)=c$
- Suppose we have:
- Four choice variables: $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- Two constraints: $g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{1} \quad g_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c_{2}$
- Then the Lagrangian function is:

$$
Z=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+\lambda_{1}\left[c_{1}-g_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right]+\lambda_{2}\left[c_{2}-g_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right]
$$

- By getting the first order conditions of Z, we get the stationary points of $f(\cdot)$ that satisfy the constraints.

Second Order Conditions

- The second order conditions for a constrained optimization are slightly more complicated than for an unconstraint one. As such, we will only look at the case of two choice variables and one constraint.
- Suppose $f(x, y)$ AND $g(x, y)$ are both twice differentiable in an interval I, and suppose $\left(x^{*}, y^{*}\right)$ is an interior, stationary point of I, that satisfies the first-order conditions of $Z(\lambda, x, y)=f(x, y)+\lambda[c-g(x, y)]$.
- In this case, the Hessian for the choice variables is:

$$
H[Z]=\left[\begin{array}{cc}
Z_{x x} & Z_{x y} \\
Z_{x y} & Z_{y y}
\end{array}\right]
$$

where:

$$
\begin{aligned}
& -Z_{x x}=f_{x x}-\lambda g_{x x} \\
& -Z_{y y}=f_{x x}-\lambda g_{x x} \\
& -Z_{x y}=f_{x y}-\lambda g_{x y}
\end{aligned}
$$

- Define the bordered Hessian as follows:

$$
\bar{H}=\left[\begin{array}{ccc}
0 & g_{x} & g_{y} \\
g_{x} & Z_{x x} & Z_{x y} \\
g_{y} & Z_{x y} & Z_{y y}
\end{array}\right]
$$

- Then:
- $\left(x^{*}, y^{*}\right)$ is a maximum point if $|\bar{H}|>0$ when evaluated at $x=x^{*}, y=y^{*}, \lambda=\lambda^{*}$.
$-\left(x^{*}, y^{*}\right)$ is a minimum point if $|\bar{H}|<0$ when evaluated at $x=x^{*}, y=y^{*}, \lambda=\lambda^{*}$.

Example 3 Suppose we want to find the extrema of $f(x, y)=x y$ subject to the constraint $x+y=6$. We found there is a stationary point at $x^{*}=y^{*}=\lambda^{*}=3$.

For the bordered Hessian we need five derivatives:
$-Z_{x x}=f_{x x}-\lambda g_{x x}=0$
$-Z_{y y}=f_{x x}-\lambda g_{x x}=0$
$-Z_{x y}=f_{x y}-\lambda g_{x y}=1$
$-g_{x}=1$
$-g_{y}=1$

As a result, the bordered Hessian is:

$$
\bar{H}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

and its determinant is $|\bar{H}|=2>0$, so the stationary point is a maximum.

Example 4 Suppose a consumer has utility function $U(x, y)=A x^{\alpha} y^{1-\alpha}$ and faces the budget constraint $p_{x} \cdot x+p_{y} \cdot y=m$. We got that there is a stationary point that satisfies the constraint at:

$$
\begin{aligned}
x\left(p_{x}, p_{y}, m\right) & =\alpha \frac{m}{p_{x}} \\
y\left(p_{x}, p_{y}, m\right) & =(1-\alpha) \frac{m}{p_{y}}
\end{aligned}
$$

For the bordered Hessian we need five derivatives:
$-Z_{x x}=f_{x x}-\lambda g_{x x}=-\alpha(1-\alpha) A x^{\alpha-2} y^{1-\alpha}<0$
$-Z_{y y}=f_{x x}-\lambda g_{x x}=-\alpha(1-\alpha) A x^{\alpha} y^{-\alpha-1}<0$
$-Z_{x y}=f_{x y}-\lambda g_{x y}=\alpha(1-\alpha) A x^{\alpha-1} y^{-\alpha}>0$
$-g_{x}=p_{x}$
$-g_{y}=p_{y}$

As a result, the bordered Hessian is:

$$
\bar{H}=\left[\begin{array}{lll}
0 & p_{x} & p_{y} \\
p_{x} & -\alpha(1-\alpha) A x^{\alpha-2} y^{1-\alpha} & \alpha(1-\alpha) A x^{\alpha-1} y^{-\alpha} \\
p_{y} & \alpha(1-\alpha) A x^{\alpha-1} y^{-\alpha} & -\alpha(1-\alpha) A x^{\alpha} y^{-\alpha-1}
\end{array}\right]
$$

and its determinant is $|\bar{H}|=2 \alpha(1-\alpha) A x^{\alpha-1} y^{-\alpha} p_{x} p_{y}+\alpha(1-\alpha) A x^{\alpha} y^{-\alpha-1}\left(p_{x}\right)^{2}+\alpha(1-\alpha) A x^{\alpha-2} y^{1-\alpha}$ 0 for any value of $A>0$ and $\alpha \in[0,1]$. So the stationary point is a maximum.

