Investment Appraisal

Chapter 3
Investments: Spot and Derivative Markets

Compounding vs. Discounting

- Invest sum over years, how much will it be worth?
- Terminal Value after n years @ r :

$$
\begin{array}{ll}
-\quad T V_{n}=P(1+r)^{n} & \text { if } r_{1}=r_{2}=\ldots=r_{n} \\
-1000(1.1)^{2}=1210 &
\end{array}
$$

- Offer a final sum in n years, how much should I get now?
- Discounted Present Value:

$$
-\quad D P V=\frac{T V_{n}}{(1+r)^{n}}=\frac{1210}{1.1^{2}}=1000
$$

- Discounting is the inverse or mirror image of compounding.

Investment Appraisal (a.k.a. Capital Budgeting)

- Central concepts:
- Capital cost (KC)
- Opportunity cost of capital (typically r)
- Net Present Value (NPV)
- Internal Rate of Return (IIR)
- In principle equivalent concepts, but one may be more informative than another, depending on the context used.

A Project Proposal

- Cash Flow:
$-\mathrm{CF}_{1}=1100$ and $\mathrm{CF}_{2}=1210$
- $\mathrm{KC}=2100$
- $R=10 \%$
- Should you invest?
- 2310 > 2100

NPV

- $D P V_{C F}=\frac{C F_{1}}{(1+r)}+\frac{C F_{2}}{(1+r)^{2}}=\frac{1100}{1.1}+\frac{1210}{(1.1)^{2}}=2000$
- $\mathrm{KC}=2100$
- DPV - KC < 0
- Do not invest, because opportunity cost of capital not compensated for.
- Equivalently,
- Place KC in bank for 2 years: TV $_{\text {KC }}=2541$
- Terminal Value of Project: 2420
- Why?

IRR

- IRR is that rate of interest that equates an initial outlay with the DPV of an income stream.

$$
2000=\frac{1100}{1+y}+\frac{1210}{(1+y)^{2}}
$$

- $y=?$
- Implicit assumptions:
$-y$ is an average growth rate.
- All payments received before the terminal investment are re-invested at y. Why?

Different CF Profiles

- $\{-,-, \ldots,+,+, \ldots\}$ NPV $>K C$ or $y>r \rightarrow$ Invest
- $\{+,+, \ldots,-,-, \ldots\}$ NPV $>K C$ or $y<r \rightarrow$ Invest
- $\{-,+,-, \ldots\}$ NPV $>K C \rightarrow$ Invest. IRR ambiguous.

Mutually Exclusive Projects

- Scale/Timing Problem:
$\left\{\mathrm{CF}_{t}, C F_{t+1}\right\}$
- Project A: $\{-10,+15\}$ with $r=10 \% \rightarrow$ IRR $=50 \%$, NPV $=3.64$
- Project B: $\{-80,+110\} \& r=10 \% \rightarrow$ IRR $=37.5$, NPV $=20$.
- Use NPV or adjust IRR:
- Incremental CF: $\mathrm{CF}_{\mathrm{B}}-\mathrm{CF}_{\mathrm{A}} \rightarrow=\{-70,95\}$
- Incremental IRR:

$$
0=-70+\frac{105}{(1+\text { IncIRR })}
$$

- Incremental NPV

$$
-70+\frac{95}{}=16.36>0
$$

Real vs. Nominal

$$
\left(1+r_{n}\right)=\left(1+r_{r}\right)(1+\pi)
$$

- Nominal CF discounted at nominal rate
- Real CF discounted at real rate
- Assume $\pi=5 \%, r_{r}=3 \%$ \& get $€ 100$ in a year:

$$
\begin{aligned}
& 100 / 1.0815=100 /(1.05 * 1.03)=92.464 \\
& 100 / 1.05=95.238 \\
& 95.238 / 1.03=92.464
\end{aligned}
$$

Timing of Capital Expenditures

- The timing of the initiation of a project can be crucial. But when is a good time?
- Delays imply lose out on revenue but save on interest payments.
- If we know the CFs (and r) with certainty we can work out the NPV of the project at different start dates.
- Take care express the NPVs for different start dates in present value terms (i.e. NPV_{1} is discounted for one period, NPV_{2} for two periods...).
- Choose Project with highest NPV.
- Intuitive delay if growth in NPV > r

Uncertainty \& Risk

- Cash Flows (\& r) tend to vary over time.
- Use probability distributions to account for this: use expected CF
- E.g., a good and a bad state of the economy $\left\{V_{G}, V_{B}\right\}=\{100,40\} \&\left\{\operatorname{Pr}_{G}=\right.$ $\left.0.75, \operatorname{Pr}_{\mathrm{B}}=0.25\right\}:$

$$
\begin{aligned}
V^{e} & =0.75 * 100+0.25^{\star} 40=85 \\
& \Rightarrow N P V=-K C+V^{e} /(1+r)
\end{aligned}
$$

- Decision Trees:
- How many contingencies?
- Exponential increase in complexity over time.
- Liquidation Value
- Real Options Theory, Sensitivity Analysis, Scenario Analysis
- Discount Factor:
- 'Safe' Rate? Projections of yield curve.
- Risk Premium? (, e.g. CAPM, WACC)
- Capital Rationing \rightarrow NPV fails, so use Profitability Index to rank projects:

$$
P I=\frac{D P V(C F)}{K C}
$$

Other Decision Rules

- Payback Period:
- Number of years it takes for CF to exceed KC.
- Problem is CF not discounted.
- Unsophisticated (and therefore useful) Rule of Thumb often used alongside NPV.
- More frequently used in small firms and Europe according to CEO survey.
- Return on Capital Employed (ROC)
[Return on Investment (ROI), Accounting Rate of Return (ARR)]:
- 'Profits'/KC
- What profits to use? Current, average past, projections...
- Investment may take place over several periods.

Financing \& Investment Decisions

- The financing and investment decisions are treated separately \rightarrow A project's PV is calculated independent of debt considerations.
- Many possible sources of finance $\rightarrow \underline{\text { Weighted }} \underline{\text { Average }}$ Cost of Capital. Consider a Debt \& Equity financed firm for example:

$$
1+r_{W A C C}=\left(\frac{D}{D+E}\right)\left(1+r_{D}\right)+\left(\frac{E}{D+E}\right)\left(1+r_{E}\right)
$$

- Does bankruptcy risk increase WACC? Chapter 11 Modigliani \& Miller 'Irrelevance of Funding Theorem'.

Some Practical Considerations

- EBITD = Revenue - Inputs Costs
- Depreciation (price, scrap value, lifetime)
- Tax

$$
T=t(R-C-D)
$$

- Post tax CF:

$$
C F_{\text {Post Tax }}=(R-C)(1-t)+t D
$$

- $t D$ is the depreciation tax shield

Working Capital

- Predictions on CF \& KC tend to be smoothed out, WC is to account for the leads and lags.
- WC = Inventory + accounts receivable accounts payable
- Change in WC = Change in inventory + change in accounts receivable - change in accounts payable
- Opportunity Cost - Sunk Costs

M\&A

$$
\text { Gain }=N P V_{A+B}-\left(N P V_{A}+N P V_{B}\right)-t c
$$

- Success? Mixed assessment \& difficult to assess $N P V_{A+B}$.
- Synergies? Economies of scale related cost sharing, market power, customer base, ...
- Are these beneficial to society?
- Discount Rate?
- Horizontal (similar industry \& rate) vs. Vertical (prob. differ) Merger
- Shareholder Maximisation vs. Empire Building
- Free Cash-Flow Hypothesis: M. C. Jensen, 'The Performance of Mutual Funds in the Period 1945-1964' Journal of Finance, 1968, 23, 389-416.
- Should invest in all own projects with NPV > 0, then release excess cash to shareholders to invest as they want. M\&A only if gains accrue from joining itself.

