
Assignment 1

Question 1

a) The autocorrelation at lag k , �k, of a stationary process is de�ned as:

�k = corr(yt; yt�k) =
cov(yt; yt�k)

var(yt)

for each value of k = 1; 2; :::
The autocorrelations expressed as a function of k are called autocorrelation

function.
However, we only have a realization of a stochastic process, therefore we can

only compute the sample autocorrelation function. Assume to have T observa-
tions.
Indicate with y the sample mean:

y =
1

T

TX
yt

t=1

The sample variance is given by:

b0 = 1

T

TX
t=0

(yt � y)2

The sample autocorrelation is given by:

rk =

1
T�k

TP
t=k+1

(yt � y)(yt�k � y)

1
T

TP
t=0
(yt � y)2

for each value of k = 1; 2; :::
The sample autocorrelation function reported in the exercise shows a pattern

which decreases as the lag increases. Given the properties of the ACF of MA and
AR processes, this pattern could indicate that an autoregressive representation
is more appropriate.

b) The partial autocorrelation between yt and yt�k measures the correlation
between these two observations by eliminating the e¤ects of the intervening
values (yt�1 to yt�k�1).

The �rst sample partial autocorrelation coe¢ cient is equal to the �rst sam-
ple autocorrelation coe¢ cient because there is no other intervening value
between them.
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Given the properties of the PACF of MA and AR processes, this pattern could
indicate that an autoregressive representation is more appropriate. Be-
sides, we could also guess the number of lags. It seems that an AR(1) is
more appropriate.

Question 2

a)

yt = #yt�1 + "t

yt = #Lyt + "t

(1� #L)yt = "t

Note that (1 � #L) is invertible if and only if j#j < 1: As we are assuming
that the AR(1) is stationary, we can write:

yt = (1� #L)�1"t
where (1� #L)�1 = 1 + #L+ #2L2 + #3L3 + :::

yt = (1 + #L+ #2L2 + #3L3 + :::)"t

yt =
1X
j=0

"t�j

b)

yt = �"t�1 + "t

yt = �L"t + "t

yt = (1 + �L)"t

yt = (1� (��L))"t

(1� (��L)) is invertible if and only if j�j < 1: We are indeed assuming that
this is the case, therefore we can write:

(1� (��L))�1yt = "t

where (1� (��L))�1 = 1 + (��L) + �2L2 + (��3L3)::: =
1P
j=0

(��)jLj24 1X
j=0

(��)jLj
35 yt = "t
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Question 3

1.
yt = �yt�1 + "t

Iterate

yt = �(�yt�2 + "t�1) + "t

yt = �2yt�2 + �"t�1 + "t

yt = �2(�yt�3 + "t�2) + �"t�1 + "t

yt = �3yt�3 + �
2"t�2 + �"t�1 + "t

:::

yt = �ty0 +
t�1X
j=0

�j"t�j

Note that if j�j < 1; then �t ! 0 when t!1:

lim
t!1

yt =

1X
j=0

�j"t�j

For su¢ enciently large values of t:

E(yt) = E

0@ 1X
j=0

�j"t�j

1A
E(yt) = 0

cov(yt; yt�j) = E(ytyt�j)� E(yt)E(yt�j)
= E(ytyt�j)

= E

" 1X
i=0

�i"t�i

! 1X
i=0

�i"t�j�i

!#
= E

��
"t + �"t�1 + �

2"t�2 + :::
� �
"t�j + �"t�j�1 + �

2"t�j�2 + :::
��

= �j�2
�
1 + �2 + �4 + :::

�
=

�j�2

1� �

Let�s calculate the variance:
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var(yt) = E(y2t ) = E

264
0@ 1X
j=0

�j"t�j

1A2
375

= �2(1 + �2 + �4 + :::)

= �2=(1� �2)

Therefore:

cov(yt; yt�j) = �jE(y2t�j)

= �2�j=(1� �2)

2.

corr(yt; yt�j) =
cov(yt; yt�j)p
var(yt)var(yt�j)

=
cov(yt; yt�j)

var(yt)

= �j

3. Consider a stationary AR(2) process:

Yt = � + �1Yt�1 + �2Yt�2 + "t

and take the covariance between Yt and Yt�k:

cov(Yt; Yt�k) = �1cov(Yt�1; Yt�k) + �2cov(Yt�2; Yt�k) + cov("t; Yt�k)

Consider k = 0; 1; 2:

cov(Yt; Yt) = 0 = �1cov(Yt�1; Yt) + �2cov(Yt�2; Yt) + cov("t; Yt)

cov(Yt; Yt) = 0 = �11 + �22 + cov("t; (� + �1Yt�1 + �2Yt�2 + "t))

cov(Yt; Yt) = 0 = �11 + �22 + �
2

cov(Yt; Yt�1) = 1 = �1cov(Yt�1; Yt�1) + �2cov(Yt�2; Yt�1) + cov("t; Yt�1)

cov(Yt; Yt�1) = 1 = �10 + �21

cov(Yt; Yt�2) = 2 = �1cov(Yt�1; Yt�2) + �2cov(Yt�2; Yt�2) + cov("t; Yt�2)

cov(Yt; Yt�2) = 2 = �11 + �20

These are the Yule-Walker equations: the covariance is expressed in terms
of the model parameters.
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Question 4

Covariance stationary process:

1. E(xt) = � <1 8t

2. var(xt) = 0 8t

3. cov(xt; xt�k) = k

Yt = �+ Yt�1 + "t

Yt = �+ �+ Yt�2 + "t�1 + "t

Yt = 2�+ �+ Yt�3 + "t�2 + "t�1 + "t

:::

Suppose that the initial value Y0 is known.

Yt = t�+ Y0 + "t + "t�1 + "t�2 + :::+ "1

Consider E(Yt)

E(Yt) = E(t�+ Y0 + "t + "t�1 + "t�2 + :::+ "1)

Remember that E("t) = 0; 8t

E(Yt) = t�+ Y0

Note that E(Yt) depends on time, therefore fYtg cannot be a covariance
stationary process.

Question 5

1. False

Consider the MA(1)

yt = �"t�1 + "t

where f"tg is a white noise stochastic process, "t~IID(0; �2)

1. (a)
E(yt) = 0

i. The mean is time independent and �nite
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(b)

var(yt) = E(y2t )

= E [(�"t�1 + "t) (�"t�1 + "t)]

= E
�
�2"2t�1 + 2�"t"t�1 + "

2
t )
�

= �2E("2t�1) + E("
2
t )

= (1 + �2)�2

i. The variance is time independent and constant

(c)

cov(yt; yt�1) = E(ytyt�1)

= E((�"t�1 + "t) (�"t�2 + "t�1))

= �E("2t�1)

= ��2

i. and

cov(yt; yt�j) = 0 8j 6= 0
The autocovariance is time independent and �nite
Any �nite order MA is covariance stationary

2. True

Consider an ARMA(p,q) process:

yt = a0 + a1yt�1 + a2yt�2 + :::+ apyt�p + xt

where xt = "t + b1"t�1 + b2"t�2 + ::: + bq"t�q and f"tg is a white noise
stochastic process, "t~IID(0; �2):

If the roots of the inverse characteristic equation lie outside of the unit
circle then the fytg is stationary.

yt =
a0

1�
pP
i=1

ai

+
"t

1�
pP
i=1

aiLi
+

b1"t�1

1�
pP
i=1

aiLi
+

b2"t�2

1�
pP
i=1

aiLi
+:::+

bq"t�q

1�
pP
i=1

aiLi

fytg sequence is stationary as long as the roots of 1�
pP
i=1

aiL
i are outside

the unit circle.

Question 6

See Enders, Chapter 1, Section 9
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Question 7

Consider the moment matrix E(xtx0t) where xt = (1; yt�1)
0:�

1
yt�1

� �
1 yt�1

�
=

�
1 yt�1
yt�1 y2t�1

�
Take the expected value:

E

�
1 yt�1
yt�1 y2t�1

�
= �xx =

�
1 �
� 0 + �

2

�
as var(yt�1) = 0 = E [yt�1 � �]2 = E(y2t�1) � (E (yt�1))

2
: Therefore:

E(y2t�1) = 0 + �
2

Calculate the determinant of E(xtx0t):

det�xx = 0 > 0

We can conclude that �xx is nonsingular and hence �nite.

Consider now the sample cross moment of the regressors, Sxx = 1
TX

0X = 1
T

TX
t=1

xtx
0
t:

By the Ergodic Theorem, we know that

lim
T!1

Sxx = �xx

Therefore, we can conclude that for T su¢ ciently large the sample cross
moment of the regressors, Sxx = 1

TX
0X is nonsingular as well. Since 1

TX
0X

is nonsingular i¤ rank(X) = K, then the assumption of multicollinearity is
satis�ed with probability 1 for T su¢ ciently large.
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