Lecture # 6 - Input-Output Analysis

- Important for production planning.
- It is a way to represent the production in an economy
- It assumes:
 - There are n interlinked industries
 - Each industry produces one single good.
 - Each industry uses a fixed-proportion technological process
- Idea: Suppose we produce glass
 - Our output can be sold directly to consumers (e.g. to home-owners), or can be used as an input for other industries (e.g cars)
 - We can used inputs from other industries to produce our good (e.g. machinery, which is made of steel)
- So there is interindustry dependence
 - Our output should be consistent to the input requirements of the economy.

- Simplest case: Suppose we divide the economy into 3 sectors:
 - 1. Agriculture
 - 2. Manufacturing
 - 3. Services
- .The three industries each use inputs from two sources:
 - 1. Domestically produced commodities form the three industries
 - 2. Other inputs, such as imports, labour, and capital.
- The outputs of the industries have two broad uses or destinations:
 - 1. Inputs to production of the three industries (intermediate inputs)
 - 2. Final demand (Consumption, Investment, Government expenditure, Exports)
- All this can be summarised in a so-called input-output table (in billions of euros):

		A griculture	Outputs Manufactures	Services	Final demand	Total
Inputs	A griculture	30	40	0	30	100
	Manufactures	10	200	50	140	400
	Services	20	80	200	200	500
	Other sources	40	80	250	230	600
	Total	100	400	500	600	1600

- Take for example manufacturing:
 - Its output is worth $\in 400$ bln, which is allocated as follows:
 - * ${\in}10$ bln is used by the agricultural sector
 - * \in 200 bln as intermediate goods for the manufacturing sector
 - * ${\in}50$ bln. is used by the services sector.
 - * €140 bln. is the final demand (consumption, investment, government expenditure & exports
 - In order to produce, the manufacturing sector uses inputs worth of $\in 400$, of which
 - * $\in 40$ bln comes from the agricultural sector,
 - * \in 200 bln from the manufacturing sector (intermediate inputs),
 - * $\in 80$ bln from the services sector,
 - * \in 80 bln from other sources, including imports, labour and capital
 - Note that sector outputs equal sector inputs and that the economy-wide value of inputs equals the value of outputs at €1600 bln.
- •
- Define the following 2 vectors

- b =	30 140	is the vector of final demands for output of the industry sectors
	200	
- <i>x</i> =	400	is the vector of total ouput of the industry sectors
	500	

- As said above, one (critical) assumption is that each sector produces according to fixedproportion technological coefficients (also called *input-output coefficients*)
- Example: agriculture uses €20 bln from the services sector. Given that the value of its total inputs is €100 bln, then services represent 20/100 = 0.20 of its total inputs.
 - The Leontieff assumption is that, whatever the value of the inputs used by agriculture,
 0.20 (or 20%) comes from services.
- As such, we can calculate the input-output coefficients by dividing each element in the input-output table by its column total:

		A griculture	Outputs $Manufactures$	Services	Final demand	Total
Inputs	A griculture	$\frac{3}{10}$	$\frac{1}{10}$	0	$\frac{1}{20}$	$\frac{1}{16}$
	Manufactures	$\frac{1}{10}$	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{7}{30}$	$\frac{1}{4}$
	Services	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{3}$	$\frac{5}{16}$
	Other sources	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{2}$	$\frac{23}{60}$	$\frac{3}{8}$
	Total	1	1	1	1	1

• In matrix notation:

	$\begin{bmatrix} \frac{3}{10} \end{bmatrix}$	$\frac{1}{10}$	0	
-A =	$\frac{1}{10}$	$\frac{1}{2}$	$\frac{1}{10}$	is the matrix of inter-industry coefficients
	$\begin{bmatrix} \frac{1}{5} \end{bmatrix}$	$\frac{1}{5}$	$\frac{2}{5}$	

• One important consequence of the input-output analysis is that we can express the vector of total demand (x) as a function of the final demand (b) and the matrix of inter-industry coefficients (A):

$$x = Ax + b$$

(Verify it)

• Then:

$$\begin{array}{rcl} x - Ax &=& b \\ (I - A) \, x &=& b \end{array}$$

• If (I - A) has an inverse:

$$(I - A)^{-1} (I - A) x = (I - A)^{-1} b$$
$$x = (I - A)^{-1} b$$

• The matrix $(I - A)^{-1}$ is known as the input-output inverse, or the Leontieff inverse

- Let's find it!!!
-
$$(I - A)^{-1} = \begin{bmatrix} 1.49 & 0.32 & 0.05 \\ 0.42 & 2.23 & 0.37 \\ 0.64 & 0.85 & 1.81 \end{bmatrix}$$

- Show that $x = (I - A)^{-1} b$

Application:

- Suppose there is a change in final demand, from b_1 to b_2 . What is the change in total demand?
 - For example, suppose there is an increase in the demand for agriculture products in the US (increase in exports)
 - Then $x_2 = (I A)^{-1} b_2$
- In general, if:
 - $-x_1 = (I-A)^{-1} b_1$
 - $-x_2 = (I-A)^{-1}b_2$
 - Then $\Delta x = x_2 x_1 = (I A)^{-1} b_2 (I A)^{-1} b_1$
 - So $\Delta x = (I A)^{-1} \Delta b$, where $\Delta b = b_2 b_1$

Derivatives of Functions of One Variable

Rate of Change and the Derivative

- Suppose you have a function y = f(x)
- What happens to y if there is a change in x?
 - Examples:
 - * What happens to the equilibrium solution of Y if there is a change in the marignal propensity to consume?
 - * What if all of a sudden, all consumers are willing to pay an extra €100 for an iPod (rightward shift in demand)
- Initial state: $x_0 \Longrightarrow y_0 = f(x_0)$
- Suppose x changes to a new value $x_0 + \Delta x$

 $-\Delta x$: denotes the change in x

- Then the value of the function y = f(x) changes from $f(x_0)$ to $f(x_0 + \Delta x)$
- **Difference quotient**: represents the change of y per unit of change in x

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

– The difference quotient is a function of x_0 and Δx

• **Derivative**: the rate of change of y when Δx is very small:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

- It reads: "the limit of the rate of change of y as Δx approaches 0"
- The derivative is a function (if you want, a "derived" function)
 - * The original function is called the "*primitive*" function
- The derivative is a function ONLY of x_0
- The rate measured by the derivative is the **instantaneous** rate of change
- Notation:

$$\frac{dy}{dx} \equiv f'(x) \equiv \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

¢x

• Example: Suppose y = f(x) = 7x - 3

$$- f(x_0) = 7x_0 - 3$$
$$- f(x_0 + \Delta x) = 7(x_0 + \Delta x) - 3$$
$$- \frac{\Delta y}{\Delta x} = \frac{7(x_0 + \Delta x) - 3 - (7x_0 - 3)}{\Delta x} = 7\frac{\Delta x}{\Delta x} = 7$$
$$- \text{So } \frac{dy}{dx} \equiv f'(x) \equiv \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2$$

• Example: Suppose $y = f(x) = x^2 + 5$

$$- f(x_0) = (x_0)^2 + 5$$

$$- f(x_0 + \Delta x) = (x_0 + \Delta x)^2 + 5$$

$$- \frac{\Delta y}{\Delta x} = \frac{(x_0 + \Delta x)^2 + 5 - (x_0^2 + 5)}{\Delta x} = \frac{2x_0 \Delta x + (\Delta x)^2}{\Delta x} = 2x_0 + \Delta x$$

$$- \text{So } \frac{dy}{dx} \equiv f'(x) \equiv \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 2x_0$$

– Since we pick x_0 arbitrarily, we can drop the subscript.