Lecture \# 6 - Input-Output Analysis

- Important for production planning.
- It is a way to represent the production in an economy
- It assumes:
- There are n interlinked industries
- Each industry produces one single good.
- Each industry uses a fixed-proportion technological process
- Idea: Suppose we produce glass
- Our output can be sold directly to consumers (e.g. to home-owners), or can be used as an input for other industries (e.g cars)
- We can used inputs from other industries to produce our good (e.g. machinery, which is made of steel)
- So there is interindustry dependence
- Our output should be consistent to the input requirements of the economy.
- Simplest case: Suppose we divide the economy into 3 sectors:

1. Agriculture
2. Manufacturing
3. Services

- .The three industries each use inputs from two sources:

1. Domestically produced commodities form the three industries
2. Other inputs, such as imports, labour, and capital.

- The outputs of the industries have two broad uses or destinations:

1. Inputs to production of the three industries (intermediate inputs)
2. Final demand (Consumption, Investment, Government expenditure, Exports)

- All this can be summarised in a so-called input-output table (in billions of euros):

	Agriculture	Outputs Manufactures	Services	Final demand	Total
Agriculture	30	40	0	30	100
InputsMantactures	10	200	50	140	400
Services	20	80	200	200	500
Other sources	40	80	250	230	600
Total	100	400	500	600	1600

- Take for example manufacturing:
- Its output is worth $€ 400$ bln, which is allocated as follows:
* €10 bln is used by the agricultural sector
* €200 bln as intermediate goods for the manufacturing sector
* €50 bln. is used by the services sector.
* €140 bln. is the final demand (consumption, investment, government expenditure \& exports
- In order to produce, the manufacturing sector uses inputs worth of $€ 400$, of which
* € $€ 0$ bln comes from the agricultural sector,
* €200 bln from the manufacturing sector (intermediate inputs),
* € 80 bln from the services sector,
* €80 bln from other sources, including imports, labour and capital
- Note that sector outputs equal sector inputs and that the economy-wide value of inputs equals the value of outputs at $€ 1600 \mathrm{bln}$.
- Define the following 2 vectors
$-b=\left[\begin{array}{c}30 \\ 140 \\ 200\end{array}\right]$ is the vector of final demands for output of the industry sectors
$-x=\left[\begin{array}{c}100 \\ 400 \\ 500\end{array}\right]$ is the vector of total ouput of the industry sectors
- As said above, one (critical) assumption is that each sector produces according to fixedproportion technological coefficients (also called input-output coefficients)
- Example: agriculture uses $€ 20$ bln from the services sector. Given that the value of its total inputs is $€ 100 \mathrm{bln}$, then services represent $20 / 100=0.20$ of its total inputs.
- The Leontieff assumption is that, whatever the value of the inputs used by agriculture, 0.20 (or 20%) comes from services.
- As such, we can calculate the input-output coefficients by dividing each element in the input-output table by its column total:

	Agriculture	Outputs Manufactures	Services	Final demand	Total
Agriculture	$\frac{3}{10}$	$\frac{1}{10}$	0	$\frac{1}{20}$	$\frac{1}{16}$
InputsManufactures	$\frac{1}{10}$	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{7}{30}$	$\frac{1}{4}$
Services	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{5}{16}$
Other sources	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{2}$	$\frac{23}{60}$	$\frac{3}{8}$
Total	1	1	1	1	1

- In matrix notation:

$$
-A=\left[\begin{array}{ccc}
\frac{3}{10} & \frac{1}{10} & 0 \\
\frac{1}{10} & \frac{1}{2} & \frac{1}{10} \\
\frac{1}{5} & \frac{1}{5} & \frac{2}{5}
\end{array}\right] \text { is the matrix of inter-industry coefficients }
$$

- One important consequence of the input-output analysis is that we can express the vector of total demand (x) as a function of the final demand (b) and the matrix of inter-industry coefficients (A) :

$$
x=A x+b
$$

(Verify it)

- Then:

$$
\begin{aligned}
x-A x & =b \\
(I-A) x & =b
\end{aligned}
$$

- If $(I-A)$ has an inverse:

$$
\begin{aligned}
(I-A)^{-1}(I-A) x & =(I-A)^{-1} b \\
x & =(I-A)^{-1} b
\end{aligned}
$$

- The matrix $(I-A)^{-1}$ is known as the input-output inverse, or the Leontieff inverse
- Let's find it!!!
$-(I-A)^{-1}=\left[\begin{array}{lll}1.49 & 0.32 & 0.05 \\ 0.42 & 2.23 & 0.37 \\ 0.64 & 0.85 & 1.81\end{array}\right]$
- Show that $x=(I-A)^{-1} b$

Application:

- Suppose there is a change in final demand, from b_{1} to b_{2}. What is the change in total demand?
- For example, suppose there is an increase in the demand for agriculture products in the US (increase in exports)
- Then $x_{2}=(I-A)^{-1} b_{2}$
- In general, if:
$-x_{1}=(I-A)^{-1} b_{1}$
$-x_{2}=(I-A)^{-1} b_{2}$
- Then $\Delta x=x_{2}-x_{1}=(I-A)^{-1} b_{2}-(I-A)^{-1} b_{1}$
- So $\Delta x=(I-A)^{-1} \Delta b$, where $\Delta b=b_{2}-b_{1}$

Derivatives of Functions of One Variable

Rate of Change and the Derivative

- Suppose you have a function $y=f(x)$
- What happens to y if there is a change in x ?
- Examples:
* What happens to the equilibrium solution of Y if there is a change in the marignal propensity to consume?
* What if all of a sudden, all consumers are willing to pay an extra €100 for an iPod (rightward shift in demand)
- Initial state: $x_{0} \Longrightarrow y_{0}=f\left(x_{0}\right)$
- Suppose x changes to a new value $x_{0}+\Delta x$
$-\Delta x$: denotes the change in x
- Then the value of the function $y=f(x)$ changes from $f\left(x_{0}\right)$ to $f\left(x_{0}+\Delta x\right)$
- Difference quotient: represents the change of y per unit of change in x

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

- The difference quotient is a function of x_{0} and Δx
- Derivative: the rate of change of y when Δx is very small:

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

- It reads: "the limit of the rate of change of y as Δx approaches 0 "
- The derivative is a function (if you want, a "derived" function)
* The original function is called the "primitive" function
- The derivative is a function ONLY of x_{0}
- The rate measured by the derivative is the instantaneous rate of change
- Notation:

$$
\frac{d y}{d x} \equiv f^{\prime}(x) \equiv \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

ϕx

- Example: Suppose $y=f(x)=7 x-3$
$-f\left(x_{0}\right)=7 x_{0}-3$
$-f\left(x_{0}+\Delta x\right)=7\left(x_{0}+\Delta x\right)-3$
$-\frac{\Delta y}{\Delta x}=\frac{7\left(x_{0}+\Delta x\right)-3-\left(7 x_{0}-3\right)}{\Delta x}=7 \frac{\Delta x}{\Delta x}=7$
- So $\frac{d y}{d x} \equiv f^{\prime}(x) \equiv \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=2$
- Example: Suppose $y=f(x)=x^{2}+5$
$-f\left(x_{0}\right)=\left(x_{0}\right)^{2}+5$
$-f\left(x_{0}+\Delta x\right)=\left(x_{0}+\Delta x\right)^{2}+5$
$-\frac{\Delta y}{\Delta x}=\frac{\left(x_{0}+\Delta x\right)^{2}+5-\left(x_{0}^{2}+5\right)}{\Delta x}=\frac{2 x_{0} \Delta x+(\Delta x)^{2}}{\Delta x}=2 x_{0}+\Delta x$
- So $\frac{d y}{d x} \equiv f^{\prime}(x) \equiv \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=2 x_{0}$
- Since we pick x_{0} arbitrarily, we can drop the subscript.

