Econometrics Lab Hour – Session 4

Agustín Bénétrix benetria@tcd.ie Office hour: Wednesday 4-5 Room 3021 Martin Schmitz schmitzm@tcd.ie Office hour: Thursday 5-6 Room 3021

Question (i)

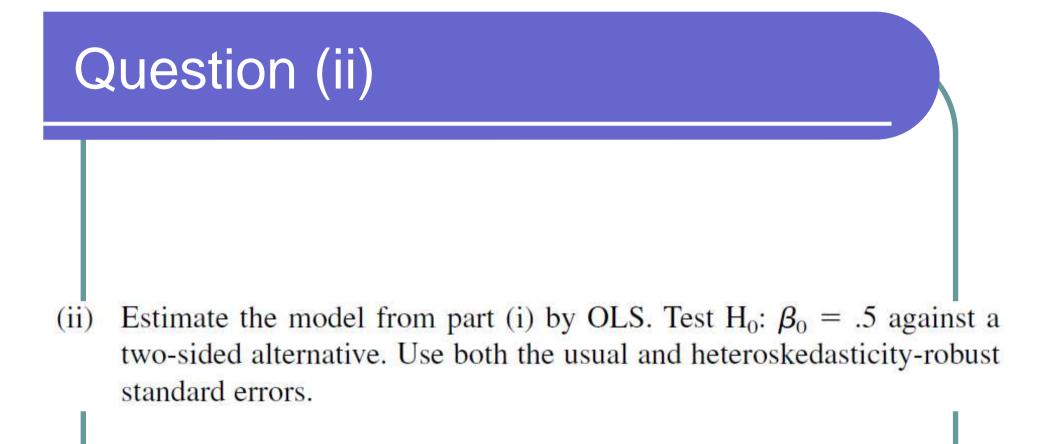
 (i) The variable *favwin* is a binary variable if the team favored by the Las Vegas point spread wins. A linear probability model to estimate the probability that the favored team wins is

$$P(favwin = 1 | spread) = \beta_0 + \beta_1 spread.$$

Explain why, if the spread incorporates all relevant information, we expect $\beta_0 = .5$.

Answer (i)

• If *spread* is zero, there is no favorite, and the probability that the team we (arbitrarily) label the favorite should have a 50% chance of winning



Question (ii)

	Ordinary Least	Squares Estimation		
******	******	*************	*****	
Dependent variable is	FAVWIN			
553 observations used		from 1 to 553		
*******	************	***************	*****	
Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
С	. 57695	.028235	20.4342[.000]	
SPREAD	.019366	.0023386	8.2806[.000]	

R-Squared	.11067	R-Bar-Squared	.10906	
S.E. of Regression	.40168	F-stat. F(1,	551) 68.5691[.000]	
Mean of Dependent Variable .76311 S.D. of Dependent Variable .42556				
Residual Sum of Square		-	ihood -279.2855	
Akaike Info. Criterion			riterion -285.6009	
DW-statistic	2.1120	-		
*****	******	******	******	
Ordinary Least Squares Estimation				
Based on White's Heteroscedasticity adjusted S.E.'s				
		******	******	
Dependent variable 553 observations u		from 1 to 553		
		****	****	
Regressor	Coefficient	Standard Error	T-Ratio[Prob]	
c	. 57695	.031657	18.2251[.000]	
SPREAD	.019366	.0019218	10.0766[.000]	
***********	******	*****	*****	

Answer (ii)

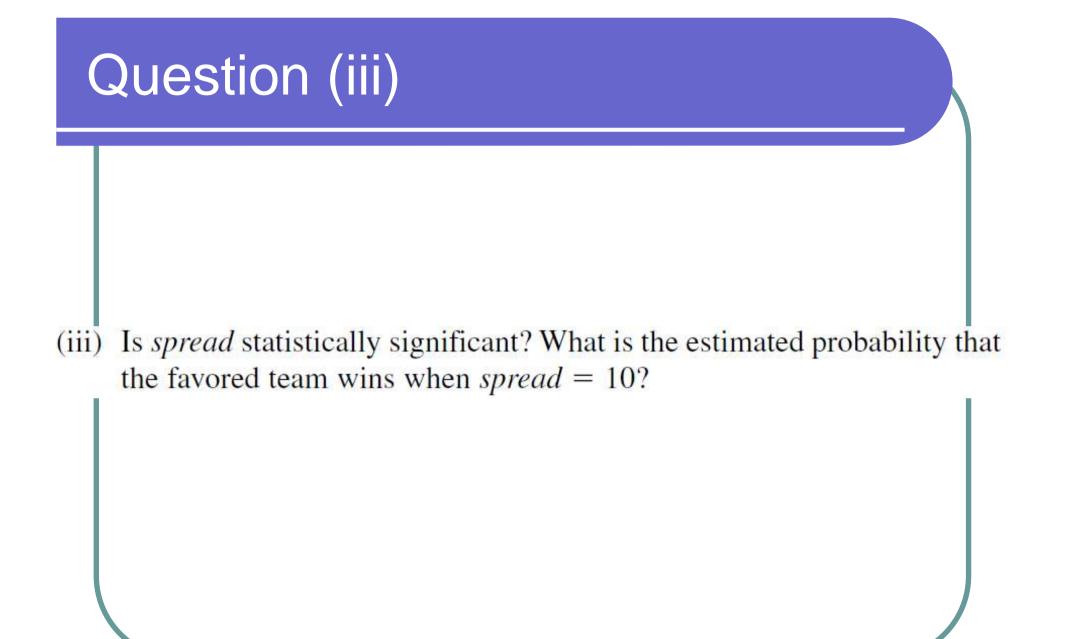
(ii) The linear probability model estimated by OLS gives favwin= 0.577 + 0.0194 spread(0.028) (0.0023)[0.032] [0.0019]

 $n = 553, R^2 = 0.111$

standard errors are in (\cdot) and the heteroskedasticity-robust standard errors are in [\cdot].

(ii) Answer

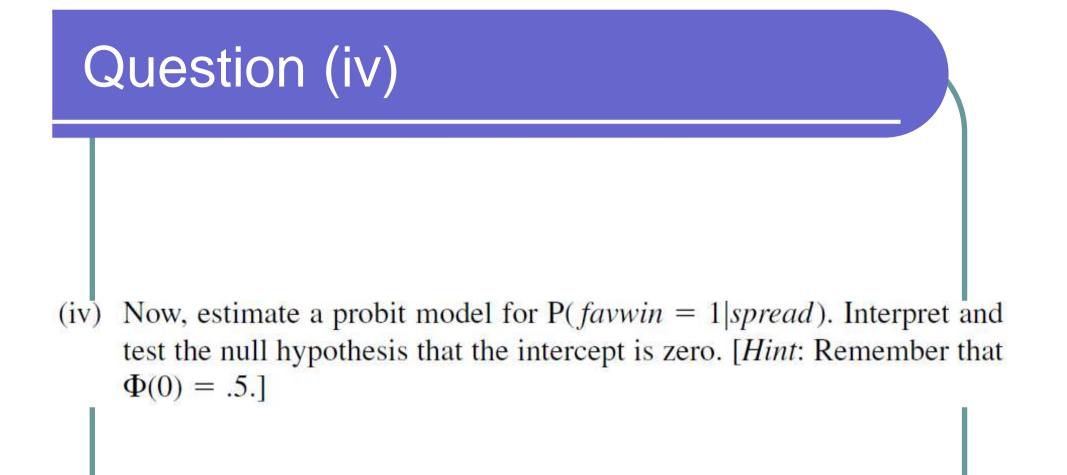
- <u>Using the usual standard error</u>, the *t* statistic for $H_0: \beta_0 = 0.5$ is (0.577 0.5)/0.028 = 2.75, which leads to rejecting H_0 against a two-sided alternative at the 1% level (critical value 2.58).
- <u>Using the robust standard error</u> reduces the significance but nevertheless leads to strong rejection of H₀ at the 2% level against a two-sided alternative: *t* = (0.577 0.5)/0.032= 2.41 (critical value 2.33).

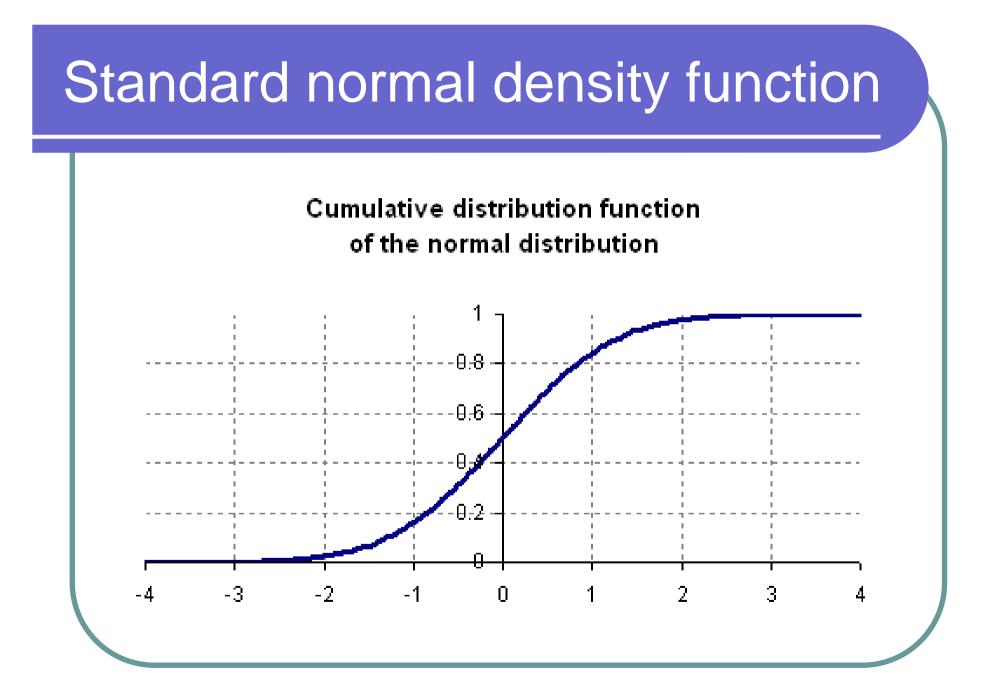


Answer (iii)

As we expect, *spread* is very statistically significant using either standard error, with a *t* statistic greater than eight.

If *spread* = 10 the estimated probability that the favored team wins is 0.577 + 0.0194(10) = 0.771





Answer (iv)

The probit results are given in the following table:

Dependent Variable: favwin			
Independent Variable	Coefficient (Standard Error)		
spread	0.0925 (0.0122)		
constant	-0.0106 (0.1037)		
Number of Observations	553		
Log Likelihood Value	-263.56		
Pseudo <i>R</i> -Squared	0.129		

Answer (iv)

In the probit model $P(favwin = 1 | spread) = \Phi(\beta_0 + \beta_1 spread)$,

where $\Phi(\cdot)$ denotes the standard normal cdf, if $\beta_0 = 0$ then

$$P(favwin = 1 | spread) = \Phi(\beta_1 spread)$$

and, in particular,

$$P(favwin = 1 | spread = 0) = \Phi(0) = 0.5$$

This is the analog of testing whether the intercept is 0.5 in the LPM.

From the table, the t statistic for testing

 $H_0: \beta_0 = 0$ is only about -0.102, so we do not reject H_0 .

Question (v)

(v) Use the probit model to estimate the probability that the favored team wins when *spread* = 10. Compare this with the LPM estimate from part (iii).

Answer (v)

(v) When spread = 10 the predicted response probability from the estimated probit model is

 $\Phi[-0.0106 + 0.0925(10)] = \Phi(0.9144) \approx 0.820.$

This is somewhat above the estimate for the LPM.

Question (vi)

(vi) Add the variables *favhome*, *fav25*, and *und25* to the probit model and test joint significance of these variables using the likelihood ratio test.
(How many *df* are in the chi-square distribution?) Interpret this result, focusing on the question of whether the spread incorporates all observable information prior to a game.

Answer (vi)

- When *favhome*, *fav25*, and *und25* are added to the probit model, the value of the log-likelihood becomes –262.64.
- Therefore, the likelihood ratio statistic is 2[-262.64 (-263.56)] = 2(263.56 262.64) = 1.84.
- The *p*-value from the Chi²₃ distribution is about 0.61, so *favhome*, *fav25*, and *und25* are jointly very insignificant.
- Once *spread* is controlled for, these other factors have no additional power for predicting the outcome.

