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Summary

Bubbles, booms and busts in asset prices give rise to a considerable misallocation of

resources when they are growing and the subsequent adjustment can be very long

and painful. Yet, there is no accepted diagnosis of a bubble. In effect, there is a

sense in which a bubble and a bust can not occur in the usual econometric models.

These models, almost always, depend on the normal or Gaussian distribution. Yet

when one looks at data for asset prices the number and size of extreme losses and

gains are orders of magnitude greater than a normal distribution would predict. The

very existence of these extreme values must lead one to question the validity of the

normality assumption and to look for an alternative.

From time to time several alternatives have been proposed. A common pro-

posal is to use mixtures of normal distributions. The simplest such solution is to

have a mixture of two normal distributions — the first, with low volatility, repre-

sents the fundamental state with no bubble and the second, with high volatility, the

bubble. The price of the asset in question is seen as switching from one state to

the other with the switching being determined by some form of deterministic or

stochastic process. Other solutions involve what are, in effect, infinite mixtures of

normal distributions. Chief amongst these are the various GARCH proceses and the

t-distribution. Various other “fat-tailed” distributions have been proposed but these

have not received universal acceptance and probably never will. While such distribu-

tions often fit the data well, We have not seen any convincing theoretical arguments

why they should.

The purpose of this thesis is to examine the use of the α-stable distribution in

this context and to determine some of the consequences of its use. The α-stable

distribution is a generalisation of the normal distribution. It was first proposed as

a distribution for asset returns and commodity prices by Mandelbrot in the early

1960s. It attracted a lot of attention up to the early 1970s and then interest faded.

There were two reasons for the waning interest. First the advances made at the time

in portfolio and option pricing theory were dependent on the normal distribution. At

the time almost all of this work could not have been replicated without the normality

assumption. Secondly for actual application the computer power available at the

time was simply not sufficient to properly use the α-stable distribution. Thus α-

stable analysis was primitive relative to the corresponding normal analysis.

Section 2.1 is a brief history of the application of the α-stable distribution to fi-

nancial economics. Appendix A contains an account of the theory of such processes.

The α-stable distribution allows for the type of extreme and skewed values observed

in asset prices. The theoretical arguments that can be used to justify the assump-



tion of a normal distribution can also be used to justify an α-stable distribution. We

discuss the relevance of a generalised central limit theorem, domains of attraction

and scaling to asset pricing. Statistically, the α-stable distribution is a much better

fit to the six total return equity indices that we use to illustrate this study. We then

report on three studies that use an assumption of an α-stable distribution.

The first study examines the problem of regression when the disturbances have

an α-stable distribution. OLS estimates are not optimum. The maximum likelihood

estimator of the regression coefficients is a form of robust estimator that gives less

weight to extreme observations. The theory is applied to the estimation of day

of week effects in the equity indices. The methodology is feasible and there are

sufficient differences in the results to justify the use of the new methodology when

sufficient data are available and “fat tails” are suspected. The results support the

conclusion that day of week effects no longer exist.

The second study is a simulation exercise to assess the power of normality tests

when the alternative is an α-stable distribution. Such tests are sometimes applied

to monthly equity returns and when normality can not be rejected it is concluded

that the data can not be non-normal α-stable. We show that the power of these test

is often so poor that these conclusions can not be sustained.

The third study concerns the use of the α-stable distribution in the measure-

ment of Value at Risk (VaR). We find that a static α-stable distribution gives good

measures of VaR at conventional levels for the equity indices examined. The α-

stable distribution and a GARCH process with α-stable innovations can give very

good measures of VaR.

We may draw two types of conclusion from the studies:

1. The use of the α-stable distribution is feasible in many situations. In the situa-

tions examined here it appears to give better results than traditional methods

that rely on the normal distribution. It can only be used when there is a large

sample of data such as is available in the daily equity return series considered

here.

2. From a policy viewpoint there are two consequences of this analysis:

(a) If economic variables follow an α-stable distribution then we must accept

that extremes do occur and must make provision where appropriate.

(b) It would appear that policy can not reduce the stability parameter. It can

change the scale parameter and considerable reductions in the probabil-

ity of extreme events can be brought about by reductions in the scale

parameter. Such policies ought to be designed to be sustainable and ef-

fective in the long run.
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CHAPTER 1

Introduction

1.1 Preview

The use of the normal distribution is ubiquitous in statistical analysis in all

branches of science. Ever since the days of Bernoulli (1654-1705), De Moivre

(1667–1743), Laplace (1749–1827) and Gauss (1777-1855) it has been recog-

nised that, subject to certain fairly unrestrictive conditions, any datum, that

is the result of the aggregation of many individual data, has an approximate

normal distribution. The return1 on many assets is the result of agents pro-

cessing many items of information. It may be argued that the accumulation of

such information is the equivalent of many shocks to returns and the result

is a normal distribution of returns.

1Throughout this thesis the return on an asset is measured as 100 times the log differ-
ence of the asset price (including dividends). Thus if Pt−1 and Pt are the prices of the asset
in periods t − 1 and t, respectively, and Dt the dividend paid in period t the return Rt paid
on the asset in period t given by

Rt = 100 log
(
Pt +Dt
Pt−1

)
≈ 100

(
Pt +Dt
Pt−1

− 1
)

Continuously compounded gains (losses), calculated in this way, are numerically less
(greater) than standard percentage changes.

1



Section 1.1

When one looks at recent events, in particular, or at the historical perfor-

mance of equity indices, things are not that simple. On September 15, 2008,

Lehman Brothers filed for Chapter 11 bankruptcy protection listing bank debt

of $613 billion, in excess of $150 billion bond debt, and assets worth $639.2

On the same day Merrill Lynch agreed to sell itself to Bank of America for

$50 billion,3 a third of its 52 week high. The shares of AIG fell from a 52

week high of $70.13 on 9 October, 2007 to a low of $1.25 on 16 September,

2008 when the Federal Reserve Board announced a loan of $85 billion, under

terms and conditions4 that were designed to protect the interests of the U.S.

government and taxpayers. The Federal takeover of Fannie Mae and Freddie

Mac 5 on 7 September, 2008, could be the most expensive support program

undertaken by the federal government. The plan commits the government to

provide as much as $100 billion to each company to backstop any shortfalls

in capital. It enables the Treasury to ultimately buy the companies outright

at little cost. It also eliminates dividend payments while protecting the prin-

cipal and interest payments on the debt, now held by foreign central banks,

financial institutions, pension funds and others.

These events have been described6 as once a century events. The use of the

term “once a century” probably implies that the user thinks that the events

are very rare and that he does not have a good measure of how likely such

events are. We would be certain that all of these companies had state of the

art risk management systems. It is also likely that the use or interpretation of

these systems depended, to some extent, on the normal distribution. With the

benefit of hindsight, the problems arising from sub-prime mortgages, the con-

sequent credit shortages and the confidence deficit were the cause of these

2 http://www.marketwatch.com/news/story/story.aspx?guid={2FE5AC05-597A-4E71-A2D5-9B9FCC290520}&siteid=rss

MarketWatch, 15 September 2008.
3 http://www.ft.com/cms/s/2/d285ebc8-82ff-11dd-907e-000077b07658.html,

Financial Times, 16 September, 2008.
4 http://www.federalreserve.gov/newsevents/press/other/20080916a.htm,

Federal Reserve press release.
5 http://topics.nytimes.com/top/news/business/companies/fannie_mae/index.html,

New York Times, 16 September, 2008.
6 Alan Greenspan interviewed on abc NEWS, This Week, 15 September 2008

(http://abcnews.go.com/Video/playerIndex?id=5798760)
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problems. It is clear that these events were not foreseen. However a good

risk measurement system should be able to give a reasonable estimate of the

probability of such unforseen extreme events. The estimates of the probabil-

ity of such extreme events provided by the normal distribution are wrong by

several orders of magnitude. A similar conclusion is reached if we apply the

normal distribution to a measure of risk used by LTCM.7 The resulting prob-

ability is so small that the LTCM crash should not have occurred once in the

entire life of the universe. The use of the normal distribution in cases such as

these is leading to a gross underestimation of the risk of a large loss.

The problems arising from the use of the normal distribution are con-

firmed when we look at extreme losses on equity indices. A standard mea-

sure of process quality control initiated by Motorola is known as six sigma.

Basically, the idea is that the standard deviation of the process is controlled

so that a defective item occurs when some quality measurement is six sigma

(standard deviations) below the average of the measure. In such cases, using a

normal distribution suggests that such events have a probability of less than

one in a billion of occurring.8 The six sigma theory allows for a drift in the

process and, by convention, calculates the probability as if it were 4.5 stan-

dard deviations with a probability of about one in three hundred thousand. If

we consider the daily loss on an equity index a six sigma event might occur on

average once every 4,000,000 years (or once every 1,200 years if we use the

4.5 rule to determine the probability). These events are much rarer than the

“once in a century” events we mentioned earlier. We can apply these concepts

to daily returns on the FTSE100 total return price index, which is available

since 31 December 1985. The six sigma for this index is 6.2%. On 19 Oc-

tober 1987, 20 October 1987 and 26 October 1987 losses on the index were

11.2%, 12.2% and 6.3%, respectively. Thus there have been three six sigma

events since the end of 1985 despite the fact that such events are practically

7 See Footnote 5 on page 120
8Calculations of small normal probabilities such as these are based on the implemen-

tation of the normal distribution function in R (R Development Core Team (2008)). This
is based on the algorithm given in Wichura (1988). This algorithm gives an estimate of
p = Φ(z), the distribution function of the normal distribution, which is accurate to about
16 figures for 10−316 <min(p,1− p)
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impossible given a normal distribution. Indeed two of the events are closer to

twelve sigma!

The discrepancy remains if we look at smaller but still relatively rare

losses. Using a normal distribution we expect a loss of greater than 4 standard

deviations to occur once every 126 years. Additional losses on the FTSE100

total return index, greater than 4 standard deviations, were recorded on 11

occasions – 22 October 1987 (5.8%), 30 November 1987 (4.4%), 11 September

2001 (5.9%), 15 July 2002 (5.6%), 19 July 2002 (4.7%), 22 July 2002 (5.1%), 1

August 2002 (4.9%), 30 September 2002 (4.9%), 12 March 2003 (4.6%) and 21

January 2008 (5.6%). We must conclude that we have been very unlucky or

that there is a problem with the fit of normal distribution to returns on the

FTSE100. We conclude that the problem is the fit of the normal distribution

to the data.

This problem is not solely one of recent times. Daily returns on the Dow

Jones Industrial Average are available from May 1896. In this period of 112

years we find 29 six sigma events and 103 four sigma events in the daily

returns on this index. Six sigma events have occurred in nine of the twelve

decades since the index was first calculated. There were four such events in

the 1980s and one in each of the 1990s and the first decade of the twenty

first century. On Monday 19 October 1987 the index fell by a record 25.6%.

Kindleberger (2000) attributes the crash to the excessive growth in prices in

the stock market, luxury housing, office building and the dollar exchange

rate. Carlson (2007) attributes the deepness of the recession to the impact of

margin calls on liquidity, program trading, and uncertainty and herd trading.

The fall of 8.3% on the 22 October was a continuation of the same crises. The

fall of 7.1% on Friday 8 January 1988 was more than compensated for by the

rises earlier that week and the following Monday. The fall of 7.2% on Friday

13 October 1989 was precipitated by a rush of late selling. There was a partial

recovery the following Monday when equities were seen as good value.9 The

fall of 7.5% on 27 October 1997 was again recovered over the following week

but the index had fallen 6.4% during the month of October. The volatility

was attributed to the Asian currency and economic crises. The occurrence of

9 New York Times BUSINESS DIGEST: 14 October 1989 and following issues.
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these six sigma events is evidence of the lack of fit of the normal distribution

to the data. There is thus no doubt that the use of the normal distribution

leads to very wrong conclusions about the possibility of extreme occurrences

in finance. The evidence is so strong that one must conclude that the normal

distribution should not be used in evaluating risk. It is not sufficient to say

that these events are once off events that could not have been foreseen. The

purpose of a risk management system is to get a measure of the possibility

of the range of all possible changes including the very unlikely ones that may

be a bit more likely than people think.

This failure of the normal distribution has considerable consequences for

the conduct of business in the world of finance and in particular for the as-

sessment of risk there. Any methods based on the normal distribution will

underestimate risk. Various solutions have been proposed and none appears

to have been universally accepted. The solution examined here is the replace-

ment of the normal distribution by the α-stable family of distributions. As

we shall show in Chapter 5, this distribution produces good estimates of the

probability of extreme events in the equity indices considered. The use of

the α-stable distribution demands considerable computational resources but

these can be met in the cases considered here. As computer facilities become

even more powerful it will be possible to achieve more.

The contents of the remainder of this thesis are as follows. Chapter 2

introduces the α-stable distribution. As a matter of principle we like to use

models that can be justified by theory whether that theory is determined by

economics, finance or common sense. Various time series models (ARIMA,

VAR etc.) can be thought of as reduced forms of structural models. As re-

duced forms we may be restricted in their use. We base our theoretical argu-

ments for the α-stable distribution on the generalised central limit theorem.

The arguments that use the central limit theorem to justify a theory based

on the normal distribution can now be used with the generalised central limit

theorem to justify an α-stable distribution. The α-stable distribution also

has, in common with the normal distribution, attractive scaling properties

under time aggregation. The α-stable distribution encompasses the normal

distribution and thus one can test the restrictions imposed by the normality
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assumption. The argument for an α-stable distribution does not rest solely

on the statistical fit of the distribution.

An alternative method of modelling “fat tails” uses what is known as ex-

treme value theory. Such procedures use the tails of the empirical distribution

to make inferences about extreme values. This provides valuable results in

many fields of application including insurance, hydrology, material and life

sciences and finance. Here we are more interested in the properties of the

entire return series.

We examine the empirical fit of the α-stable distribution to six daily total

return indices (ISEQ, CAC40, DAX30, FTSE100, Dow Jones Composite (DJAC)

and S&P500). We find that the fit is good. We conclude that there are good

theoretical and empirical reasons to use α-stable distributions in modelling

asset returns.

Our main concern is with the unconditional distribution of returns. Apart

from some material on Value at Risk in Chapter 5, we do not examine the

conditional distribution of returns. Any statistical analysis of equity returns

is a compromise. If we use a long series, we are likely to encounter problems

of non-stationarity. If we use a short period, estimates may not be sufficiently

precise. In certain circumstances temporal dependencies may reduce the ef-

fective size of the sample and bias estimates based on shorter samples. These

problems will imply that the fit of the data is not always as good as one might

expect. Apart from the DAX30, for which data are available from September

1959, the estimates in Chapter 2 are based on periods from the late 1980s up

to September 2005. In Chapter 5 the sample period is extended to January

2008 and includes some of the recent turbulence on the equity markets. The

estimated parameters for the extended period are not significantly different

from those for the shorter period.

We continue with three studies of the α-stable distribution. These three

studies address the implications of the α-stable distribution for three tech-

niques (tests that variables follow a normal distribution, estimating regres-

sion coefficients and estimating Value at Risk) that an economist working in

a Cental Bank or other financial institution might find useful.

The first study, in Chapter 3 is the estimation of regression coefficients

6
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when the disturbances have a non-normal α-stable distribution. In this case

Ordinary Least Squares estimates are consistent but are not efficient.10 The

coefficient t-statistics do not have a t-distribution. The method used is an

extension of the maximum likelihood method, for symmetric α-stable dis-

tributions, given in McCulloch (1998) to general α-stable distributions. The

method is a form of robust estimation of the coefficients, where less weight

is given to extreme observations. These weights are determined by the α and

β parameters of the α-stable distribution. The methodology is then applied

to the estimation of day of week effects in returns on the equity indices listed

above and on the Dow Jones Industrial Average for the period covered by Gib-

bons and Hess (1981), in a classic examination of such effects11. The results

are compared to those obtained using standard OLS and asymptotic normal

theory. We find:

1. Standard errors of coefficients are somewhat smaller using the α-stable

methodology.

2. We repeat the analysis of Gibbons and Hess (1981) using returns on the

Dow Jones Industrial Average rather than the indices that they use. Our

results are similar to theirs, rejecting the hypothesis of no day of the

week effects. Our OLS estimates agrees with Gibbons and Hess (1981) in

finding that returns on Monday are negative and significantly less than

average and that returns are higher than average on Wednesday and

Friday. The results of our α-stable analysis are similar except that we

do not find higher than average returns on Wednesday.

3. For the ISEQ, CAC40, FTSE100 and DJAC there are no significant day of

week effects in either the α-stable or OLS normal analyses. The esti-

mates are based on the data covering the period from the late 1980s to

September 2005.

4. There are some indications of a higher return on Mondays and a lower

return on Wednesdays in the normal analysis of the S&P500. We do not

10 They are also unbiased when α > 1.
11The extent to which conclusions such as these may be attributed to data mining is

discussed on page 60
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find these effects using the α-stable assumption. Data cover the period

from January 1980 to September 2005.

5. Data for the total return index for the DAX30 are available from 1959 as

compared to the starting dates of late 1980s for the other series. For the

entire period both methods indicate significant day of week effects. The

normal distribution indicates significantly higher returns on Wednes-

days and Fridays and lower on Mondays. The α-stable results only in-

dicate higher returns on Thursdays. These α-stable results may reflect

the timing of Bundesbank/European Central Bank announcements.

6. Conventional wisdom would indicate that a weekend effect (high returns

on Fridays and low on Mondays) did exist at some stage but that these

effect have now been arbitraged away. To look at this effect the DAX30

data were divided into three periods, September 1959 to January 1975,

January 1975 to May 1990 and May 1990 to September 2005. Both

methodologies indicate weekend effects in the first two periods (slightly

stronger in the first) and no effects in the last period, confirming the

conventional wisdom that these effects have been arbitrated away.

There is sufficient evidence here to justify the examination of the robustness

of Ordinary Least Squares coefficient estimates when fat-tails are suspected

and sufficient data are available

Chapter 4 is a simulation study of the power of tests of normality when

the alternative is an α-stable distribution. If daily returns have an α-stable

distribution then any time aggregation of these returns (e.g. monthly returns)

must have an α-stable distribution. As in Chapter 2, tests of normality reject

normality for most daily asset returns. However, when these same returns

are aggregated to monthly or quarterly frequencies these tests often do not

reject normality for the aggregated data. It is then argued that, as daily and

monthly data have different distributions, the distribution of returns can not

be α-stable. The results of the completed simulations verify that these tests

often have very low power in the sizes of samples available for monthly return

series. Thus the acceptance of normality by such tests does not provide a

strong argument against the α-stable distribution.
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Value at Risk (VaR) is an attempt to give a single number that summarises

the risk in an investment, a portfolio or even an entire enterprise. It is one

of the most common measures of risk used in financial institutions. Often

the models used to measure VaR have an explicit or implicit underlying as-

sumption of normality either in the estimation or scaling of the VaR estimate.

Given the heavy tails in returns such an assumption is questionable.

Volatility in financial markets is a matter of considerable concern to finan-

cial institutions and their supervisors. Already it is clear that this volatility

has had an adverse effect on the real economy. Many measures of risk that

are used today do not take full account of the kind of extreme changes in

asset prices that have been observed. Chapter 5 finds that the Value at Risk

measure of risk can be improved by the use of an α-stable distribution in

place of more conventional measures. The chapter describes the use of this

measure and implements it for six total return equity portfolios. We find that

α-stable based measures can be calculated, in the cases examined, and that,

as explained there, they are better measures of risk than conventional mea-

sures. They are a useful tool for the risk manager and the financial regulator.

If the greater probability of extreme losses as calculated from an α-stable dis-

tribution had been recognised, the current market volatility, would not have

surprised so many people. The recognition of this greater risk might have

prevented some of the riskier ventures that have added to the depth of the

current crisis.

Appendix A is a summary or the theory of α-stable distributions. It gathers

together and gives a uniform presentation of material that was included in the

individual working papers on which this thesis is based.

Appendix B contains two of the programs used in this analysis. The first

is an edited version of the output of the MATHEMATICA (Wolfram (2003))

program, used in Chapter 3, to estimate the day of week effects for the ISEQ.

The second is a reduced version of the C++ program used to estimate the

α-stable GARCH processes in Chapter 5. These are included to demonstrate

the kind of facilities available for analysis with the α-stable distribution and

to show that such analyses are feasible.
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1.2 Postscript

Most of this thesis was researched and written before the current (Septem-

ber/October 2008) period of extreme market volatility. Given our time con-

straints, it is not feasible to extend our analysis to include this period. How-

ever, I feel that I should set this analysis in context with the current situation,

even though this involves duplicating some material presented elsewhere.

Our initial intention was to research bubbles and busts in asset markets.

Our aim was to concentrate on equity indices where good data are readily

available. Very soon we realised that the usual kind of econometric models

could not account for the many extreme changes in asset prices that have

occurred both over the last century and in more recent times. If the usual

normal distribution is used it under-estimates the probability of such changes

by many orders of magnitude.

We already had some knowledge of the α-stable distribution and decided

to look at it as a probability distribution that might provide a better measure

of the probability of these extreme events. Both theory and measurement

confirmed that it did. The distribution, to the extent described in Chapter 5,

overestimates the number of extreme movements. If the recent turbulence is

taken into account the number of extreme events in the sample will increase

and the fit to the α-stable distribution should be improved.

If returns follow an α-stable distribution our understanding of the current

situation may be clarified. The following points are of particular importance:

• Crashes are much more common than predicted by the usual theories.

Regulatory bodies should realise that they do occur and they should

make appropriate action plans to meet such contingencies. The prompt

proposals made by such bodies in the current situation would make me

think that such plans were in existence. In an α-stable world such plans

are of prime importance.

• Many of the methods used in measuring risk are based on a the as-

sumption of a normal distribution. This distribution underestimates

risk. Thus it is likely that risk is being underestimated and underpriced
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in financial markets. It is likely that Lehman Brothers had a Value at

Risk model that showed that the likelihood of disaster in the sub-prime

market was very small. We may never know to what extent this model

was based on or interpreted using a normal distribution. However we

would assume that the normal distribution played a significant part in

their decisions. The implication of the α-stable assumption is that risk

is usually underestimated and therefore mispriced.

• Regulators and Financial Institutions relying on the Normal distribution

to set prudential ratios may have set these at too low a level. Measures

of risk set at a time of low volatility may need to be increased during

a period of high volatility. In periods of low volatility these limits are

often not binding (see Masschelein (2007)). The implication here is that

as these may involve the normal distribution they may be set to low. In

a period of high volatility they will again be underestimated but they

are more likely to be binding as the institution tries to contract to meet

the new increased capital requirement. Such a contraction will tend to

amplify any credit cycle. A change to a more realistic long-term measure

of Value at Risk based to some extent on the α-stable distribution would

be considerably larger than the current measure and might be binding

in periods of low and high volatility. At least it would not add to the

amplitude of the credit cycle. Some of the more risky investments might

also have been avoided.

• If returns follow an α-stable distribution then all risk can not be hedged.

Risk that can not be hedged must be priced on the market and its price

will depend on the risk appetites of those willing to trade the appro-

priate insurance. Derivative payoffs may be capped or it may even not

be possible to obtain insurance is some cases. To the extent that the

Merton Black Scholes theory and its extensions are based on a normal

distribution it only provides a benchmark for pricing many derivative

products. There is a great need for a reconsideration of these theories

and their applications.
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CHAPTER 2

The α-stable Distribution and Equity Returns1

2.1 Introduction

In this section we give a summary outline of the introduction of stochastic

processes as models of asset prices paying particular attention to Brownian

motion and α-stable processes. The remainder of the Chapter may be sum-

marised as follows.

Section 2.2 gives a brief introduction to the α-stable distribution and should

be read in conjunction with Appendix A

Section 2.3 analyses six daily total return indices (ISEQ, CAC40, DAX30,

FTSE100, Dow Jones Composite and S&P500). Normal and α-stable distribu-

tions are fitted to the daily returns on these indices and the fits are compared.

In all cases tests of the fit reject the normal distribution. The normal distribu-

1This Chapter is based on a paper presented at:

• TCD Graduate Seminar, January 2006.

• IEA Annual Conference April 2006.

• MACSI seminar, Mathematics and Statistics Department, University of Limerick,
March, 2007.
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tion can be regarded as a restricted version of the α-Stable distribution and

the restrictions can be tested. In all cases the data reject these restrictions.

Apart from one case, the fits to α-stable distributions are acceptable. The

QQ-plots further show the superior fit of the α-stable distribution.

Section 2.4 summarises the Chapter.

Louis Jean-Baptiste Alphonse Bachelier is often regarded as the father of

the modern theory of mathematical finance. His Ph. D. thesis (Bachelier

(1900a)):2

• Described the institutional details of trading on the French Exchange.

• Defines Brownian motion and argues that stock prices follow a Brow-

nian motion He argues that the increments in stock prices are serially

independent, follow a normal distribution and have zero expected value.

(The continuity requirement for Brownian motion is implicit).

• Assumes the Markov property i.e. the next price depends only on the

current price, regardless of history.

• Provides a method of valuing futures and options on that exchange.

The thesis anticipates much of the developments in stochastic calculus that

were refined in the twentieth century and which were used in finance, physics

and various other fields. Brownian motion is named after the English botanist

Robert Brown whose research dates to the 1820s. It was rediscovered, inde-

pendently, by Einstein (1905) in a paper that contributed to the acceptance

of the atomic theory of matter. It was given a rigorous mathematical foun-

dation by Wiener in the 1920s and is now known as Brownian motion or the

Wiener Process. In recognition of Bachelier’s contribution Feller (1971, p. 99),

refers to Brownian motion as Brownian motion or Wiener-Bachelier Process.

2 It perhaps a little inaccurate to refer here to his Ph.D. thesis as the paper in question
was only part of the work for a Ph. D. At the time, a Ph. D. in the Faculty of Sciences at
the Academy of Paris required two theses. The first was on a topic chosen by the student
and a second on a topic chosen by the faculty. Bachelier’s own choice was the “Théory de
la spéculation” paper. His second paper was on the topic of fluid mechanics (see Courtault
et al. (2000)).
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Two biographies of Bachelier, Courtault et al. (2000) and Taqu (2001) were

prepared to celebrate the hundredth anniversary of the presentation of his

thesis. These give a detailed account of its influence in the development of

probability and mathematical finance. Evidence of the importance of the the-

sis is provided by the fact that the original is still in print as Bachelier (1900b),

on the internet3 and in two English translations (in Cootner (1964b) and in

Davis and Etheridge (2006)).

Bachelier’s analysis of stock prices is based on the normality of the actual

stock prices. He assumes that the change in price is independent of the level

Bachelier (1900a, p. 35) and that the price follows a Brownian motion. Today

we would assume that the logarithm of the price follows a Brownian motion.

He recognises the possible problem and argues that the approximation is jus-

tified as the distribution of the price of the stock being examined is close to

symmetric and that the probability of price being negative is so small that it

is effectively zero. As he is dealing with the distribution of future spot prices

and the valuation of close to the money options on short dated low volatility

high-liquidity government stock, this approximation would have been satis-

factory.

Taqu (2001) relates that Paul Samuelson introduced Bachelier to economists

in the 1950s. Around 1955 the statistician, Leonard Jimmie Savage4 discov-

ered Bachelier (1914) in the Chicago or Yale library. He sent postcards to

colleagues, asking “Does anyone know him?”. Samuelson was one of the re-

cipients. Samuelson had already heard of Bachelier from two sources. The

first was between 1937 and 1940 from Stanislaw Ulam. Ulam was a topologist

who was involved with Monte Carlo methods and worked on the atomic bomb

at Los Alamos. Samuelson also knew of Bachelier from the classic probabil-

ity text Feller (1968) the first edition of which appeared in 1950. Prompted

by Savage’s postcard Samuelson looked for and found the thesis at the MIT

Library. Soon afterwards Samuelson, in manuscripts and informal talks, sug-

gested using geometric Brownian motion as a model for stocks.

3 http://www.numdam.org/item?id=ASEN_1900_3_17_21_0
4 L. J. Savage is best known for his contributions to Bayesian statistics. His most noted

work is Savage (1954), in which he put forward a theory of subjective and personal proba-
bility which also has applications in game theory.

15

http://www.numdam.org/item?id=ASEN_1900_3_17_21_0


Section 2.1

Kendall (1953), in an examination of the statistical properties of UK price

statistics, including equity prices, also examines levels rather than logarithms.

He finds very small serial correlation in the first differences of the price levels.

It is perhaps somewhat surprising that he and the discussants were some-

what surprised at this result. One discussant (K. S. Rao) demonstrated that

it is possible to have zero correlations even when a time-series is completely

deterministic. The paper or the discussants did not mention that zero correla-

tion and independence are equivalent only when the distributions are normal.

Perhaps there was an implied assumption that the distributions were asymp-

totically normal or could, for practical purposes, be taken as normal. Apart

from this article there appears to have been little attention devoted to the

distribution of returns until the 1960s (see, for example, the introduction to

Cootner (1964b)).

The purpose of Osborne (1959)5 is to show that the logarithms of common

stock prices follow a Brownian motion. It would appear that Osborne was not

familiar with Bachelier’s work. Alexander (1961) includes Bachelier (1900a)

in his references. He re-analyses the data used in Kendall (1953) and verifies

and amends the results found there. His analysis uses the logarithms of the

variables rather than their levels.

During the 1960s and the early 1970s the normality assumption underly-

ing various asset returns was questioned by, in particular, Mandelbrot (1962,

1963, 1967, 1997), (see also Mandelbrot and Hudson (2004)) and Fama (1964,

1965a, 1976). The mathematicians had already worked on processes that

were a generalisation of Brownian motion, which maintained the assump-

tion of stationary independent increments, dropped the normality assump-

tion, and imposed certain continuity restrictions6 and are now known as Lévy

5 M. F. M. Osborne was a physicist working with at the Naval Research Centre of the De-
fence Department, Washington D. C. He worked on problems related to underwater sound,
detection of submarines, underwater explosions and later on the aerodynamics of insect
flight and the hydrodynamic performance of migrating salmon. His initial interest in the
stock market was as a slow motion source of random noise. In the early 1970s he was a
visiting lecturer in finance at the University of California in Berkeley. His views on finance
and economics are in Osborne (1977) which is based on the lectures he gave in Berkeley.
He is sometimes quoted as the father of the econophysics school.

6 The paths of the process are almost surely right continuous with left limits.
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processes. The class of Lévy processes and the class of infinitely divisible

processes are the same. An α-stable process is a Lévy process where the in-

crements follow an α-stable distribution rather than the normal distribution

followed by the increments of a Brownian motion.

Mandelbrot examined the variation of prices of cotton (1816-1940), wheat

(1883-1936), railroad stock (1857-1936) and interest and exchange rates (sim-

ilar periods) and found a larger number of extreme values than could be jus-

tified by the assumption of a normal distribution. Fama examined the distri-

bution of daily returns for the 30 stocks in the Dow Jones Industrial Average

in a period from about the end of 1957 to 26 September 1962. These papers

offered support for the hypothesis that returns followed an α-stable7 rather

than a normal process. An α-stable distribution may be thought of as a gen-

eralisation of the normal distribution where the generalisation allows greater

concentration close to the mean, more extreme values and possible skewness.

We will see that the normal distribution is an α-stable with restricted param-

eter values. This pioneering work of Mandelbrot and Fama and others was

extended over the next few years in areas such as:

Fama (1971) CAPM and α-stable processes — see appendix Section A.6 of

this thesis.

Blattberg and Sargent (1971) Regression with non-gaussian stable disturbances

— see McCulloch (1998) and Chapter 3 of this thesis for a more modern

treatment based on Maximum likelihood.

DuMouchel (1971, 1973, 1975) Maximum Likelihood Estimation of the pa-

rameters of an α-stable processes.

Chambers et al. (1976) Simulation of α-stable random variables.

Kanter (1976), Logan et al. (1973) Properties of α-stable distributions.

7There is a certain confusion in the literature about the name to be given to this family of
distributions. Mandelbrot used the term L-stable after Lévy. The probability literature uses
the term stable which is unfortunate as it implies, to the non-mathematician, properties
which are not appropriate. The terms α-stable, stable Paretian, stable Pareto or even Pareto-
Levy are also used. Lévy (1954) uses the term “lois quasi-stables”. Here I use the terms
α-stable to denote this family of distributions.
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After an initial period of interest, research in financial economics regard-

ing α-stable processes waned. There were two likely reasons for the wan-

ing interest in α-stable distributions. First the assumption of an underlying

normal distribution had contributed, or was about to contribute, to major

breakthroughs in empirical and theoretical finance. The success and impor-

tance of this work can be gauged by the fact that Nobel prizes have since

been awarded to Markovich, Millar, Sharpe, Merton and Scholes for their work

on portfolio allocation, Capital Asset Pricing model, Option Pricing and other

contributions to the theory of investment. This normal distribution played an

important part in these developments. The fear was, quoting Cootner (1964a),

page 418.

Mandelbrot, like Prime Minister Churchill before him, promises us

not utopia but blood, sweat, toil and tears. If he is right, almost all of

our statistical tools are obsolete — least squares, spectral analysis,

workable maximum-likelihood solutions, all our established sample

theory, closed distribution functions. Almost without exception, past

econometric work is meaningless....

For reasons that will become apparent, working with α-stable distributions

demands considerable computational resources. Some of us can remember

that in the 1970s it could take days to prepare and estimate an ordinary least

squares regression on a shared computer system. In many ways these sys-

tems were less powerful than many of today’s mobile phones or many other

electronic gadgets. Even with a technique as elementary as ordinary least

squares the modern range of diagnostics were not produced. Even though

Mandelbrot worked for IBM, for his early work he had no access to Fortran8

and his early work was completed in Assembler with the aid of a programmer

(Zarnfaller — see Mandelbrot (1997, p. 468)). Even in the late 1960s com-

puter routines for ordinary least squares were not as reliable as might have

been expected (see Longley (1967)). Statistical/Econometric programs such as

SAS, TSP, TROLL and SPSS were developed in the late 1960s early 1970s and

8 The high level programming language FORTRAN was invented in IBM about 1957 and
is still widely used in scientific computation.
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were limited to basic regression and analysis of variance. The user of today’s

version of any these programs would not recognise the early versions.9

The methods used by Mandelbrot, Fama and others in estimating and test-

ing α-stable distributions were ingenious and should be evaluated in the con-

text of the facilities available at the time. The arguments advanced against

the suitability of α-stable distributions also need to be re-examined. Given

the available technology at the time, both sides of the argument did as much

as could have been done at the time. With today’s resources much more can

be done and we would prefer not to use the empirical work done at that time

to argue for or against the validity of the use of the α-stable distribution in

finance. It is a pity that a some modern texts (e.g. Taylor (2005)) dismiss

the α-stable distribution on the evidence of authors such as Blattberg and

Gonedes (1974) 10, Hagerman (1978) and Perry (1983)11 who did not have the

use of modern technology.

The problem with Cootner’s view is that he sees models arising from the

normal and α-stable distributions as totally contradictory. In the majority of

9 Renfro (2004) contains a comprehensive account of the development of econometric
software.

10 Blattberg and Gonedes (1974) give empirical arguments for the use of the t-distribution.
The methods they use to estimate the parameters of an α-stable distribution need to be
updated. While their empirical arguments are strong they do not offer any theoretical
reasons why asset returns follow a t-distribution rather than an α-stable.

11 Perry’s argument is that if returns follow an α-stable distribution estimates of the
variance should tend to increase with sample size. He finds that there is little evidence
to support this fact and uses this finding to argue against returns following an α-stable
distribution. If one considers the high peak of an α-stable distribution and the fat tails
one would expect recursive estimates to show a jump when a value in the extreme tail is
found and to be falling when one encounters a value closer to the centre of the distribution.
Simulations confirm this. Figure 2.8 on page 41 shows the result of recursive estimation of
the variance of six simulated samples from an α-stable distribution with α = 1.7 sample
size of 5000 (about 20 years of daily data) The recursive estimates of the variance show
jumps coinciding with large returns but otherwise the estimates fall in value. It is difficult
to detect an upward trend in the simulated data. Figure2.7 on page 40 shows recursive
estimates of variance of the return series under consideration. All six graphs for the data
have some similar features and do not give the impression of settling down to a constant
value.

Apart from a diminishing trend between extreme tail values, recursive variance estimates
do not show any obvious trend Even when the sample size is increased to one million it
is difficult sometimes to see a trend for values of α = 1.7. If the stability parameter is
reduced to 1.2 the increasing trend is more marked but again does not show in all cases.
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econometric analyses the sample size is too small to support estimation us-

ing an α-stable distribution. With small samples we may observe no extreme

values. If an extreme observation does occur we may use a dummy variable

to effectively skip it. This will lead to a more robust estimate and one that

is likely to be closer to an α-stable based estimate if such were feasible. As

the peak of a normal distribution is wider than that of a stable distribution

my intuition is that the use of the normal distribution may lead to conserva-

tive confidence intervals, at the conventional 10% and 5% confidence levels.

Given the dependence of econometrics on asymptotic results that are only

approximate in small samples this may not be a disadvantage.

When, as in the analyses here, the data series are long enough they should

be analysed using the best tools available. In the analysis here, using the α-

stable distribution does give results that correspond more closely with reality.

When conventional normal distribution based methods are used the analyst

and management should be aware of the possible defects in the model. At

least the results should be examined to see how robust they are with respect

to the choice of distribution. While α-stable distributions, in general, do pro-

vide a much better fit to the returns we examine here, they still give rise to

considerable implementation problems both on an empirical and theoretical

basis. However, as we show there is much that can be done and as computer

power increases and more data become available the α-stable distribution

will become easier and cheaper to use and will therefore be used more often.

Economists should be aware of these results.

A significant indication of problems with the normal distribution is that

extreme events are more frequent than the assumption of a normal distribu-

tion would predict. For example12 there have been 35 falls greater than 6%

in the daily Dow Jones Industrial Average since its inception in 1896, about

110 years ago. If the changes in the (logarithm) of the index are normally

distributed one would expect that 35 falls of this magnitude would take place

about once every 600 million years. The six total return indices considered

here are available for much shorter periods but show similar discrepancies in

the numbers of large falls in the indices. For example the daily FTSE100 total

12For details of calculation of small normal probabilities see Footnote 8 on page 3.
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return index which is available from 31 December 1985 shows 7 falls greater

than 5% in the period to September 2005. Assuming a normal distribution one

would expect 7 such falls to occur every 124,000 years. The daily ISEQ total

return index shows 6 such falls in the period from January 1989 to September

2005. The normality assumption would imply an expected period of 12,000

years. The distribution of increases shows similar discrepancies between the

empirical distribution and the normal distribution.

These extreme events are the Black Swans of Taleb (2004, 2007). Accord-

ing to Taleb, the cygnus atratus is a black swan which is native to Australia.

Native swans in Europe are white. Prior to the discovery of the black swan

in Australia a European might have assumed that all swans were white and

he would have been totally surprised by the finding of a black swan. Taleb

attributes the problem to invalid induction. If the distribution or returns is

normal the extreme returns on equity returns are black swans. Under an α-

stable distribution these black swans become a shade of gray and we should

not be taken by surprise if they occur.

With a normal distribution the average loss given that the loss is greater

than x% will approach x% as x becomes large. With an α-stable distribution

this average will approach α/x(α−1)% or about 2.2x% to 2.7x% for the range

of values of α found in finance. These are basic properties of the normal and

α-stable distributions and perhaps one might dwell on them a little longer.

Prior to 19 October 1987 the largest13 loss on the daily close to close Dow

Jones Industrial Average was the 14.5% recorded on 28 October 1929. If losses

are normally distributed and if that level of losses were to be exceeded then it

is probable that they would only be exceeded by an extremely small amount.

Thus in a large sample the largest observed loss (14.4%) is close to an effective

ceiling on the maximum loss. On 19 October 1987 the loss on the Dow was

25.6%. which is considerably larger than the previous most extreme loss. This

is an important example of the problem that over reliance on a false normality

assumption can lead to a wrong conclusion.

13 At the start of World War I the new York Stock Exchange closed on 31 July 1914 and
reopened on 14 December 1914. The close on close loss was 23.0% but we do not regard
this observation as comparable to the others.
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The extreme observations observed are indications that the risk involved

in many investments is underestimated by the normality assumption. From

a practical viewpoint, this is important to investment companies and to their

supervisors. It is of particular importance to those who are measuring risk

using a Value at Risk system based on an assumption that returns follow a

normal distribution. If the element of risk is underestimated in equity price

models, which assume normality, alternative models may provide some ex-

planation of the excess equity premium paradox.

The fat tails of the distribution of returns can be fit by a variety of other

distributions in addition to the α-stable. It is often argued that the fat tails

can be accommodated by a polynomial decay in the tails of the distribution ie

the asymptotic probability density function of the extreme values of the tails

is given by

fX(x,α) = cx−(1+α), for x > x0.

When 0 < α ≤ 2 we are in the realm of an α-stable distribution. Extreme

value theory often leads to an estimate of α of the order of 4 for the tails of

the return distribution. The t and Pareto distributions are examples of such

fat tailed distributions. These do not have the scaling properties that we find

desirable in return distributions. Also Weron (2001) shows that estimates of

α for α-stable distributions with α taking values in the range found here,

from extreme value theory, may be biased upward and often give estimates

of α greater than 2. Appendix A gives further details.

In this chapter we will concentrate on the application of α-stable distribu-

tions. α-stable distributions have been known to mathematicians for a con-

siderable time. According to Gut (2005) the class of α-stable distributions was

discovered by Paul Lévy after a lecture in 1919 by Kolmogorov, when someone

told him that the normal distribution was the only possible α-stable distribu-

tion. He went home and discovered that there was a family of symmetric

α-stable distributions the same day. Lévy’s early work is summarised in Lévy

(1925) and Lévy (1954). The probability books Gnedenko and Kolmogorov

(1954) and Feller (1966) were, at the time, the main theoretical resources on
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the α-stable distribution. Recent mathematical accounts are Zolotarev (1986),

Samorodnitsky and Taqqu (1994) and Uchaikin and Zolotarev (1999). Various

applications of the α-stable distribution are contained in Adler et al. (1998).

Applications to Finance are covered in Mittnik et al. (2000)

2.2 The α-Stable Distribution

This section contains a brief introduction to the α-stable distribution. Ap-

pendix A contains a more complete technical description and references. The

α-stable distribution is a family of statistical distributions which is indexed

by a parameter α which can be any positive number less than or equal to 2.

When α = 2 the α-stable distribution becomes a normal distribution. When

α = 1 the distribution becomes a Cauchy distribution. As α is decreased

larger extreme values become more likely.

A second parameter, β measures the skewness of the distribution. β can

take values from −1 to 1. When β = 0 the distribution is symmetric. A

positive value of β implies that the distribution is skewed to the right (i.e.

Large positive values are more likely than large negative values). Larger values

of β imply greater positive skewness. Similarly negative values of beta imply

that large negative values are more likely than large positive. It is sometimes

thought that equity return distributions are negatively skewed. As the normal

distribution is symmetric it can not model any skewness in the data.

The α-stable distribution requires two more parameters — a spread pa-

rameter, γ, and a location parameter, δ. These are similar in interpretation to

the mean, µ and standard deviation, σ , respectively, of the normal distribu-

tion.

The α-stable distribution has several features that make it an attractive

model of returns:

1. It allows one to take account of the frequency of extreme values outlined

in Section 2.1.

2. It allows one to model skewness in the data. Are extreme negative values

more likely than extreme positives?
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3. The sum of independent observations from an α-stable distribution has,

up to a scale and location factor, the same α-stable distribution as the

individual observations. The α-stable distribution is the only distribu-

tion with this property. If we could account for possible time of day,

day of week, other seasonal effects and other non-stationarities that are

inherent in the return generating process we might assume that returns

aggregated over time have the same distribution, up to a scale and loca-

tion factor, as the original higher frequency data. Such data then must

have an α-stable distribution. The normal distribution is one particular

member of the family of α-stable distributions. The general α-stable

distribution allows one to retain this property while allowing the data to

be modelled in a more flexible manner.

4. The α-stable distribution replaces the normal distribution in what is

known as the generalised central limit theorem. A non-normal α-stable

distribution may be the limit distribution of sums of random variables

that do not satisfy the requirements of the Lindeberg-Lévy-Feller central

limit theorem. Thus where an equity or portfolio return is the result of

an accumulation of shocks (news) the α-stable distribution may provide

a good approximation. This argument is basically the same as that used

to justify a normal distribution.

5. In some cases one can model returns as an α-stable distribution with

extreme values censored or alleviated by some process. The origin of

this suggestion was in physics (Magenta and Stanley (1994)) where there

may be physical constraints on a process. There may in certain circum-

stances be constraints in economic applications. For example the stock

exchange may take some action to avoid contagion or there is some

other intervention (LTCM) that reduces the measured real effect. Per-

haps the measured real effect includes only the private cost of the loss

and not the public cost. In such cases the α-stable distribution may be

a more accurate picture of returns or losses than the normal as in such

cases convergence to the normal may be slow.

Working with the α-stable distribution has several disadvantages:
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1. Working with α-stable distributions can be difficult. The normal (α = 2),

Cauchy (α = 1) and Lévy (α = 1/2) are the only stable distributions

where the probability density function can be written using common

mathematical functions. Otherwise the density function must be esti-

mated using numerical methods. Modern computers facilitate this pro-

cess.

2. Probably the greatest objection to the use of α-stable distributions is

that the variance14 of a non-normalα-stable distribution is infinite. Much

of Finance theory taught in courses worldwide is based on what one

could call Merton-Black-Scholes normal theory and the assumption of a

finite variance (see textbooks such as Elton et al. (2003) or Hull (2006)).

Section A.6 in the Appendix shows how the CAPM analysis can be extended

to the case where returns have an α-stable distribution. Almost all the econo-

metrics taught in econometrics programs also makes some assumption about

normality or asymptotic normality. We are not suggesting that the entire nor-

mality theory be abandoned. The normality assumption is an idealisation and

as such facilitates the analysis of what is going on. A point or straight line in

geometry is an idealisation and does not exist in reality but is very useful in

many applications in science and engineering. Like the line or the point one

should not abandon the idea of normality. It is an accurate reflection of real-

ity in some cases. It is important that one should appreciate when a different

model is appropriate and know the limitations of normality.

14 When α ≤ 1 the mean is also infinite but this case is not important here as in the
distribution of asset returns we would expect and find values of α of magnitude of about
1.7
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2.3 Comparison of fit of Normal and α-stable Distri-

butions to Returns on Equity Indices

Table 2.1 gives summary statistics for each of the six total return indices.

Each return series is given in its domestic currency and no attempt has been

made to convert series to a common currency. The most notable features

of these statistics are the extreme estimates of the kurtosis of returns. This

is an indication of the long tails in the data. The table also estimates three

statistics which function as goodness of fit tests15 to the normal distribution.

Jarque and Bera (JB) test The JB test is a joint test for skewness and excess

kurtosis relative to a normal distribution. Given a data sample {xi, i =
1, . . . , N} with mean x̄ the JB test statistic is estimated16 as follows:

σ̂ 2 = 1

N − 1
Σi=Ni=1 (xi − x̄)2,

mk =
1

N
Σi=Ni=1 (xi − x̄)k, k=2,3,. . . ,

b
1/2
1 = N2

(N − 1)(N − 2)

m3

σ̂ 3
(Skewness),

b
1/2
2 = N2

(N − 1)(N − 2)(N − 3)

(N + 1)m4 − 3(N − 1)m2
2

σ̂ 4
(Kurtosis),

JB = N
(
(b

1/2
1 )2

24
+ (b

1/2
2 )2

6

)
(Jarque-Bera statistic).

Under the assumption that the xi are independent identically distributed

normal random variables the Jarque-Bera statistic is asymptotically χ2

with 2 degrees of freedom. In this case the statistics indicate very sig-

nificant departures from a normal distribution.

Kolmogorov Smirnov (KS) test The KS test in this case compares the cumu-

lative sample distribution S(x) defined as the proportion of the sample

that is less than x with that of the hypothesised distribution F(x) and

15 A more detailed description of tests of normality is given in Section 4.2.
16 The definition of the Jarque-Bera statistic given here corresponds to that implemented

in the RATS econometric package, see Estima (2004, p. 395). The small sample corrections
are not identical to those in Wuertz and Katzgraber (2005) as used in Section 4.2.
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is given by

KS = Max|F(x)− S(x)|.

When the mean and variance of the normal distribution are unknown

critical values of the KS test for normality are given in Lilliefors (1967).

The 1% critical values in this case are 0.014 for the FTSE100, 0.015 for

the ISEQ, CAC40 and DJAC, 0.016 for the S&P500 and 0.009 for the

DAX30. The values found indicate very significant departures from nor-

mality.

Shapiro Wilk (SW) test The SW test is based on the correlation between x(i)

and F−1(i/N + 1) which are the i/n quantiles of the sample and pop-

ulation respectively.17 Again the normal hypothesis is rejected and the

conclusions following the JB and KS statistics are confirmed.

Figures 2.1, 2.2 and 2.3 on pages 34 to 36 are normal QQ-plots of the re-

turns data for each index. A QQ-plot is a diagnostic plot designed to show the

closeness of two distributions. Both distributions can be empirical when the

aim is to look at the similarity of the two empirical distributions. In this case

one distribution is the relevant returns distribution and the other is a normal

distribution with the same mean and variance. This normal QQ-plot plots the

empirical quantiles of the data against the corresponding quantiles of a nor-

mal distribution. These plots also contain distribution free 95% confidence

intervals for the empirical quantiles (see Hogg et al. (2005)) and the straight

line along which the QQ-plot would lie if the match were perfect. Of particu-

lar interest are the regions where the line lies outside the 95% bands. (Note

that one might expect of the order of 5% of the points on the QQ curve (231

for ISEQ) to lie outside these bands). All six plots show considerable devia-

tions from the normal distribution. They illustrate the considerable weight in

the tails of the distribution relative to the normal as would be expected from

the kurtosis statistics in Table 2.1. The graphs also show problems near the

centre of the distributions. All show excess concentration of returns in the

17More details of the SW test are in Subsection 4.2.6.
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Table 2.1: Summary Statistics for Equity Total Return Indices and their Fit to a
Normal Distribution

ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

start date 04/01/88 31/12/87 28/09/59 31/12/85 30/09/87 03/01/89
end date 21/09/05 26/09/05 26/09/05 26/09/05 26/09/05 26/09/05

observations 4622 4627 12000 5149 4693 4363

mean 0.052 0.044 0.022 .041 0.038 0.043
St. dev 0.934 1.277 1.148 1.028 1.007 0.980
Skewness -0.3634 -0.124 -0.282 -0.732 -2.686 -0.198
Kurtosis 5.376 3.002 8.378 9.814 58.1964 4.282
JB testa 5690 1749 35254 21123 667907 3362
KS testb 0.065 0.054 0.062 0.055 0.074 0.063
SW testc 0.941 0.967 NA NA 0.8689 0.956

a The asymptotic distribution of the Jarque-Bera statistic is χ2(2) with critical
values 5.99 and 9.21 at the 5% and 1% levels respectively.

b See text
c The 5% critical level for the Shapiro Wilk test is .9992 for a sample of 4500. The

smaller values reported here indicate very significant departures from normal-
ity.

empirical distribution relative to the normal at the centre of the distribution.

Table 2.2 gives maximum likelihood estimates of the α-stable parame-

ters of all six returns indices along with 95% confidence half-width estimates.

These estimates have been derived using John Nolan’s program (Nolan (2006)).

The estimates of the α-stability parameter found have an average value of

1.688 a minimum of 1.646 for the ISEQ and a maximum of 1.726 for the

FTSE. On the basis of the estimated half-width confidence intervals all values

are significantly different from 2. The CAC, DAX and FTSE indices show sig-

nificant negative skewness. The ISEQ, Dow Jones Composite and the S&P 500

also show negative skewness but it is not significant. By applying the restric-

tions α = 2 and β = 0 and re-estimating one can complete a likelihood ratio

test of the restrictions. The restrictions are rejected at very low significance

levels. A KS test for goodness of fit to the stable distribution is accepted for

all except the S&P500.
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Table 2.2: Estimates of Parameters of α-stable distributions of Equity Total Re-
turn Indices (complete period)

ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

start date 04/01/88 31/12/87 28/09/59 31/12/85 30/09/87 03/01/89
end date 21/09/05 26/09/05 26/09/05 26/09/05 26/09/05 26/09/05

observations 4622 4627 12000 5149 4693 4364

αa 1.646 1.718 1.687 1.726 1.684 1.668
(0.045) (0.043) (0.027) (0.041) (0.044) (0.046)

β -0.064 -0.147 -0.076 -0.147 -0.076 -0.105
(0.111) (0.128) (0.075) (0.125) (0.119) (0.118)

γ 0.502 0.746 0.627 0.583 0.529 0.550
(0.014) (0.020) (0.011) (0.015) (0.015) (0.017)

δ 0.054 0.032 0.019 0.036 0.042 0.034
(0.026) (0.038) (0.020) (0.028) (0.027) (0.029)

KS (stable) 0.012 0.014 0.010 0.008 0.018 0.023
p-valueb 0.518 0.307 0.166 0.892 0.097 0.025

LRc test of 838.1 418.6 1945.8 786.7 1236.5 583.0
Normality

a Figures in brackets below the estimated parameters are the 95% confidence
interval half width-estimates

b The p-values for the KS statistic are calculated on the assumption that the
values of α, β, γ and δ are chosen independently of the sample. As the α-
stable parameters are estimates the calculated p-values overestimate true sig-
nificance level.

c Likelihood ratio test of the joint restriction α = 2 and β = 0. The test statistic
is asymptotically χ2(2) with critical values 5.99 and 9.21 at the 5% and 1%
levels, respectively.
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Figures 2.4, 2.5 and 2.6 on pages 37 to 39 are stable QQ-plots of the return

data for each of the six returns indices. The construction of these curves is

similar to that of the normal QQ-plots except that the normal distribution is

replaced by the α-stable distribution with parameters taken from Table 2.2.

The fit for the European indices is good. At the extremes there is a suggestion

that the tails of the empirical distribution are a little lighter than the theoreti-

cal stable distribution but this is not significant. What is surprising is that the

fit in the centre of the distribution is so superior to that of the normal distri-

bution. The fit of the American indices to the stable distribution is again far

superior to that of the normal distribution. There are some deviations in the

centre of the American distribution which are not obvious in the diagrams.

These are very small relative to the deviations from the normal distribution

but might be the subject of further work.

If x1, x2, . . . , xn is a random sample from a non-normal α-stable distribu-

tion the estimated sample variance is given by

σ̂n
2 = 1

n− 1

n∑

i=1

(x2
i − x̄)2

As the expected variance of a non-normal α-stable process is infinite, re-

cursive estimates of the sample variance σ̂n
2 should tend to increase with n.

Such an increase is not always observed in equity returns data. Some (e.g.

Cochrane (2005)) have argued that an implication of non-increasing recur-

sive variance estimates is that returns do not follow a non-normal α-stable

distribution. To examine the validity of this conclusion we completed an

examination of recursive estimates of the variance of simulated α-stable pro-

cesses with similar parameters and sample size to those of the equity returns

considered here. Figure 2.8 shows on page 41 shows the results of six such

simulations. The existence of an upward trend is not obvious in thee simula-

tions.

For comparison, Figure 2.7 on page 40 shows recursive values of σ̂n
2 for

each of the six indices considered here. Again upward trends are not obvious

in the data. Looking at the samples the estimated recursive variance does
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show large jumps from time to time but these are often followed by a long

period of falling estimates. Looking at both sets of data informally it is dif-

ficult to see universal increasing trends in either sets of estimates. Thus, for

the sample sizes available, this inference is not valid.

Similar simulations with one million replications do tend to show a greater

tendency for variance to increase. Simulations with α = 1.2 also tend to show

increasing recursive variance estimates. The increases in the recursive esti-

mates of the variance are caused by the large observations that occur in the

tail of the distribution. The higher peaks in the centre of the distribution (the

majority of observations) tend to cause the recursive variance to fall between

extreme peaks. There is some indication of a deficit of extreme observations

in the recursive estimates derived from the equity index returns. This point

is discussed in Chapter 5

2.4 Summary and Conclusions

In this chapter we have examined the application of the family of α-stable

distributions to daily returns on six total return equity indices (ISEQ, FTSE100,

DAX40, CAC30, S&P500 and the Dow Jones Composite Total Return (DJAC)).

An α-stable distribution is a generalisation of the normal distribution. It

allows data to be more concentrated at the mean (high peaks) and to have

a greater number of extreme values (heavy tails) than a normal distribution

would predict. While the normal distribution is symmetric an α stable may be

skewed. The normal distribution is determined by two parameters, a location

parameter µ and a spread parameter σ . An α-stable process depends on

four parameters. The α parameter determines both the height of the peak

of the distribution and the weight of the tails. A β parameter determines

the skewness of the data (β = 0 implies no skewness). As for the normal

distribution the remaining two parameters determine the location and spread

of the data. When α = 2 and β = 0 the stable distribution becomes a normal

distribution. Thus the normal distribution is a member of the family of α-

stable distributions.
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α-stable distributions have been well known to mathematicians since at

least the 1930s. Some of their properties make them attractive for modelling

returns but implementing such procedures requires a lot of computer power.

Section 2.2 and Appendix A of the paper outline the basic probability theory

underlying these processes and explain their relevance to finance.

Early support for the use of α-stable processes in economics and finance

came from the writings of Mandelbrot and Fama during the 1960s and 1970s.

They found that many asset returns had features typical of these processes.

After an initial period of research, interest in stable processes appeared to

decrease. While computation problems were probably the main cause of this

decline, a further contributing factor was the major breakthroughs in finance,

achieved at that time. These were largely based on the assumption of an un-

derlying normal distribution. The success of this work using the normal dis-

tribution can be gauged by the fact that Nobel prizes have since been awarded

to Markovich, Millar, Sharpe, Merton and Scholes for their work on portfolio

allocation, Capital Asset Pricing model, Option Pricing and other contribu-

tions to the theory of investment. These developments have formed the ma-

jor constituents of the research agenda in quantitative finance ever since. An

erroneous opinion circulating at that time was that the acceptance of α-stable

distributions would invalidate not only this work but most econometric work

completed up to that time. It is only in more recent years that advances in

computing facilities have facilitated increased interest in α-stable processes

and this trend is likely to continue.

For all six total return indices examined here,

• The normal distribution is a very poor fit to the empirical distribution

of the returns on all six indices.

• The α-stable distribution provides a good fit.

The α-stable family of distributions is a valuable resource in Finance par-

ticularly when extreme events are being considered. It also is a very good fit

to the centre of a distribution. We are not suggesting that the normal dis-

tribution should be abandoned. The normal distribution is a mathematical
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idealisation of certain facets of the functioning of financial markets. It has

proven useful and will continue to be used. Users should be aware of its limi-

tations. Where circumstances and data are available the α-stable distribution

would be an additional tool that should be used. It is also an idealisation.

It encompasses the normal distribution and as such should provide a more

realistic picture. Today’s computer power and software imply that the distri-

bution can be used.
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Figure 2.1: Normal QQ Plot (ISEQ returns) with 95% Limits
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Figure 2.2: Normal QQ Plot (FTSE100 returns) with 95% Limits
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Figure 2.3: Normal QQ Plot (CAC40, DAX30, Dow Composite and S&P100 re-
turns) with 95% Limits
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Figure 2.4: Stable QQ Plot (ISEQ returns) with 95% Limits
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Figure 2.5: Stable QQ Plot (FTSE100 returns) with 95% Limits
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Figure 2.6: Stable QQ Plot (CAC40, DAX30, Dow Composite and S&P100 re-
turns) with 95% Limits
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Figure 2.7: Recursive Estimates of the Variance of Returns on Total Return
Equity Indices
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Figure 2.8: Six Simulations of the Recursive Estimation of the Variance of an
α-stable Process with α = 1.7
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CHAPTER 3

Maximum Likelihood Estimates of Regression

Coefficients with α-stable Disturbances and

Day of Week effects in Total Returns on Equity Indices1

3.1 Introduction

Returns on many assets are known to have fat tails and are often skewed. The

almost universally used normal or Gaussian distribution can model neither fat

tails nor skewness. The α-stable distribution can model these features. The

use of this distribution in finance was originally proposed by Mandelbrot (see

Mandelbrot (1962, 1963, 1967) or Mandelbrot and Hudson (2004)) to model

various goods and asset prices. It became popular in the sixties and seventies

but interest waned thereafter. This decline in interest was due not only to

its mathematical complexity and the considerable computation resources re-

quired but to the considerable success of the Merton Black Scholes Gaussian

approach to finance theory which was developed at the same time.

1This Chapter is based on a paper (Frain (2008a)) presented at the INFINITY Conference
in June 2006.
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Recently there has been some renewed interest in the distribution. It has

found applications in radiophysics, astrophysics, cosmology, biology, genet-

ics, physiology, ecology and geology (see Uchaikin and Zolotarev (1999)). Re-

cent mathematical accounts are given in Zolotarev (1986), Samorodnitsky and

Taqqu (1994), Weron (1998) and Uchaikin and Zolotarev (1999). Rachev and

Mittnik (2000) surveys the use of α-stable models in finance.

The availability of cheap powerful computer hardware has made advanced

computation resources available to scientists in many fields. The resulting in-

creased demand for good software has provided the incentive to produce and

distribute widely software packages such as MATHEMATICA (Wolfram (2003))

and R (R Development Core Team (2008)) which have facilitated the calcula-

tions in this Chapter. Programs to compute α-stable distribution and density

functions are available in both of these packages — MATHEMATICA (Rimmer

(2005)), Rmetrics for R (Wuertz (2007)) — or as the stand-alone program STA-

BLE (Nolan (2006)). These resources allow one to examine the consequences

of replacing the normal assumption with the more general α-stable. Further

advances in theory and computation facilities will facilitate this process in

the coming years and the use of the α-stable distribution will become more

common.

In particular, this chapter examines the consequences of α-stable distur-

bances in OLS estimation. In Section 3.2 the following results are set out:

• Standard OLS estimates are consistent if α > 1 but inefficient.

• Coefficient estimates have anα-stable distribution and standard t-statistics

do not have the usual distribution.

• Maximum likelihood estimators have the usual asymptotic properties.

Confidence intervals and inference may be based on the usual maximum

likelihood theory.

• The maximum likelihood estimator with α-stable disturbances is a form

of robust estimator which gives less weight to extreme observations.

In Section 3.3 this theory is applied to estimating and testing calendar ef-

fects in daily returns on equity indices. These day of week effects are often
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estimated by the coefficients in an OLS regression of daily returns on five

dummy variables — one for each day of the week. We compare the results of

estimating such regressions using standard OLS and α-stable maximum like-

lihood. Estimates are made for six total return indices (ISEQ, CAC40, DAX30,

FTSE100, Dow Jones Composite (DJAC) and S&P500) and the DJIA2 for the

period used in the often quoted study of these effects in Gibbons and Hess

(1981). My results can be summarised as follows -

• The α-stable maximum likelihood and OLS estimates for the DJIA for

the Gibbons and Hess (1981) period are almost identical to theirs.

• Data for the total return indices are only available from the late 1980s

(apart from the DAX30) and there are no significant day of week effects

in the total return indices in that period

• When the data for the CAC40 are split into three equal periods there are

indications of day of week effects in the two early periods but they are

absent in the last period.

These results are a demonstration of the shifting Monday effect reported in

the literature (see Pettengill (2003) and the references there and Hansen et al.

(2005)). Such results are, therefore, not sensitive to the use of the “robust”

α-stable Maximum Likelihood Estimator.

An examination of the significance of the results for individual coefficients

shows that some α-stable coefficients are significant where the corresponding

OLS estimates are not. Sullivan et al. (2001) sets out the danger of data mining

in cases such as this. I would not draw any conclusions about day of week

effects from these discrepancies. They do, however, draw attention to the

possible different results that may arise from α-stable maximum likelihood

estimation.

2 Dow Jones Industrial Average
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3.2 Regression with Non-normal α-stable Errors

Consider the standard regression model

yi =
k∑

j=1

xijβj + εi, i = 1, . . . , N, (3.1)

where yi is an observed dependent variable, the xij are observed independent

variables, βj are unknown coefficients to be estimated and εi are identically

and independently distributed. Equation (3.1) may be written in matrix form

as

yyy = XXXβββ+ εεε, (3.2)

where

yyy =




y1

y2

...

yN



, XXX =




x11 x12 . . . x1k

x21 x22 . . . x2k

...
...

. . .
...

xN1 xN2 . . . xNk



, βββ =




β1

β2

...

βk



, εεε =




ε1

ε2

...

εN



. (3.3)

The standard OLS estimator of βββ is

β̂ββOLS = (XXX′′′XXX)−1XXX′′′yyy. (3.4)

Thus

β̂ββOLS − βββ = (XXX′′′XXX)−1XXX′′′εεε. (3.5)

Thus in the simplest case, where XXX is predetermined, β̂ββOLS − βββ is a linear

sum of the elements of εεε. If the elements of εεε are independent identically

distributed non-normal α-stable variables, then β̂ββOLS has a non-normal α-

stable distribution. The variance of εi does not even exist. Thus standard OLS

inferences are not valid. Logan et al. (1973) prove the following properties of

the asymptotic t-statistic
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1. The tails of the distribution function are normal-like as t → ±∞.

2. The density has infinite singularities |1 ∓ x|−α at ±1 for 0 < α < 1 and

β ≠ ±1. When 1 < α < 2 the distribution has peaks at ±1.

3. As α→ 2 the density tends to normal and the peaks vanish.

When 1 < α < 2 the OLS estimates are consistent but converge at a rate of

n
1
α−1 rather than n−

1
2 in the normal case.

DuMouchel (1971, 1973, 1975) shows that, subject to certain conditions

(∃ε > 0, α > ε, |β| < 1) the maximum likelihood estimates of the param-

eters of an α-stable distribution have the usual asymptotic properties of a

maximum likelihood estimator. They are asymptotically normal, asymptot-

ically unbiased and have an asymptotic covariance matrix n−1I(α,β, γ, δ)−1

where I(α,β, γ, δ) is Fisher’s Information. McCulloch (1998) examines linear

regression in the context of α-stable distributions paying particular attention

to the symmetric case. Here the symmetry constraint is not imposed. Assume

that εi = yi−
∑k
j=1xijβj is α-stable with parameters {α,β, γ,0}. If we denote

the α-stable density function by s(x,α,β, γ, δ) then we may write the density

function of εi as

s(εi, α, β, γ, δ) =
1

γ
s


yi −

∑k
j=1xijβj

γ
,β,1,0


 , (3.6)

the likelihood as

L(εεε,α,β, γ, β1, β2, . . . ) =
(

1

γ

)n n∏

i=1

s


yi −

∑k
j=1xijβj

γ
,β,1,0


 , (3.7)

and the loglikelihood as

l(εεε,α,β, γ, β1, β2, . . . ) =
n∑

i=1


− log(γ)+ log


s


yi −

∑k
j=1xijβj

γ
,β,1,0








=
n∑

i=1

φ(εi). (3.8)
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The maximum likelihood estimators are the solutions of the equations

∂l

∂βm
=

n∑

i=1

−φ′(ε̂i)xim = 0, m = 1,2, . . . , k

n∑

i=1

−φ
′(ε̂i)
ε̂i

ε̂ixim = 0, m = 1,2, . . . , k

n∑

i=1

−φ
′(ε̂i)
ε̂i

(yi −
k∑

j=1

xijβj)xim = 0, m = 1,2, . . . , k

n∑

i=1

−φ
′(ε̂i)
ε̂i

yixim =
n∑

i=1

−φ
′(ε̂i)
ε̂i

k∑

j=1

xijβjxim

(3.9)

If WWW is the diagonal matrix

WWW =




−φ′(ε̂1)
ε̂1

0 . . . 0

0 −φ′(ε̂2)
ε̂2

. . . 0
...

...
. . .

...

0 0 . . .
−φ′(ε̂n)
ε̂n



, (3.10)

Using the notation in Equation (3.3) we may write Equation (3.9) in matrix

format as

XXX′WWWyyy = (XXX′WWWXXX)β̂ββ, (3.11)

or if XXX′WWWXXX is not singular

β̂ββ = (XXX′WWWXXX)−1XXX′WWWyyy. (3.12)

Thus the maximum likelihood regression estimator has the format of a

Generalised Least Squares estimator in the presence of heteroscedasticity

where the variance of the error term εi is proportional to φ′(εi)
εi

.3 The ef-

fect of the “Generalised Least Squares” adjustment is to give less weight to

3This is only an analogy. The variance of the error term does not exist. The diagonal
elements of WWW are also random
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Figure 3.1: Comparison of Implied Weights in GLS Equivalent of Maximum
Likelihood Estimates of Regression Coefficient when Disturbances
are Distributed as Symmetric α stable Variates
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larger observations. Figure 3.1 compares the weighting pattern derived from

Equation (3.10) for α-stable processes with α = 1.2 and 1.6 with those of a

standard normal distribution. For compatibility purposes the α-stable curves

are drawn with γ = 1/
√

2. As expected the normal distribution gives equal

weights to all observations. The estimator for α-stable processes gives higher

weights to the centre of the distribution and extremely small weights to ex-

treme values. This effect increases as α is reduced.

This result explains the results obtained by Fama and Roll (1968) who

completed a Monte Carlo study of the use of truncated means as measures of

location in α-stable distributions. They found:

When α = 1.1 the .25 truncated4 means are still dominant for all

n. For α = 1.3 and α = 1.5 the .50 truncated means are generally

best, and when α = 1.9 the distributions of the .75 truncated means

are uniformly less disperse than those of other estimators. Finally,

when the generating process is Gaussian (α = 2) the mean is the

“best” estimator. Of course it is also minimum-variance, unbiased

in this case.

The shape of the weight curves in the skewed case is shown in Figure 3.2.

The weights are based on the same α-stable distributions as those in Fig-

ure 3.1 except that the skew parameter, β, is now −0.1. The most surprising

aspect of the weighting systems is the negative weights given to small positive

observations. Again the effects are more pronounced as α is reduced.

4A g truncated mean retains 100g% of the data. Thus a .25 truncated mean is an average
of the central 25% of the data
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Figure 3.2: Comparison of Implied Weights in GLS Equivalent of Maximum
Likelihood Estimates of Regression Coefficient when Residuals are
Distributed as Skewed α Stable variables with β = −0.1
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3.3 Maximum Likelihood Estimates of Day of Week

Effects with α-stable Errors

Empirical analysis suggests that there is a recurrent low or negative return

on equities from Friday to Monday. This effect is known as the weekend ef-

fect. The existence of this effect would allow one to design a strategy to make

excess profits and would have implications for the Efficient Markets Hypoth-

esis. It is likely that if disturbances are α-stable, then the usual Ordinary

Least Squares inferences may lead to spurious results. The use of α-stable

disturbances and maximum likelihood will lead to more robust results.

The analysis is based on daily data for six equity indices (ISEQ, CAC40,

DAX30, FTSE100, Dow Jones Composite(DJAC) and S&P500) which have been

adjusted to include dividends. Thus if Pt and Dt are the price and dividend

of the index in period t the return on the index in period t is given by

Rt = 100 log
(
Pt +Dt
Pt−1

)
≈ 100

(
Pt +Dt
Pt−1

− 1
)

. (3.13)

We have also used returns based on the historic values of the Dow Jones

Industrial Average equity price index covering the period 3 July 1962 to 28

December 1978, the period analysed in Gibbons and Hess (1981). These have

not been adjusted for dividends.

Descriptive statistics and details of goodness of fit of the return series to

Normal and α-stable distributions are given in Table 3.1.5 The goodness of

fit normality tests indicate considerable problems with the fit of a Normal

distribution. The α-stable distribution provides a better fit.

To estimate and test for day of week effects returns were regressed on five

dummy variables, one for each day of the week. The presence of a day of week

effect is indicated by the rejection of the hypothesis that all five regression

coefficients are equal.

Table 3.2 gives OLS estimates for the longest sample available for each

total return index and for the DJIA for the period 3 July 1962 to 28 December

5 The data in this table are taken from Tables 2.1 and 2.2. Chapter 2 contains a descrip-
tion of the underlying data and the results in this table.
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Table 3.1: Summary Statistics Equity Total Return Indices and their Fit to Normal
and α-stable Distributions

ISEQ CAC40 DAX 30 FTSE100 DJAC S&P500

start date 04/01/88 31/12/87 28/09/59 31/12/85 30/09/87 03/01/89
end date 21/09/05 26/09/05 26/09/05 26/09/05 26/09/05 26/09/05

observations 4622 4627 12000 5149 4693 4363
mean 0.052 0.044 0.022 .041 0.038 0.043
St. dev 0.934 1.277 1.148 1.028 1.007 0.980
Skewness -0.3634 -0.124 -0.282 -0.732 -2.686 -0.198
Kurtosis 5.376 3.002 8.378 9.814 58.1964 4.282

Goodness of Fit Tests for Normal Distribution
JB testa 5690 1749 35254 21123 667907 3362
KS testb 0.065 0.054 0.062 0.055 0.074 0.063
SW testc 0.941 0.967 NA NA 0.8689 0.956

Maximum Likelihood Estimates of Parameters of α-stable distribution
αd 1.646 1.718 1.687 1.726 1.684 1.668

(0.045) (0.043) (0.027) (0.041) (0.044) (0.046)
β -0.064 -0.147 -0.076 -0.147 -0.076 -0.105

(0.111) (0.128) (0.075) (0.125) (0.119) (0.118)
γ 0.502 0.746 0.627 0.583 0.529 0.550

(0.014) (0.020) (0.011) (0.015) (0.015) (0.017)
δ 0.054 0.032 0.019 0.036 0.042 0.034

Goodness of Fit Tests for α-Stable Distribution
KS (stable) 0.012 0.014 0.010 0.008 0.018 0.023
p-value 0.518 0.307 0.166 0.892 0.097 0.025

LRe test of 838.1 418.6 1945.8 786.7 1236.5 583.0
Normality

a The asymptotic distribution of the Jarque-Bera statistic is χ2(2) with critical
values 5.99 and 9.21 at the 5% and 1% levels, respectively.

b For the sample sizes here the 1% critical value for the Kolmogorov-Smirnov
statistic is less that .02. See Marsaglia et al. (2003)

c The 5% critical level for the Shapiro-Wilk test is .9992 for a sample of 4500. The
smaller values reported here indicate very significant departures from normal-
ity.

d Figures in brackets under each coefficient estimate are 95% confidence interval
half-width estimates

e Likelihood ratio test of the joint restriction α = 2 and β = 0. The test statistic
is asymptotically χ2(2) with critical values given in footnote a to this table.
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Table 3.2: OLS Estimates of Day of Week Effects in Returns on Equity Indices

ISEQ CAC40 DAX 30 FTSE100 DJAC S&P500 Gibbons

Hess(1981)

OLS coefficient estimates and Standard Errors
Mondaya 0.046 -0.032 -0.086 0.026 0.062 0.084 -0.128

(.031) (0.042) (0.023) (0.032) (0.033) (0.033) (0.027)

Tuesday 0.047 0.063 0.005 0.047 0.062 0.040 -0.007

(.031) (0.042) (0.023) (0.032) (0.033) (0.033) (0.027)

Wednesday 0.041 0.027 0.060 0.025 0.061 0.056 0.080

(.031) (0.042) (0.023) (0.032) (0.033) (0.033) (0.027)

Thursday 0.062 0.088 0.043 0.036 -0.003 0.023 0.032

(.031) (0.042) (0.023) (0.032) (0.033) (0.033) (0.027)

Friday 0.057 0.072 0.087 0.071 0.017 0.011 0.065

(.031) (0.042) (0.023) (0.032) (0.033) (0.033) (0.027)

Test of equality of day of week coefficients
F-test 0.061 1.297 8.239 0.349 0.786 0.7361 9.684

significance (0.993) (0.269) (0.00) (0.845) (.534) (0.5672) (0.000)

Goodness of Fit Tests of Residuals to Normal Distribution
JB testb 5934 1728 34481 20843 665075 3380 1437

Estimates of α-stable Parameters of OLS residuals
α 1.646 1.727 1.688 1.733 1.683 1.661 1.738

(0.025) (0.023) (0.015) (0.021) (0.025) (0.027) (0.026)

β -0.053 -0.136 -0.062 -0.145 -0.077 -0.103 -0.005

(0.052) (0.064) (0.037) (0.062) (0.057) (0.056) (0.070)

γ 0.500 0.749 0.627 0.584 0.528 0.549 0.467

(0.008) (0.011) (0.006) (0.008) (0.008) (0.009) (0.007)

δ 0.003 -0.009 - 0.001 -0.004 0.004 -0.009 -0.007

(0.016) (0.021) (0.011) (0.015) (0.015 ) (0.017) (0.013)

a Figures in brackets under each coefficient or parameter estimate are stan-
dard errors of the estimate. Coefficients in boldface are significantly dif-
ferent (5% level) from the average, indicating a day of week effect.

b The asymptotic distribution of the Jarque-Bera statistic is χ2(2) with crit-
ical values 5.99 and 9.21 at the 5% and 1% levels, respectively.
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Table 3.3: α-stable Estimates of Day of Week Effects in Returns on Equity Indices

ISEQ CAC40 DAX 30 FTSE100 DJAC S&P500 Gibbons

Hess(1981)

α-stable coefficient estimates and Standard Errors
Mondaya 0.044 0.035 0.003 0.043 0.035 0.009 -0.136

(.027) (0.039) (0.021) (0.029) (0.028) (0.030) (0.025)

Tuesday 0.049 0.014 0.048 0.011 0.030 0.028 -0.005

(.027) (0.039) (0.021) (0.029) (0.028) (0.030) (0.025)

Wednesday 0.069 0.073 0.047 0.025 -0.008 0.004 0.071

(.027) (0.039) (0.021) (0.029) (0.028) (0.030) (0.025)

Thursday 0.052 0.048 0.081 0.063 -0.005 0.030 0.010

(.027) (0.039) (0.021) (0.029) (0.028) (0.030) (0.025)

Friday 0.059 0.003 -0.007 0.044 0.011 0.010 0.066

(.027) (0.039) (0.021) (0.029) (0.028) (0.030) (0.025)

Test of equality of day of week coefficients
LR-test 0.62 2.42 39.00 2.10 5.9 7.3 47.04

significance (0.961) (0.659) (0.000) (0.717) (0.207) (0.121) (0.000)

Goodness of Fit Test of Residuals to α-stable distribution
KS (stable)b 0.0151 0.0185 0.0082 0.0100 0.0199 0.0239 0.0166

(0.243) (.085) (0.391) (0.687) (0.048) (0.014) (0.186)

Maximum Likelihood Estimates of Parameters of α-stable distribution
α 1.632 1.725 1.688 1.733 1.683 1.662 1.738

(0.024) (0.023) (0.015) (0.021) (0.025) (0.027) (0.025)

β -0.054 -0.136 -0.062 -0.145 -0.079 -0.105 -0.000

(0.052) (0.064) (0.037) (0.062) (0.057) (.056) (.069)

γ 0.500 0.749 0.627 0.584 0.528 0.549 0.467

(0.007) (0.011) (0.006) (0.008) (0.008) (.009) (0.007)

a Figures in brackets under each coefficient or parameter estimate are stan-
dard errors of the estimate. Coefficients in boldface are significantly dif-
ferent (5% level) from the average, indicating a day of week effect.

b Kolmogorov-Smirnov test with a null of an α-stable distribution. Signifi-
cance Levels are approximate.
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Table 3.4: Summary Statistics Returns on DAX30 and their Fit
to Normal and α-stable Distributions for Three Sub-
periods

start date 29/09/59 28/01/75 29/05/90
end date 27/01/75 28/05/90 26/09/05
observations 4000 4000 4000
mean 0.004 0.036 0.025
St. dev 0.989 0.978 1.424
Skewness 0.518 -1.061 -0.276
Kurtosis 8.633 17.940 4.110
Goodness of Fit Tests for Normal Distribution
JB testa 1287 54389 2874.23
KS testb 0.044 0.058 0.072
SW testc 0.952 0.907 0.949
Estimates of α-stable Parameters of Return Distribution
αd 1.820 1.777 1.636

(0.022) (0.023) (0.027)
β 0.059 -0.066 -0.168

(0.095) (0.082) (0.056)
γ 0.601 0.553 0.774

(0.009) (0.008) (0.013)
δ 0.001 0.040 0.008
Goodness of Fit Tests for α-Stable Distribution
KS (stable) 0.012 0.012 0.023
p-value 0.619 0.652 0.034
a The asymptotic distribution of the Jarque-Bera statistic is
χ2(2) with critical values 5.99 and 9.21 at the 5% and 1%
levels, respectively.

b For the sample sizes here the 1% critical value for
the Kolmogorov-Smirnov statistic is less that .02. See
Marsaglia et al. (2003).

c The 5% critical level for the Shapiro Wilk test is .9992 for a
sample of 4500. The smaller values reported here indicate
very significant departures from normality.

d Figures in brackets under each coefficient estimate are
asymptotic standard errors.
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Table 3.5: OLS Estimates of Day of Week Effects in Returns on
DAX30 Index in Three Sub-periods

DAX30

start date 29/09/59 28/01/75 29/05/90
end date 27/01/75 28/05/90 26/09/05
observations 4000 4000 4000
OLS coefficient estimates and Standard Errors
Mondaya -0.192 -0.123 0.057

(.035) (0.034) (0.050)
Tuesday -0.043 0.034 0.023

(.035) (0.034) (0.050)
Wednesday 0.102 0.071 0.007

(.035) (0.034) (0.050)
Thursday 0.058 0.064 0.007

(.035) (0.034) (0.050)
Friday 0.094 0.135 0.032

(.035) (0.034) (0.050)
Test of equality of day of week coefficients
F-test 12.70 7.800 0.171
significance (0.000) (0.000) (0.953)
Goodness of Fit Tests of Residuals to Normal Distribution
JB testb 12837 51386 2874
Estimates of α-stable Parameters of OLS Residuals
α 1.818 1.778 1.635

(0.023) (0.023) (0.027)
β 0.089 -0.044 -0.169

(0.095) (0.082) (0.056)
γ 0.596 0.552 0.774

(0.009) (0.008) (0.013)
δ 0.002 -0.005 - 0.018

(0.016) (0.016) (0.026)
a Figures in brackets under each coefficient or parameter es-

timate are standard errors of the estimate. Coefficients in
boldface are significantly different (5% level) from the aver-
age, indicating a day of week effect.

b The asymptotic distribution of the Jarque-Bera statistic is
χ2(2) with critical values 5.99 and 9.21 at the 5% and 1%
levels, respectively.
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Table 3.6: Maximum Likelihood α-stable Estimates of Day of Week Ef-
fects in Returns on DAX30 in Three Sub-periods.

DAX30

start date 29/09/59 28/01/75 29/05/90
end date 27/01/75 28/05/90 26/09/05
observations 4000 4000 4000
α-stable coefficient estimates and Standard Errors
mondaya -0.195 -0.069 0.058

(.033) (0.030) (0.046)
Tuesday -0.041 -0.029 0.011

(.032) (0.030) (0.045)
Wednesday 0.084 0.066 -0.029

(.032) (0.030) (0.045)
Thursday 0.070 0.059 -0.011

(.032) (0.030) (0.045)
Friday 0.090 0.120 -0.009

(.032) (0.030) (0.045)
Test of equality of day of week coefficients
LR-test 60.50 23.08 2.34
significance (0.000) (0.000) (0.673)
Goodness of Fit Test of Residuals to α-stable Distribution
KS (stable)b 0.0098 0.0098 0.0279

(0.837) (.0836) (0.004)
Maximum Likelihood Estimates of Parameters of α-stable Residuals
α 1.818 1.777 1.634

(0.023) (0.024) (0.027)
β 0.090 -0.048 -0.170

(0.094) (0.082) (0.056)
γ 0.596 0.551 0.774

(0.009) (0.008) (0.013)
a Figures in brackets under each coefficient or parameter estimate

are standard errors of the estimate. Coefficients in boldface are
significantly different (5% level) from the average, indicating a day
of week effect.

b Kolmogorov-Smirnov test with a null of an α-stable distribution.
Significance Levels are approximate.
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1978 as used in Gibbons and Hess (1981). Table 3.3 gives corresponding

results assuming non-normal α-stable disturbances and using the methods

set out in Section 3.2.

Maximum likelihood estimation is carried out by numerically maximising

the log of the likelihood function in Equation (3.8). In the present case Ordi-

nary Least Squares is used to derive initial values for the regression param-

eters. An α-stable distribution was fitted to the residuals of this regression

using the MATHEMATICA (Wolfram (2003)) α-stable density functions in Rim-

mer (2005).6 The resulting estimates values of α, β and γ were used as initial

values for these parameters in the likelihood estimation. Standard errors of

the estimates were estimated by the square root of the diagonal elements of

the inverse of the Hessian of the loglikelihood function. While these estimates

of the variance of the estimates appear to be numerically stable correspond-

ing estimates of the covariances were not, in some cases. For the α-stable

disturbances the tests of equality of the day of week coefficients are likeli-

hood ratio tests.

The final column in each table gives results corresponding to those in Gib-

bons and Hess (1981). Although We use a different equity index our results

are very similar. The Monday effect is negative and very significant in both

cases and the OLS and α-stable estimates are very similar. Thus the Gibbons

and Hess (1981) results are robust with respect to the specification of distur-

bances.

This “Monday effect” effect found in the Gibbons and Hess (1981) sample

period is not significant in the five total return indices (ISEQ, CAC40, FTSE100,

DJAC and S&P500). This corresponds to recent analysis which has found that

the “Monday effect” has been becoming smaller and even positive in recent

times (see for example Hansen et al. (2005)). It should be noted that although

there are some differences in the returns patterns when comparing the OLS

and maximum likelihood α-stable estimates it is not obvious how any statis-

6 The Rimmer routines have since been revised to run in MATHEMATICA Version 6. It
appears that the versions used in this Chapter are no longer available. For current versions
see Rimmer (2007). I have re-run the regressions with the new versions and they produce
the same results. The output of a sample run of the program (for MATHEMATICA 6) is
given in Appendix B.
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tical significance could be attached to this result. Specific day of week effects

such as the “Monday effect” have often been justified only after a significant

day of week effect has been found. In an experimental science this could be

verified by further independent experimental studies. In economics we rarely

have this facility. Sullivan et al. (2001) lists a large number of possible sea-

sonal effects. Some of these are likely to occur by chance and will then be

found by a specification search. The danger of data-mining is very real.

The longer return series for the DAX30 shows a significant day of the

week effect in both OLS and α-stable cases. The OLS analysis points to sig-

nificantly low returns on Monday and high returns on Friday as the cause

of the problem. The α-stable results point to significantly higher returns on

Thursday. One might be tempted to attribute this result to the timing of

Bundesbank/European Central Bank monetary policy announcements (Thurs-

days) but we would be concerned about the data-mining aspect of such a con-

clusion7 Data mining and seasonal effects in return data have been discussed

at length in Sullivan et al. (2001).

Table 3.4 gives summary statistics of returns on the DAX30 for three pe-

riods, 29 September 1959 to 27 January 1975, 28 January 1975 to 28 May

1990 and 29 May 1990 to 27 September 2005. The normal distribution is a

poor fit to the data. The α-stable distribution provides a good fit for the first

two periods. The goodness of fit test for an α-stable distribution fails for the

third period.

Tables 3.5 and 3.6 set out OLS and α-stable maximum likelihood estimates

of the day of week effects in each or these subperiods. The results are very

similar in both sets of tests. In the first two periods the hypothesis of no day

of week effect is rejected and in the third period the hypothesis can not be

rejected in both the OLS and α-stable analysis. In the α-stable analysis for the

two early periods the Thursday return is significantly higher than the average.

This is not so in the OLS analysis.

It should be noted that the stability parameter in the fit of all residuals to

7 If we run a five orthogonal variable regression and the true values of the coefficients
are zero then there is almost a 23% chance that one or more of the five coefficients will be
significantly different from zero at the 5% level.
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an α-stable distribution is significantly less than 2 indicating deficiencies in

the assumption of a normal distribution.

3.4 Summary and Conclusions

This chapter sets out the theory of maximum likelihood estimation and of

a linear regression when disturbances follow an α-stable distribution. This

theory is then applied to the estimation and testing for a day of week effects in

returns on equity indices. We have found that maximum likelihood estimation

of a linear regression with α-stable disturbances is feasible.

Traditional OLS estimation and testing is carried out in parallel and the re-

sults are compared. Of the ten regressions completed, significant day of week

effects effects were found in the same four regressions in both the α-stable

and OLS systems. However the alternative methodologies attributed signifi-

cance to different day of week effects. The α-stable distribution appeared to

be a better fit to the residuals in both OLS and α-stable estimates. On the

basis of specification tests α-stable estimation is to be preferred.

Day of week effects such as the “Monday effect”, found in some of the

regressions here, are often justified by theories relating to institutional ar-

rangements. A “Monday effect” has been explained by delays in trading and

settlement caused by the weekend. Such explanations are often given after the

significant result has been found leading to accusations of data mining. As I

did not have a prior theory explaining the extra effects found in the α-stable

estimates any conclusions that I might draw would, justifiably, be subject to

the same criticisms. The conclusion remains that if individual coefficients are

of interest, the disturbances have fat tails and a possible α-stable distribution

and there is sufficient data then the results should be checked for robustness

using methods such as those employed here.
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CHAPTER 4

Small Sample Power of Tests of Normality when the

Alternative is an α-stable Distribution1

4.1 Introduction

In this chapter I give an account of a series of simulations to measure the

power of various tests of the null hypothesis of normality when the alter-

native is an α-stable distribution. Large samples of high frequency financial

data generally reject this null (see, for example, Rachev and Mittnik (2000)

and Chapter 2 of this thesis). These tests applied to the smaller samples of

monthly data, aggregated from the same daily data, do not always reject nor-

mality. For example, when the six normality tests examined here are applied

to one hundred months of daily observations of returns on six total return eq-

uity indices the normality hypothesis is overwhelmingly rejected by tests for

all six indices. When the six tests are applied to monthly aggregates derived

1This Chapter is based on a paper (Frain (2007)) presented at:

• TCD Graduate Seminar, December 2006.

• IEA Annual Conference April 2007.
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from the six indices (covering a period of 100 months) the null of normality

is accepted in fifteen of the thirty six cases.

A property of the α-stable distribution is that aggregated monthly data,

derived from α-stable distributed daily data, have an α-stable distribution

with the same α parameter. The apparent failure of monthly data to reject

the normality hypothesis has been taken as an indication that the daily data

can not have an α-stable distribution. The tests examined here are shown to

be of low power when applied to the short samples of monthly data typically

available from aggregated daily data. Thus, failure to reject normality in these

cases can not be seen as a rejection of the non-normal α-stable distribution.

Chapter 2 and appendix A contain a description of the α-stable distribu-

tion. The distribution of high frequency financial returns has tails that are

fatter than would be expected by a normal distribution (i.e. α < 2). The

α-stable distribution appears to fit the data well. In an examination of the

distribution of returns on 6 total return equity indices2 I found values of α in

the range 1.65 to 1.73 and small negative values for the skew parameter.

Section 4.2 gives details of the way the α-stable data were simulated and

describes the six tests of normality that I have applied to sample sizes of 50,

100 and 200 and three values of each of the α β, γ and δ parameters. These

sample sizes are typical of those that might be encountered when monthly

data are derived from daily data. Detailed results are reported in Section 4.3

and in the Appendix to this chapter. These results are summarised in Sec-

tion 4.4.

Section 4.3 also details the results of applying the normality tests to ag-

gregated monthly series of 50, 100 and 200 observations derived from the

daily returns used in the earlier analysis.

The values of the β, γ and δ parameters used do not have a large effect on

the analysis. In general the tests wrongly accept normality far too often and

results are satisfactory only for α = 1.6. The Pearson and Cramer-von Mises

tests are unsatisfactory in all cases while the Lilliefors (Kolmogorov-Smirnov)

2This study is the subject of Chapter 2. The total return equity indices examined in-
cluded the ISEQ, CAC40, DAX30, FTSE100, Dow Jones Composite (DJAC) and S&P500. The
estimation period was from October 1959 to September 2005 for the DAX30 and from the
late 1970s to September 2005 for the other indices.
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test is satisfactory only for a sample size of 200 and an α parameter of 1.6.

The Jarque-Bera and Shapiro-Wilk test can differentiate with α = 1.6 and a

sample size of greater than 100, with α = 1.7 and a sample size of 200.

The Jarque-Bera can also detect the departure from normality for α = 1.8

and a sample size of 200. The measured relative power of these normality

tests are specific to the alternative of an α-stable distribution and should

not be regarded as measures of the relative merit of the tests against other

alternatives.
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4.2 The Tests

4.2.1 Simulations

The α-stable random numbers used in this exercise were generated using the

α-stable random number generator in the Rmetrics (Wuertz (2007)) package

which is part of the R (R Development Core Team (2008)) statistical package.

The method used is a variation of that proposed by Chambers et al. (1976)

as extended by Weron (1996a,b). Let θ have a uniform distribution on (-π2 , π2 )

and w have an exponential distribution with mean 1. If

X = Cα,β
(

sin(α(θ + θ0))

(cosθ)
1
α

)(
cos(θ −α(θ + θ0)

w

) 1−α
α

,

where

Cα,β =
(

1+ β2 tan2
(
πα

2

)) 1
2α

and

θ0 =
arctan(β tan πα

2 )

α
,

then X has an α-stable distribution with stability parameter α for α 6= 1,

skewness parameter β, spread parameter 1 and location parameter 0.3 The

transformation of variables (Y = γX + δ) produces an α-stable variable with

arbitrary spread (γ) and location (δ) parameters.

For each of three values4 of the α-stable parameter (1.6, 1.7 and 1.8), three

values of the skewness parameter, β, (0, -0.075 and -0.150), three values of the

spread parameter, γ, (2.7, 3.6 and 4.5) and three values of the mean parameter

δ (0.44, 0.88, 1.32) samples of 50, 100 and 200 observations were drawn. Each

of these 243 experiments was replicated 1000 times. Six tests for normality

3When α = 1 use

X = 2

π

[(
π

2
+ βθ

)
tanθ − β log

( π
2w cosθ
π
2 + βθ

)]
.

4 The ranges of values for each parameter are the monthly equivalent of those found in
Chapter 2. See page 29.
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were applied to each of the 243,000 samples. As a control on the process

the simulations were repeated for a normal distribution with corresponding

mean and variance.

The tests used were:

1. Anderson-Darling.

2. Cramer-von Mises.

3. Lilliefors (Kolmogorov-Smirnov).

4. Pearson (χ2 Goodness of Fit).

5. Shapiro-Wilk.

6. Jarque-Bera.

A brief summary of each test follows. For an extended account of testing for

normality see Thode (2002)

4.2.2 Lilliefors (Kolmogorov-Smirnov) Test

The first three normality tests considered here are based on the difference

between the empirical distribution function (EDF) and the normal distribution

function. If the order statistics of a random sample of size n are given by x(1),

x(2), . . .x(n), the EDF is given by:

Fn(x) =





0 x < x(1),

i/n x(i) ≤ x < x(i+1) i = 1, . . . , n− 1,

1 x(n) ≤ x.
(4.1)

If Φ() is the standard normal distribution function and X has a normal

distribution with mean µ and variance σ 2 the corresponding values of the

distribution function are given by

qi = Φ([x(i) − µ]/σ) (4.2)
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The Kolmogorov-Smirnov test statistic is based on the maximum differ-

ence between the EDF and the qi and is given by D in Equation (4.3).

D+ = max
i=1,...,n

[i/n− qi],

D− = max
i=1,...,n

[qi − i/n],

D =max[D+,D−]. (4.3)

The Kolmogorov-Smirnov test has been extended by Lilliefors (1967) to

the case where the mean and variance are unknown and the estimated test

statistic is based on the usual estimates of the mean and variance. See also

Stephens (1974) and Thode (2002).

4.2.3 Cramer-von Mises Test

A class of EDF tests proposed by Anderson and Darling (1952) is defined by

W 2
n = n

∫∞

−∞
|Fn(x)− F(x)|2ψ[F(x)]dF (4.4)

where F() is the hypothesised distribution function and ψ() is a non-negative

weight function. For certain weight functions, including ψ = 1 and ψ(t) =
1/[t(1− t)], it is possible to derive explicit limit distributions of this statistic.

The Cramer-von Mises statistic uses the first of these weight functions and is

given by

W 2 = 1

12n
+

n∑

i=1

(
q(i)− 2i− 1

2n

)2

(4.5)

with the modification

W 2∗ = (1.0+ 0.5/n)W 2

accounting for differences in sample size when using tabulated critical values.
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4.2.4 Anderson-Darling Test

The Anderson-Darling test uses the weighting function ψ(t) = 1/[t(1− t)] in

Equation (4.4). This gives the test statistic

A2 = −n−n−1
n∑

i=1

[2i− 1][log(p(i))+ log(1− p(n−i+1))], (4.6)

where p(i) = Φ([x(i) − µ̂]/σ̂ ) and µ̂ and σ̂ are estimated values of the mean

and standard deviation.

The modification

A2∗ = (1.0+ 0.75/n+ 2.25/n2)A2 (4.7)

allows the standard critical values to be applied to all sample sizes. The

Anderson-Darling test gives more weight to the tails of the distribution than

the Cramer-von Mises test and may therefore be better able to differentiate

between normal and α-stable distributions.

4.2.5 Pearson (χ2 Goodness of Fit) Test

The Pearson test is the traditional test of goodness of fit. The observations are

divided into k intervals. Let Oi and Ei be the observed and expected number

in the ith interval. The Pearson test statistic is

P =
k∑

i=1

(Oi − Ei)2
Ei

. (4.8)

The test is implemented here by dividing the samples of 50, 100 and 200 into

10, 13 and 17 respectively of intervals which are of equal probability under

the null of normality. P is distributed asymptotically as χ2 with k− 3 degrees

of freedom, where k is the number of intervals used in the calculation of

P . Since the advent of specific tests for a null of a normal distribution the

Pearson test is not generally used.
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4.2.6 Shapiro-Wilk Test

If the data are a good fit to a normal distribution then the plot of x(i) against

Φ(i/n) will be close to a straight line. The Shapiro-Wilk test is a measure of

this fit based on a generalised least squares regression using the covariance

matrix of the order statistics. Due to difficulties in calculating this covariance

matrix the Shapiro-Wilk test was originally available only for sample sizes up

to 50. The difficulty being partially due to the fact that a separate covariance

matrix had to be calculated for each sample size. Initially the Shapiro-Wilk

test allowed smaller samples to be tested for normality than the previous

Pearson test. Various approximations are now available that allow the test to

be used for samples up to 5000. See Royston (1982a,b, 1995)

4.2.7 Jarque-Bera Test

The Jarque-Bera5 test is probably the normality test best known to economists

and is often used as a test of the normality of residuals. If mi is the ith

moment about the mean of a sample then the skewness (b1/2
1 ) and kurtosis

(b2) are defined by

b
1/2
1 = m3

m
3/2
2

and b2 =
m4

m2
2

(4.9)

For a sample of size n from a normal distribution b1/2
1 is asymptotically nor-

mal with mean zero and variance 6/n. For finite samples the variance of b1/2
1

is better given by6

c1 =
6(n− 2)

(n+ 1)(n+ 3)

In the same circumstances the distribution of b2 is asymptotically normal

with mean 3 and variance 24/n. For finite samples the mean c2 and variance

5 The small sample corrections to the Jarque-Bera test statistic used in this section are
given in Wuertz and Katzgraber (2005) and are not the same as those described in Sec-
tion 2.3 on page 26.

6For details see Thode (2002)
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Table 4.1: Critical Values of Jarque-Bera Test of Normality

Simulated
Sample JB AJB Asymptotic
Size
50 4.98 6.55 5.99
100 5.43 6.32 5.99
200 5.68 6.15 5.99

c3 of b2 are given by

c2 =
3(n− 1)

(n+ 1)

c3 =
24n(n− 2)(n− 3)

n+ 1)2(n+ 3)(n+ 5)

The Jarque-Bera statistic is given by

JB = n
(
(b

1/2
1 )2

6
+ (b2 − 3)2

24

)

which under the null hypothesis of normality has an asymptotic χ2 distribu-

tion with 2 degrees of freedom. In finite samples the skewness and kurtosis

are not independent and the JB statistic converges slowly to it asymptotic

limit. Two solutions have been proposed. First the JB statistic may be modi-

fied by replacing the asymptotic means and variances by their values in finite

samples and defining an adjusted Jarque-Bera (AJB) statistic:

AJB =
(
(b

1/2
1 )2

c1
+ (b2 − c2)

2

c3

)
.

The AJB and JB statistics have the same asymptotic distribution. For both

the JB and AJB statistics critical values have been estimated by Wuertz and

Katzgraber (2005) using a large sample Monte Carlo simulation. A comparison

of the simulated and asymptotic critical values for the sample sizes used here

is given in the table below.

Thus inference based on the asymptotic distribution of the standard JB
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statistic will tend to accept normality to often. Inference based on the asymp-

totic distribution of the adjusted statistic tends to reject normality to often.

In the simulations in this chapter inferences were based on the simulated dis-

tribution of the standard Jarque-Bera statistic. Tables 4.2, 4.3 and 4.4 contain

both JB and AJB tests on monthly returns. The significance levels given there

are based on those in Wuertz and Katzgraber (2005). In all cases both tests

lead to the same conclusion.

4.3 Results

The results of the simulations of the tests on the α-stable samples are shown

in Tables 4.5 to 4.13 and summarised in Figures 4.1, 4.2 and 4.3. The control

tests on the normal distribution are given in Table 4.14. Each of these 729

experiments described in Section 4.2.1 was replicated 1000 times. Each repli-

cation consisted of the generation of a pseudo random sample of the selected

size from an α-stable distribution with the appropriate parameters. The six

tests detailed in Section 4.2 were then applied to the random sample. The

number of times that the normality assumption was accepted, at the test size

specified, over 1000 replications is recorded in each case.

Thus the figure of 318 at the top of column 5 of table 4.5 indicates that

normality was accepted in 318 of the 1000 replications when an Anderson-

Darling test of size 5% was used. The power of the test may be approximated

as 68%.7 Similarly in 363, 423, 530, 280 and 225 from the 1000 replications

normality was accepted at the 5% size when, respectively, the Cramer-von

Mises, Lilliefors, Pearson, Shapiro-Wilk and Jarque-Bera tests were applied.

The numbers in these tables may be regarded as an estimate of the numbers

of false acceptances of normality that may be found in applications of the test

in the circumstances of the simulation i.e. they give the number of "wrong"

answers. Thus, smaller numbers are better.

7 These tables were computer generated from the output of the simulation programs.
The tabulated data are proportional to the probability of a type II error rather than the
more usual results in terms of power of the test. The power of the test is estimated as
1− number normality accepted

1000
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The results of applying the tests to simulated data drawn from a normal

distribution are given in Table 4.14. The results in this table show that there

are no significant size distortions in any of the tests examined at the sample

sizes considered.

4.3.1 Discussion of Results

The data in the tables show that the power of the tests varies with α, the

sample size and the test size as may be expected. In the ranges examined the

other three parameters are not as important. We have adopted the somewhat

arbitrary definition of a satisfactory test as one of size 5% with power greater

than 90%. A stricter definition would restrict the number of satisfactory tests

while a more liberal approach would lead to a greater number of satisfactory

outcomes.

Using this definition no test is satisfactory for a sample size of 50. The

Jarque-Bera test outperforms the others with an average power of 76% for

α = 1.6 dropping to an average of under 50% for α = 1.8

For a sample size of 100 the Jarque-Bera test is again best in all cases. For

α = 1.6 the average power of the test is 94%. This figure falls to 86% and 70%

for α of 1.7 and 1.8, respectively. The Shapiro-Wilk and Anderson-Darling

tests have power close to 90% when α = 1.6 and the size of the test is 5%.

For a sample size of 200 and α = 1.6 the power of the Jarque-Bera, Shapiro-

Wilk, Anderson-Darling and Lilliefors (Kolmogorov-Smirnov) tests are good,

with average powers of 1.00, 0.99, 0.99, and 0.96 respectively. In this case the

average power of the Pearson and Cramer-von Mises tests are 0.89 and 0.71

respectively.

For a sample size of 200 and α = 1.7 the Jarque-Bera, Shapiro-Wilk and

Anderson-Darling tests have powers of 0.98, 0.96, and 0.92 respectively. For

a sample size of 200 and α = 1.8 the average power the Jarque-Bera test is

just under 0.90.

The Pearson and Cramer-von Mises tests are not satisfactory in any case.

The Jarque-Bera test is the most satisfactory.

The measured relative power of these normality tests are specific to the
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alternative of an α-stable distribution and should not be regarded as mea-

sures of the relative merit of the tests against other alternatives or forms of

non-normality.

4.3.2 Application of tests to monthly Total Return Equity In-

dices

Tables 4.2, 4.3 and 4.4 show the results of applying the 6 tests examined to

monthly returns on equity total return indices for periods of 50, 100 and 200

months, respectively, up to end August 2005. The total return equity indices

included are those for the CAC40, DAX30, FTSE100, ISEQ, Dow Composite

(DCI) and the S&P500. Corresponding calculations for daily data show an

overwhelming rejection of normality in all cases. For the samples of 50, 100

and 200 months there are ,respectively, 11, 15 and 9 acceptances of the null

hypothesis of normality from the 36 tests completed in each case. Given the

possible common trends in the series one can not regard them as independent

samples but as an illustration of the application of the earlier results in this

Chapter.

Of the 9 acceptances of normality in the 200 month samples all but one

are in the Pearson or Lilliefors tests which have been shown to have poor

power. For the 100 month samples again the majority of rejections are six

and three acceptances of normality, respectively in the Pearson and Lilliefors

tests.

4.4 Summary and Conclusions

If one regards a satisfactory test as one of size 5% with a power of 90% then

the conclusions are:

Sample size 50 No test is satisfactory.

Sample size 100 :
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Figure 4.1: Power of Normality Tests when the Alternative is α-stable in Sam-
ple size 50
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Figure 4.2: Power of Normality Tests when the Alternative is α-stable in Sam-
ple size 100
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Figure 4.3: Power of Normality Tests when the Alternative is α-stable in Sam-
ple size 200
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• For α = 1.6 Jarque-Bera and Shapiro-Wilk tests are satisfactory.

• For α = 1.7 no test is satisfactory.

• For α = 1.8 no test is satisfactory.

Sample size 200 :

• For α = 1.6 Jarque-Bera, Shapiro-Wilk, Anderson-Darling and Lil-

liefors tests are satisfactory.

• For α = 1.7 Jarque-Bera, Shapiro-Wilk and Anderson-Darling tests

are satisfactory.

• For α = 1.8 The Jarque-Bera test was satisfactory in more than

half the simulations at this level and close to satisfactory in the

remainder.

At the parameter values likely to fit total return on equity indices a sample

size of the order of 200 is required in order to reliably detect departures from

normality using common normality tests.

The measured relative powers of these normality tests are specific to the

alternative of an α-stable distribution and should not be regarded as mea-

sures of the relative merit of the tests against other alternatives.
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4.5 Appendix – Tables of Detailed Results
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Table 4.2: Normality Tests on Monthly Returns on Total Return Equity Indices for a 50 Month Period ending
August 2005

Equity Summary Statistics Normality Statistics
Index Anderson- Craner- Shapiro- Jarque-Bera Jarque-Bera

Obs. Mean St. dev Skewness Kurtosis Darling von Mises Lilliefors Pearson Wilk (JB) (AJB)

CAC40 50 -0.469 8.291 -0.876 2.485 0.732 0.116 0.094 9.200 0.949 15.435 20.877

(.053) (.065) (.327) -0.239 (.032) (.006) (.006)

DAX30 50 -0.124 6.071 -0.775 1.512 1.067 0.193 0.154 23.200 0.943 7.952 10.523

(.008) (.006) (.004) (.001) (.018) (.023) (.023)

FTSE 50 0.137 4.236 -1.024 1.592 1.845 0.285 0.169 36.700 0.900 11.842 15.037

(.000) (.000) (.001) (.000) (.000) (.011) (.012)

ISEQ 50 0.271 5.490 -0.947 0.326 1.486 0.246 0.152 16.800 0.916 7.093 8.153

(.001) (.001) (.005) (.019) (.002) (.028) (.036)

DCI 50 0.361 4.392 -1.106 2.186 0.736 0.095 0.106 8.000 0.933 16.755 21.696

(.052) (.129) (.167) (.333) (.007) (.005) (.006)

S&P 50 -0.091 4.380 -0.336 0.827 0.833 0.139 0.129 16.400 0.963 1.711 2.560

(.030) (.032) (.036) (.022) (0.121) (.284) (0.189)

(Data in bold face indicate acceptance of normality hypothesis at 5% level)
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Table 4.3: Normality Tests on Monthly Returns on Total Return Equity Indices for a 100 Month Period ending
August 2005

Equity Summary Statistics Normality Statistics
Index Anderson- Craner- Shapiro- Jarque-Bera Jarque-Bera

Obs. Mean St. dev Skewness Kurtosis Darling von Mises Lilliefors Pearson Wilk (JB) (AJB)

CAC40 100 0.720 6.275 -0.628 0.527 0.901 0.160 0.102 14.140 0.970 7.186 7.979

(.021) (.017) (.012) (.167) (.021) (.030) (.033)

DAX30 100 0.332 7.747 -0.750 1.800 0.825 0.126 0.071 11.800 0.966 20.467 23.819

(.032) (049) (.247) (.299) (.010) (.003) (.003)

FTSE100 100 0.409 4.325 -0.711 0.600 1.121 0.163 0.091 12.320 0.961 9.240 10.242

(.006) (.016) (.041) (.264) (.005) (.019) (.021)

ISEQ 100 0.938 5.519 -0.822 0.993 1.165 0.195 0.105 12.060 0.960 14.188 15.909

(005) (.006) (.009) (.281) (.004) (.007) (.008)

DCI 100 0.626 4.424 -0.815 1.305 0.674 0.073 0.057 4.780 0.959 16.559 18.850

(.076) (.253) (.597) (.905) (.004) (.005) (.006)

S&P500 100 0.483 5.055 -0.499 0.293 0.536 0.072 0.077 15.440 0.978 4.222 4.644

(.166) (.260) (.153) (.117) (.094) (.074) (.083)

(Data in bold face indicate acceptance of normality hypothesis at 5% level)

8
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Table 4.4: Normality Tests on Monthly Returns on Total Return Equity Indices for a 200 Month Period ending
August 2005

Equity Summary Statistics Normality Statistics
Index Anderson- Craner- Shapiro- Jarque-Bera Jarque-Bera

Obs. Mean St. dev Skewness Kurtosis Darling von Mises Lilliefors Pearson Wilk (JB) (AJB)

CAC40 200 0.745 5.689 -0.550 0.519 1.085 0.195 0.081 17.600 0.979 11.832 12.544

(.007) (.006) (.002) (.226) (.004) (.010) (.011)

DAX30 200 0.640 6.58 -0.908 2.710 2.073 0.319 0.086 24.400 0.952 83.942 90.586

(.000) (.000) (.001) (.041) (.000) (.000) (.000)

FTSE100 200 0.850 4.271 -0.303 0.646 1.083 0.181 0.062 16.580 0.986 6.014 6.668

(.008) (.009) (.061) (.279) (.040) (.044) (.043)

ISEQ 200 1.013 5.287 -0.455 1.411 1.236 0.188 0.062 13.180 0.974 21.889 23.996

(.003) (.007) (.061) (.512) (.001) (.002) (.002)

DCI 200 0.924 4.060 -0.763 1.387 1.177 0.193 0.066 16.580 0.978 33.681 36.110

(.004) (.007) (.032) (.279) (.000) (.000) (.000)

S&P500 200 0.871 4.311 -0.548 0.911 0.809 0.118 0.053 19.779 0.980 15.929 17.174

(.036) (0.062) (.187) (.137) (.006) (.005) (.005)

(Data in bold face indicate acceptance of normality hypothesis at 5% level)

8
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Table 4.5: Simulation of 5% Normality Tests on α-stable Samples of
Size 50 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 318 363 423 530 280 225

1.6 0 2.7 0.88 325 386 448 555 286 238

1.6 0 2.7 1.32 353 399 430 565 303 251

1.6 0 3.6 0.44 301 348 400 532 262 207

1.6 0 3.6 0.88 362 416 461 576 303 234

1.6 0 3.6 1.32 329 377 418 526 288 244

1.6 0 4.5 0.44 354 397 458 554 283 226

1.6 0 4.5 0.88 323 377 431 546 274 225

1.6 0 4.5 1.32 313 372 433 529 265 208

1.6 -0.075 2.7 0.44 309 371 420 522 282 232

1.6 -0.075 2.7 0.88 305 359 390 512 265 215

1.6 -0.075 2.7 1.32 344 395 432 535 298 231

1.6 -0.075 3.6 0.44 316 370 418 539 264 216

1.6 -0.075 3.6 0.88 343 388 436 562 305 250

1.6 -0.075 3.6 1.32 339 394 433 541 289 228

1.6 -0.075 4.5 0.44 334 378 432 544 305 249

1.6 -0.075 4.5 0.88 323 372 407 538 275 223

1.6 -0.075 4.5 1.32 337 378 430 551 283 242

1.6 -0.15 2.7 0.44 322 372 430 517 278 232

1.6 -0.15 2.7 0.88 345 394 434 558 306 237

1.6 -0.15 2.7 1.32 305 348 416 535 268 225

1.6 -0.15 3.6 0.44 340 390 434 543 280 241

1.6 -0.15 3.6 0.88 311 372 420 522 274 226

1.6 -0.15 3.6 1.32 308 372 409 517 270 221

1.6 -0.15 4.5 0.44 300 351 392 529 243 200

1.6 -0.15 4.5 0.88 327 379 425 528 263 225

Continued on next page
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Table 4.5: Simulation of 5% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.15 4.5 1.32 305 345 407 522 267 221

1.7 0 2.7 0.44 500 538 583 656 415 345

1.7 0 2.7 0.88 477 522 576 693 423 351

1.7 0 2.7 1.32 464 510 560 668 394 343

1.7 0 3.6 0.44 440 498 536 650 392 328

1.7 0 3.6 0.88 473 508 559 664 414 338

1.7 0 3.6 1.32 470 521 591 671 419 351

1.7 0 4.5 0.44 464 529 576 667 403 336

1.7 0 4.5 0.88 481 523 588 674 417 346

1.7 0 4.5 1.32 477 526 577 696 435 360

1.7 -0.075 2.7 0.44 470 505 569 669 410 332

1.7 -0.075 2.7 0.88 479 532 574 664 410 345

1.7 -0.075 2.7 1.32 454 496 549 662 407 348

1.7 -0.075 3.6 0.44 468 514 581 664 406 332

1.7 -0.075 3.6 0.88 442 483 553 655 386 330

1.7 -0.075 3.6 1.32 479 522 582 680 399 342

1.7 -0.075 4.5 0.44 496 535 581 677 429 360

1.7 -0.075 4.5 0.88 498 551 604 693 419 354

1.7 -0.075 4.5 1.32 465 511 558 680 399 334

1.7 -0.15 2.7 0.44 468 511 567 675 423 366

1.7 -0.15 2.7 0.88 463 514 574 676 405 328

1.7 -0.15 2.7 1.32 462 517 579 675 400 353

1.7 -0.15 3.6 0.44 478 529 574 690 417 354

1.7 -0.15 3.6 0.88 499 541 605 695 427 382

1.7 -0.15 3.6 1.32 458 511 571 673 415 346

1.7 -0.15 4.5 0.44 451 493 535 665 392 336

1.7 -0.15 4.5 0.88 476 527 590 693 407 354

Continued on next page
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Table 4.5: Simulation of 5% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.15 4.5 1.32 482 530 575 694 422 364

1.8 0 2.7 0.44 601 650 707 773 534 469

1.8 0 2.7 0.88 625 661 704 767 566 506

1.8 0 2.7 1.32 649 691 727 785 573 512

1.8 0 3.6 0.44 631 685 721 782 559 497

1.8 0 3.6 0.88 658 693 717 797 589 534

1.8 0 3.6 1.32 634 676 718 782 568 525

1.8 0 4.5 0.44 626 668 707 774 561 490

1.8 0 4.5 0.88 624 671 699 783 549 470

1.8 0 4.5 1.32 640 681 720 789 582 524

1.8 -0.075 2.7 0.44 639 679 722 805 563 485

1.8 -0.075 2.7 0.88 619 657 704 772 561 492

1.8 -0.075 2.7 1.32 638 674 713 783 556 502

1.8 -0.075 3.6 0.44 647 680 709 763 563 509

1.8 -0.075 3.6 0.88 626 661 709 781 570 492

1.8 -0.075 3.6 1.32 643 686 718 806 574 524

1.8 -0.075 4.5 0.44 623 665 719 795 562 517

1.8 -0.075 4.5 0.88 654 688 728 782 578 520

1.8 -0.075 4.5 1.32 650 690 714 789 582 521

1.8 -0.15 2.7 0.44 654 679 724 798 584 530

1.8 -0.15 2.7 0.88 598 646 692 769 542 483

1.8 -0.15 2.7 1.32 657 690 727 785 583 507

1.8 -0.15 3.6 0.44 623 656 691 762 555 492

1.8 -0.15 3.6 0.88 641 685 746 786 578 510

1.8 -0.15 3.6 1.32 648 688 714 770 580 497

1.8 -0.15 4.5 0.44 638 681 728 789 571 510

1.8 -0.15 4.5 0.88 619 662 704 786 556 494

Continued on next page
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Table 4.5: Simulation of 5% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.15 4.5 1.32 628 653 701 773 573 512

Table 4.6: Simulation of 5% Normality Tests on α-stable Samples of
Size 100 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 134 229 217 343 98 67

1.6 0 2.7 0.88 110 215 177 307 74 52

1.6 0 2.7 1.32 103 216 181 314 78 55

1.6 0 3.6 0.44 93 201 177 319 68 51

1.6 0 3.6 0.88 113 229 189 309 81 51

1.6 0 3.6 1.32 117 227 198 324 77 49

1.6 0 4.5 0.44 104 242 195 332 76 52

1.6 0 4.5 0.88 94 209 159 281 68 49

1.6 0 4.5 1.32 95 225 176 313 75 55

1.6 -0.075 2.7 0.44 119 249 186 317 90 68

1.6 -0.075 2.7 0.88 110 216 199 323 78 58

1.6 -0.075 2.7 1.32 100 225 180 318 69 47

1.6 -0.075 3.6 0.44 121 242 187 304 97 71

1.6 -0.075 3.6 0.88 116 243 195 350 82 57

1.6 -0.075 3.6 1.32 98 220 182 305 63 45

1.6 -0.075 4.5 0.44 115 242 193 303 81 61

1.6 -0.075 4.5 0.88 115 240 196 348 74 52

1.6 -0.075 4.5 1.32 89 196 200 333 62 46

1.6 -0.15 2.7 0.44 119 248 198 330 83 64

Continued on next page
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Table 4.6: Simulation of 5% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.15 2.7 0.88 98 221 185 297 73 52

1.6 -0.15 2.7 1.32 101 225 181 298 79 51

1.6 -0.15 3.6 0.44 101 218 176 307 73 56

1.6 -0.15 3.6 0.88 97 202 182 320 68 55

1.6 -0.15 3.6 1.32 106 229 190 324 73 50

1.6 -0.15 4.5 0.44 110 239 199 329 74 61

1.6 -0.15 4.5 0.88 114 227 199 328 85 52

1.6 -0.15 4.5 1.32 113 241 169 297 82 52

1.7 0 2.7 0.44 254 351 366 506 202 146

1.7 0 2.7 0.88 273 354 371 505 202 141

1.7 0 2.7 1.32 215 317 333 482 155 116

1.7 0 3.6 0.44 246 351 367 497 175 122

1.7 0 3.6 0.88 240 320 352 483 158 109

1.7 0 3.6 1.32 231 332 358 513 169 130

1.7 0 4.5 0.44 240 338 353 493 170 127

1.7 0 4.5 0.88 264 342 373 528 180 135

1.7 0 4.5 1.32 262 348 375 498 183 128

1.7 -0.075 2.7 0.44 234 318 347 486 164 120

1.7 -0.075 2.7 0.88 257 317 338 498 191 138

1.7 -0.075 2.7 1.32 250 342 377 519 188 153

1.7 -0.075 3.6 0.44 246 334 350 494 187 148

1.7 -0.075 3.6 0.88 240 344 344 504 181 137

1.7 -0.075 3.6 1.32 263 353 359 497 170 126

1.7 -0.075 4.5 0.44 235 330 343 502 163 127

1.7 -0.075 4.5 0.88 246 340 365 509 186 140

1.7 -0.075 4.5 1.32 235 322 345 496 171 132

1.7 -0.15 2.7 0.44 247 337 361 519 185 144

Continued on next page
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Table 4.6: Simulation of 5% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.15 2.7 0.88 219 320 353 491 174 134

1.7 -0.15 2.7 1.32 230 334 337 489 150 109

1.7 -0.15 3.6 0.44 272 365 387 518 191 145

1.7 -0.15 3.6 0.88 232 322 345 482 179 134

1.7 -0.15 3.6 1.32 268 360 385 523 194 145

1.7 -0.15 4.5 0.44 248 346 366 503 181 144

1.7 -0.15 4.5 0.88 257 352 381 503 191 144

1.7 -0.15 4.5 1.32 254 358 360 494 169 124

1.8 0 2.7 0.44 453 531 572 670 345 274

1.8 0 2.7 0.88 472 538 577 672 364 269

1.8 0 2.7 1.32 419 505 548 656 331 270

1.8 0 3.6 0.44 465 525 563 686 365 304

1.8 0 3.6 0.88 445 511 543 665 341 287

1.8 0 3.6 1.32 472 546 579 670 361 284

1.8 0 4.5 0.44 463 533 575 682 370 298

1.8 0 4.5 0.88 447 509 556 669 346 291

1.8 0 4.5 1.32 487 551 590 693 373 305

1.8 -0.075 2.7 0.44 465 537 582 672 359 309

1.8 -0.075 2.7 0.88 441 523 561 668 339 267

1.8 -0.075 2.7 1.32 463 534 579 674 352 271

1.8 -0.075 3.6 0.44 479 536 595 695 375 310

1.8 -0.075 3.6 0.88 461 525 565 680 344 267

1.8 -0.075 3.6 1.32 434 509 581 678 350 288

1.8 -0.075 4.5 0.44 461 553 579 690 359 305

1.8 -0.075 4.5 0.88 447 521 559 668 352 288

1.8 -0.075 4.5 1.32 445 535 578 671 349 270

1.8 -0.15 2.7 0.44 472 534 581 699 365 285
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Table 4.6: Simulation of 5% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.15 2.7 0.88 452 525 578 677 348 278

1.8 -0.15 2.7 1.32 457 534 585 693 368 297

1.8 -0.15 3.6 0.44 449 525 549 661 334 267

1.8 -0.15 3.6 0.88 472 543 581 708 359 295

1.8 -0.15 3.6 1.32 461 530 559 663 353 294

1.8 -0.15 4.5 0.44 475 550 594 691 342 274

1.8 -0.15 4.5 0.88 448 525 562 682 370 308

1.8 -0.15 4.5 1.32 470 548 574 695 366 304

Table 4.7: Simulation of 5% Normality Tests on α-stable Samples of
Size 200 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 11 271 47 102 5 1

1.6 0 2.7 0.88 16 283 34 112 11 6

1.6 0 2.7 1.32 15 287 37 99 9 8

1.6 0 3.6 0.44 9 280 33 84 5 3

1.6 0 3.6 0.88 10 288 30 106 7 4

1.6 0 3.6 1.32 15 294 34 96 6 3

1.6 0 4.5 0.44 13 270 42 104 9 6

1.6 0 4.5 0.88 14 288 26 83 9 5

1.6 0 4.5 1.32 12 270 34 98 3 3

1.6 -0.075 2.7 0.44 10 279 38 102 4 3

1.6 -0.075 2.7 0.88 9 276 30 106 7 3

1.6 -0.075 2.7 1.32 7 286 22 88 4 1
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Table 4.7: Simulation of 5% Normality Tests on α-stable Samples of
Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.075 3.6 0.44 9 288 31 91 6 4

1.6 -0.075 3.6 0.88 12 276 27 87 7 4

1.6 -0.075 3.6 1.32 12 289 32 104 7 4

1.6 -0.075 4.5 0.44 14 294 45 124 9 6

1.6 -0.075 4.5 0.88 14 295 46 113 7 2

1.6 -0.075 4.5 1.32 7 262 28 88 3 2

1.6 -0.15 2.7 0.44 8 277 31 105 3 2

1.6 -0.15 2.7 0.88 8 272 27 87 5 3

1.6 -0.15 2.7 1.32 9 291 32 93 4 4

1.6 -0.15 3.6 0.44 8 262 43 116 5 3

1.6 -0.15 3.6 0.88 10 260 34 102 7 2

1.6 -0.15 3.6 1.32 5 295 23 91 2 0

1.6 -0.15 4.5 0.44 13 285 35 90 5 1

1.6 -0.15 4.5 0.88 10 283 34 103 3 1

1.6 -0.15 4.5 1.32 6 294 28 93 4 2

1.7 0 2.7 0.44 56 224 128 259 30 19

1.7 0 2.7 0.88 58 244 141 264 35 20

1.7 0 2.7 1.32 64 256 132 272 33 20

1.7 0 3.6 0.44 61 233 133 275 29 21

1.7 0 3.6 0.88 59 238 151 267 26 20

1.7 0 3.6 1.32 59 217 125 234 28 25

1.7 0 4.5 0.44 68 236 138 253 34 21

1.7 0 4.5 0.88 57 241 131 259 26 18

1.7 0 4.5 1.32 61 244 128 269 30 18

1.7 -0.075 2.7 0.44 75 211 156 308 44 29

1.7 -0.075 2.7 0.88 66 242 147 288 41 26

1.7 -0.075 2.7 1.32 72 226 140 272 38 18
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Table 4.7: Simulation of 5% Normality Tests on α-stable Samples of
Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.075 3.6 0.44 66 224 135 258 30 13

1.7 -0.075 3.6 0.88 66 228 130 245 37 21

1.7 -0.075 3.6 1.32 52 211 111 246 28 15

1.7 -0.075 4.5 0.44 68 228 133 265 41 23

1.7 -0.075 4.5 0.88 71 214 143 272 41 24

1.7 -0.075 4.5 1.32 67 238 133 258 32 16

1.7 -0.15 2.7 0.44 52 218 129 266 30 20

1.7 -0.15 2.7 0.88 66 214 136 275 36 20

1.7 -0.15 2.7 1.32 55 203 134 264 35 19

1.7 -0.15 3.6 0.44 57 240 124 253 35 21

1.7 -0.15 3.6 0.88 55 225 112 232 27 13

1.7 -0.15 3.6 1.32 79 255 157 296 40 23

1.7 -0.15 4.5 0.44 68 222 141 276 36 27

1.7 -0.15 4.5 0.88 60 234 133 270 32 20

1.7 -0.15 4.5 1.32 57 219 131 267 28 14

1.8 0 2.7 0.44 225 348 364 505 128 84

1.8 0 2.7 0.88 247 375 360 508 151 107

1.8 0 2.7 1.32 230 365 349 515 133 94

1.8 0 3.6 0.44 241 351 370 551 149 101

1.8 0 3.6 0.88 230 345 366 541 133 98

1.8 0 3.6 1.32 232 347 360 513 156 114

1.8 0 4.5 0.44 240 367 363 503 131 101

1.8 0 4.5 0.88 243 354 349 519 142 101

1.8 0 4.5 1.32 203 323 344 507 114 79

1.8 -0.075 2.7 0.44 233 359 365 523 139 97

1.8 -0.075 2.7 0.88 233 363 357 493 115 84

1.8 -0.075 2.7 1.32 242 380 366 536 146 110
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Table 4.7: Simulation of 5% Normality Tests on α-stable Samples of
Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.075 3.6 0.44 227 340 345 524 134 89

1.8 -0.075 3.6 0.88 239 353 369 498 137 101

1.8 -0.075 3.6 1.32 238 377 379 511 161 108

1.8 -0.075 4.5 0.44 234 346 375 523 135 107

1.8 -0.075 4.5 0.88 208 335 306 477 118 84

1.8 -0.075 4.5 1.32 200 315 342 504 119 90

1.8 -0.15 2.7 0.44 217 341 366 523 133 101

1.8 -0.15 2.7 0.88 226 362 354 515 138 96

1.8 -0.15 2.7 1.32 195 309 313 474 123 90

1.8 -0.15 3.6 0.44 191 312 343 509 106 72

1.8 -0.15 3.6 0.88 219 347 347 496 126 93

1.8 -0.15 3.6 1.32 239 354 354 526 151 107

1.8 -0.15 4.5 0.44 224 341 367 519 135 92

1.8 -0.15 4.5 0.88 219 333 360 518 137 91

1.8 -0.15 4.5 1.32 257 384 389 537 146 100

Table 4.8: Simulation of 1% Normality Tests on α-stable Samples of
Size 50 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 417 489 541 642 368 312

1.6 0 2.7 0.88 440 505 570 695 381 327

1.6 0 2.7 1.32 447 493 555 674 389 335

1.6 0 3.6 0.44 403 456 540 647 345 300

1.6 0 3.6 0.88 470 525 593 697 401 340
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Table 4.8: Simulation of 1% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 3.6 1.32 417 481 543 652 365 319

1.6 0 4.5 0.44 448 494 549 652 371 318

1.6 0 4.5 0.88 438 499 563 667 360 302

1.6 0 4.5 1.32 432 481 552 668 351 298

1.6 -0.075 2.7 0.44 426 489 560 662 366 316

1.6 -0.075 2.7 0.88 411 465 538 668 335 291

1.6 -0.075 2.7 1.32 443 503 546 660 383 323

1.6 -0.075 3.6 0.44 432 485 551 662 358 293

1.6 -0.075 3.6 0.88 439 491 570 685 388 337

1.6 -0.075 3.6 1.32 445 510 571 670 383 319

1.6 -0.075 4.5 0.44 438 488 565 677 372 330

1.6 -0.075 4.5 0.88 420 477 540 665 350 305

1.6 -0.075 4.5 1.32 439 488 559 664 379 315

1.6 -0.15 2.7 0.44 425 485 548 636 364 322

1.6 -0.15 2.7 0.88 447 507 563 676 391 342

1.6 -0.15 2.7 1.32 419 464 535 649 341 299

1.6 -0.15 3.6 0.44 446 507 555 672 372 311

1.6 -0.15 3.6 0.88 429 482 554 646 351 308

1.6 -0.15 3.6 1.32 416 481 549 649 353 295

1.6 -0.15 4.5 0.44 404 461 515 634 342 269

1.6 -0.15 4.5 0.88 443 497 558 643 366 309

1.6 -0.15 4.5 1.32 415 476 535 637 349 300

1.7 0 2.7 0.44 590 640 694 764 511 436

1.7 0 2.7 0.88 589 646 704 806 531 456

1.7 0 2.7 1.32 571 614 676 766 478 420

1.7 0 3.6 0.44 567 613 660 758 490 434

1.7 0 3.6 0.88 566 611 684 787 503 441
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Table 4.8: Simulation of 1% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 0 3.6 1.32 585 642 715 780 504 435

1.7 0 4.5 0.44 584 635 698 764 499 434

1.7 0 4.5 0.88 596 645 698 777 512 440

1.7 0 4.5 1.32 597 649 708 805 520 460

1.7 -0.075 2.7 0.44 576 624 676 773 512 444

1.7 -0.075 2.7 0.88 580 638 687 772 490 439

1.7 -0.075 2.7 1.32 562 600 671 767 484 432

1.7 -0.075 3.6 0.44 585 636 690 779 515 438

1.7 -0.075 3.6 0.88 561 598 672 762 486 411

1.7 -0.075 3.6 1.32 584 638 689 783 500 435

1.7 -0.075 4.5 0.44 600 647 700 777 527 458

1.7 -0.075 4.5 0.88 612 658 704 784 517 451

1.7 -0.075 4.5 1.32 585 634 696 787 500 421

1.7 -0.15 2.7 0.44 581 632 711 772 503 454

1.7 -0.15 2.7 0.88 581 624 699 789 507 441

1.7 -0.15 2.7 1.32 591 640 706 790 498 439

1.7 -0.15 3.6 0.44 605 640 719 807 522 460

1.7 -0.15 3.6 0.88 608 660 708 793 527 473

1.7 -0.15 3.6 1.32 592 637 699 774 500 446

1.7 -0.15 4.5 0.44 552 603 666 773 480 431

1.7 -0.15 4.5 0.88 597 647 706 790 507 440

1.7 -0.15 4.5 1.32 588 641 693 788 507 456

1.8 0 2.7 0.44 725 763 816 874 629 570

1.8 0 2.7 0.88 731 765 812 858 664 594

1.8 0 2.7 1.32 751 792 833 876 663 607

1.8 0 3.6 0.44 750 792 820 871 664 591

1.8 0 3.6 0.88 754 781 813 864 675 618
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Table 4.8: Simulation of 1% Normality Tests on α-stable Samples of
Size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 0 3.6 1.32 738 773 819 861 666 601

1.8 0 4.5 0.44 741 773 817 854 648 594

1.8 0 4.5 0.88 720 757 811 864 640 578

1.8 0 4.5 1.32 734 774 827 882 665 609

1.8 -0.075 2.7 0.44 749 786 836 899 671 592

1.8 -0.075 2.7 0.88 717 751 806 853 646 590

1.8 -0.075 2.7 1.32 734 776 817 887 659 592

1.8 -0.075 3.6 0.44 748 781 829 872 668 594

1.8 -0.075 3.6 0.88 721 767 816 863 648 601

1.8 -0.075 3.6 1.32 751 774 833 881 677 616

1.8 -0.075 4.5 0.44 740 779 828 882 652 591

1.8 -0.075 4.5 0.88 741 777 821 870 673 607

1.8 -0.075 4.5 1.32 748 768 808 864 664 622

1.8 -0.15 2.7 0.44 758 789 835 879 675 613

1.8 -0.15 2.7 0.88 715 745 793 857 625 568

1.8 -0.15 2.7 1.32 755 784 829 873 678 622

1.8 -0.15 3.6 0.44 716 749 803 863 642 583

1.8 -0.15 3.6 0.88 746 783 831 876 670 604

1.8 -0.15 3.6 1.32 733 776 807 858 665 596

1.8 -0.15 4.5 0.44 747 778 824 866 660 599

1.8 -0.15 4.5 0.88 739 775 814 880 658 587

1.8 -0.15 4.5 1.32 723 767 817 872 652 594
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Table 4.9: Simulation of 1% Normality Tests on α-stable Samples of
Size 100 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 6 191 20 268 3 52

1.6 0 2.7 0.88 14 181 27 247 7 42

1.6 0 2.7 1.32 10 184 27 245 7 37

1.6 0 3.6 0.44 3 167 14 256 2 45

1.6 0 3.6 0.88 7 189 20 240 3 39

1.6 0 3.6 1.32 10 195 24 260 4 38

1.6 0 4.5 0.44 6 204 18 257 4 38

1.6 0 4.5 0.88 7 179 13 218 7 38

1.6 0 4.5 1.32 9 193 21 251 3 35

1.6 -0.075 2.7 0.44 6 206 21 250 3 49

1.6 -0.075 2.7 0.88 7 181 22 258 4 43

1.6 -0.075 2.7 1.32 4 193 16 250 2 36

1.6 -0.075 3.6 0.44 5 209 16 233 4 50

1.6 -0.075 3.6 0.88 9 212 18 271 6 46

1.6 -0.075 3.6 1.32 7 191 20 242 5 32

1.6 -0.075 4.5 0.44 9 213 28 235 5 45

1.6 -0.075 4.5 0.88 10 198 23 273 5 39

1.6 -0.075 4.5 1.32 5 160 16 272 1 35

1.6 0.15 2.7 0.44 4 207 13 264 1 51

1.6 0.15 2.7 0.88 6 180 13 226 3 39

1.6 0.15 2.7 1.32 4 191 17 235 3 38

1.6 0.15 3.6 0.44 5 194 20 229 4 42

1.6 0.15 3.6 0.88 7 177 15 249 4 41

1.6 0.15 3.6 1.32 4 190 13 254 2 41

1.6 0.15 4.5 0.44 8 206 25 252 4 49

1.6 0.15 4.5 0.88 10 192 21 262 1 33
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Table 4.9: Simulation of 1% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0.15 4.5 1.32 4 206 16 225 3 39

1.7 0 2.7 0.44 45 288 92 430 23 123

1.7 0 2.7 0.88 42 286 100 430 24 108

1.7 0 2.7 1.32 42 263 82 396 24 95

1.7 0 3.6 0.44 38 285 90 418 27 102

1.7 0 3.6 0.88 40 275 96 408 22 86

1.7 0 3.6 1.32 38 255 78 437 21 108

1.7 0 4.5 0.44 50 283 94 421 24 99

1.7 0 4.5 0.88 35 293 89 444 19 117

1.7 0 4.5 1.32 42 289 88 413 23 105

1.7 -0.075 2.7 0.44 55 273 109 398 36 97

1.7 -0.075 2.7 0.88 46 269 103 413 31 106

1.7 -0.075 2.7 1.32 53 285 97 437 26 113

1.7 -0.075 3.6 0.44 41 285 84 396 20 123

1.7 -0.075 3.6 0.88 51 279 89 417 28 115

1.7 -0.075 3.6 1.32 31 293 79 411 21 99

1.7 -0.075 4.5 0.44 53 272 98 402 31 100

1.7 -0.075 4.5 0.88 49 279 101 423 30 115

1.7 -0.075 4.5 1.32 52 260 91 417 19 102

1.7 0.15 2.7 0.44 31 290 85 438 19 116

1.7 0.15 2.7 0.88 47 259 95 413 25 111

1.7 0.15 2.7 1.32 39 276 87 392 22 92

1.7 0.15 3.6 0.44 43 307 87 448 26 116

1.7 0.15 3.6 0.88 41 265 78 404 16 112

1.7 0.15 3.6 1.32 54 300 111 440 30 122

1.7 0.15 4.5 0.44 50 279 89 422 29 119

1.7 0.15 4.5 0.88 45 286 92 423 25 121
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Table 4.9: Simulation of 1% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 0.15 4.5 1.32 43 298 87 426 21 104

1.8 0 2.7 0.44 175 456 285 595 101 222

1.8 0 2.7 0.88 200 471 283 606 125 228

1.8 0 2.7 1.32 182 423 288 573 107 234

1.8 0 3.6 0.44 189 455 308 605 122 271

1.8 0 3.6 0.88 185 448 293 587 107 240

1.8 0 3.6 1.32 182 472 278 594 125 235

1.8 0 4.5 0.44 187 464 297 611 110 254

1.8 0 4.5 0.88 197 442 271 586 116 237

1.8 0 4.5 1.32 148 483 257 610 95 262

1.8 -0.075 2.7 0.44 190 454 290 605 105 260

1.8 -0.075 2.7 0.88 175 456 274 595 91 231

1.8 -0.075 2.7 1.32 183 457 289 588 119 226

1.8 -0.075 3.6 0.44 173 462 263 612 106 262

1.8 -0.075 3.6 0.88 183 459 290 595 105 223

1.8 -0.075 3.6 1.32 192 432 303 577 133 245

1.8 -0.075 4.5 0.44 170 482 287 607 111 263

1.8 -0.075 4.5 0.88 168 451 246 597 97 251

1.8 -0.075 4.5 1.32 167 457 255 602 98 230

1.8 0.15 2.7 0.44 158 458 289 614 110 243

1.8 0.15 2.7 0.88 184 454 272 619 111 237

1.8 0.15 2.7 1.32 156 465 231 616 103 261

1.8 0.15 3.6 0.44 146 448 257 579 84 227

1.8 0.15 3.6 0.88 171 462 263 634 103 249

1.8 0.15 3.6 1.32 188 457 291 598 126 248

1.8 0.15 4.5 0.44 164 476 289 611 104 239

1.8 0.15 4.5 0.88 169 462 278 601 107 269
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Table 4.9: Simulation of 1% Normality Tests on α-stable Samples of
Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 0.15 4.5 1.32 207 481 319 618 114 268

Table 4.10: Simulation of 1% Normality Tests on α-stable Samples
of Size 200 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 24 298 90 177 11 6

1.6 0 2.7 0.88 28 313 80 183 16 10

1.6 0 2.7 1.32 31 302 79 160 17 10

1.6 0 3.6 0.44 24 301 69 148 8 5

1.6 0 3.6 0.88 26 314 74 184 15 11

1.6 0 3.6 1.32 29 313 74 159 7 6

1.6 0 4.5 0.44 28 304 85 164 20 15

1.6 0 4.5 0.88 24 302 75 155 13 9

1.6 0 4.5 1.32 22 290 74 170 13 3

1.6 -0.075 2.7 0.44 25 307 82 165 13 9

1.6 -0.075 2.7 0.88 19 300 75 177 10 9

1.6 -0.075 2.7 1.32 19 309 63 161 6 3

1.6 -0.075 3.6 0.44 18 306 58 161 10 7

1.6 -0.075 3.6 0.88 23 291 62 154 12 7

1.6 -0.075 3.6 1.32 22 311 73 186 13 9

1.6 -0.075 4.5 0.44 31 322 91 191 16 7

1.6 -0.075 4.5 0.88 30 326 89 188 14 9

1.6 -0.075 4.5 1.32 23 286 62 165 6 4

1.6 -0.15 2.7 0.44 25 302 70 179 11 8
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Table 4.10: Simulation of 1% Normality tests on α-stable samples
of size 200 (1000 replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.15 2.7 0.88 17 293 75 165 11 9

1.6 -0.15 2.7 1.32 23 317 70 155 8 5

1.6 -0.15 3.6 0.44 34 295 86 192 16 7

1.6 -0.15 3.6 0.88 20 277 82 176 11 9

1.6 -0.15 3.6 1.32 14 317 70 151 3 2

1.6 -0.15 4.5 0.44 24 309 69 181 13 6

1.6 -0.15 4.5 0.88 26 304 72 170 9 3

1.6 -0.15 4.5 1.32 18 316 62 164 10 5

1.7 0 2.7 0.44 106 294 228 371 51 33

1.7 0 2.7 0.88 116 304 227 392 59 37

1.7 0 2.7 1.32 109 317 242 381 56 34

1.7 0 3.6 0.44 103 307 246 387 51 35

1.7 0 3.6 0.88 111 304 247 377 47 29

1.7 0 3.6 1.32 107 279 212 355 55 33

1.7 0 4.5 0.44 115 296 219 377 56 42

1.7 0 4.5 0.88 103 306 219 364 47 27

1.7 0 4.5 1.32 109 306 219 372 60 35

1.7 -0.075 2.7 0.44 128 273 259 428 62 47

1.7 -0.075 2.7 0.88 131 316 256 390 63 46

1.7 -0.075 2.7 1.32 121 297 235 377 60 40

1.7 -0.075 3.6 0.44 114 284 228 380 50 32

1.7 -0.075 3.6 0.88 93 279 224 357 52 39

1.7 -0.075 3.6 1.32 97 274 212 367 47 29

1.7 -0.075 4.5 0.44 108 294 226 379 71 39

1.7 -0.075 4.5 0.88 127 286 247 389 72 42

1.7 -0.075 4.5 1.32 108 297 223 378 62 31

1.7 -0.15 2.7 0.44 99 288 237 377 50 32
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Table 4.10: Simulation of 1% Normality tests on α-stable samples
of size 200 (1000 replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.15 2.7 0.88 111 279 220 381 53 36

1.7 -0.15 2.7 1.32 94 269 235 389 47 34

1.7 -0.15 3.6 0.44 104 305 231 370 52 40

1.7 -0.15 3.6 0.88 95 280 197 359 49 33

1.7 -0.15 3.6 1.32 127 330 262 404 62 46

1.7 -0.15 4.5 0.44 111 282 252 394 53 41

1.7 -0.15 4.5 0.88 104 290 240 381 50 30

1.7 -0.15 4.5 1.32 112 279 220 395 45 30

1.8 0 2.7 0.44 336 468 497 622 187 129

1.8 0 2.7 0.88 351 474 520 633 213 156

1.8 0 2.7 1.32 343 477 518 626 193 139

1.8 0 3.6 0.44 344 470 506 663 193 151

1.8 0 3.6 0.88 350 476 530 674 201 145

1.8 0 3.6 1.32 337 456 498 638 211 159

1.8 0 4.5 0.44 343 466 501 616 197 140

1.8 0 4.5 0.88 331 462 499 646 195 146

1.8 0 4.5 1.32 300 437 486 619 170 116

1.8 -0.075 2.7 0.44 336 454 494 647 191 135

1.8 -0.075 2.7 0.88 330 476 492 612 195 125

1.8 -0.075 2.7 1.32 346 497 530 662 199 154

1.8 -0.075 3.6 0.44 322 464 500 639 194 135

1.8 -0.075 3.6 0.88 335 463 495 623 185 137

1.8 -0.075 3.6 1.32 364 491 504 636 214 162

1.8 -0.075 4.5 0.44 341 472 505 647 197 141

1.8 -0.075 4.5 0.88 301 438 452 608 176 123

1.8 -0.075 4.5 1.32 305 449 492 636 171 129

1.8 -0.15 2.7 0.44 330 472 511 631 190 145
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Table 4.10: Simulation of 1% Normality tests on α-stable samples
of size 200 (1000 replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.15 2.7 0.88 330 463 498 625 192 138

1.8 -0.15 2.7 1.32 277 415 440 595 169 124

1.8 -0.15 3.6 0.44 299 429 484 643 164 120

1.8 -0.15 3.6 0.88 316 457 481 630 174 137

1.8 -0.15 3.6 1.32 337 467 501 657 206 153

1.8 -0.15 4.5 0.44 321 459 493 630 179 134

1.8 -0.15 4.5 0.88 318 459 503 642 182 130

1.8 -0.15 4.5 1.32 361 488 520 637 218 150

Table 4.11: Simulation of 10% Normality Tests on α-stable Samples
of Size 50 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 259 311 332 442 233 195

1.6 0 2.7 0.88 271 317 374 467 253 197

1.6 0 2.7 1.32 285 338 367 476 253 210

1.6 0 3.6 0.44 234 287 327 445 221 185

1.6 0 3.6 0.88 286 336 382 487 246 197

1.6 0 3.6 1.32 270 321 343 438 249 211

1.6 0 4.5 0.44 283 335 372 486 232 182

1.6 0 4.5 0.88 266 302 353 471 234 189

1.6 0 4.5 1.32 257 304 341 449 220 168

1.6 -0.075 2.7 0.44 255 295 350 447 231 189

1.6 -0.075 2.7 0.88 252 299 324 431 224 172

1.6 -0.075 2.7 1.32 279 322 359 463 237 188
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Table 4.11: Simulation of 10% Normality tests on α-stable samples
of size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.075 3.6 0.44 253 293 356 460 221 176

1.6 -0.075 3.6 0.88 289 325 357 466 262 215

1.6 -0.075 3.6 1.32 284 332 354 458 238 192

1.6 -0.075 4.5 0.44 275 314 349 461 257 207

1.6 -0.075 4.5 0.88 259 303 334 459 229 180

1.6 -0.075 4.5 1.32 271 315 359 464 243 198

1.6 -0.15 2.7 0.44 263 307 346 446 243 200

1.6 -0.15 2.7 0.88 287 339 365 487 246 191

1.6 -0.15 2.7 1.32 261 303 337 454 232 179

1.6 -0.15 3.6 0.44 277 320 358 456 243 195

1.6 -0.15 3.6 0.88 255 307 335 443 223 187

1.6 -0.15 3.6 1.32 262 307 329 443 224 178

1.6 -0.15 4.5 0.44 235 275 318 435 195 152

1.6 -0.15 4.5 0.88 252 306 338 462 226 179

1.6 -0.15 4.5 1.32 250 291 330 435 223 181

1.7 0 2.7 0.44 428 483 513 572 361 298

1.7 0 2.7 0.88 405 446 490 611 359 302

1.7 0 2.7 1.32 392 437 473 582 354 289

1.7 0 3.6 0.44 386 431 470 572 343 283

1.7 0 3.6 0.88 407 443 495 574 339 275

1.7 0 3.6 1.32 401 445 501 589 366 308

1.7 0 4.5 0.44 385 425 490 583 346 278

1.7 0 4.5 0.88 412 459 496 600 364 294

1.7 0 4.5 1.32 419 460 501 609 372 309

1.7 -0.075 2.7 0.44 410 451 489 591 353 279

1.7 -0.075 2.7 0.88 403 441 502 605 365 298

1.7 -0.075 2.7 1.32 387 431 474 580 360 309
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Table 4.11: Simulation of 10% Normality tests on α-stable samples
of size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.075 3.6 0.44 408 448 493 584 346 279

1.7 -0.075 3.6 0.88 375 406 469 571 337 275

1.7 -0.075 3.6 1.32 401 455 505 613 349 290

1.7 -0.075 4.5 0.44 426 463 508 612 361 300

1.7 -0.075 4.5 0.88 414 463 525 629 370 299

1.7 -0.075 4.5 1.32 401 444 476 613 342 287

1.7 -0.15 2.7 0.44 409 454 481 580 373 315

1.7 -0.15 2.7 0.88 395 441 489 592 346 273

1.7 -0.15 2.7 1.32 387 425 487 577 349 299

1.7 -0.15 3.6 0.44 412 449 494 600 360 289

1.7 -0.15 3.6 0.88 423 472 521 606 376 317

1.7 -0.15 3.6 1.32 397 437 478 592 346 289

1.7 -0.15 4.5 0.44 386 427 462 585 344 275

1.7 -0.15 4.5 0.88 407 456 510 602 353 317

1.7 -0.15 4.5 1.32 421 465 502 607 371 300

1.8 0 2.7 0.44 532 562 625 702 471 418

1.8 0 2.7 0.88 561 593 627 705 507 453

1.8 0 2.7 1.32 574 612 647 715 515 448

1.8 0 3.6 0.44 551 601 643 703 502 428

1.8 0 3.6 0.88 583 621 641 717 530 471

1.8 0 3.6 1.32 568 605 633 692 522 465

1.8 0 4.5 0.44 561 603 632 701 504 435

1.8 0 4.5 0.88 550 595 627 718 493 425

1.8 0 4.5 1.32 583 614 651 714 535 463

1.8 -0.075 2.7 0.44 538 586 625 729 502 435

1.8 -0.075 2.7 0.88 553 587 630 698 502 443

1.8 -0.075 2.7 1.32 555 608 633 694 505 445
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Table 4.11: Simulation of 10% Normality tests on α-stable samples
of size 50 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.075 3.6 0.44 569 610 642 698 511 444

1.8 -0.075 3.6 0.88 558 597 639 713 515 447

1.8 -0.075 3.6 1.32 577 614 633 719 528 461

1.8 -0.075 4.5 0.44 563 585 629 713 515 468

1.8 -0.075 4.5 0.88 577 617 660 725 517 450

1.8 -0.075 4.5 1.32 573 610 640 721 523 457

1.8 -0.15 2.7 0.44 587 619 650 731 525 472

1.8 -0.15 2.7 0.88 535 574 611 711 480 424

1.8 -0.15 2.7 1.32 577 607 649 703 521 451

1.8 -0.15 3.6 0.44 554 596 628 691 502 419

1.8 -0.15 3.6 0.88 575 606 650 727 514 448

1.8 -0.15 3.6 1.32 581 619 642 702 522 446

1.8 -0.15 4.5 0.44 569 611 655 717 525 447

1.8 -0.15 4.5 0.88 548 585 634 713 501 437

1.8 -0.15 4.5 1.32 554 589 629 702 508 447

Table 4.12: Simulation of 10% Normality Tests on α-stable Samples
of Size 100 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 99 191 163 268 69 52

1.6 0 2.7 0.88 86 181 129 247 58 42

1.6 0 2.7 1.32 81 184 130 245 58 37

1.6 0 3.6 0.44 70 167 128 256 50 45

1.6 0 3.6 0.88 79 189 137 240 60 39
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Table 4.12: Simulation of 10% Normality Tests on α-stable Samples
of Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 3.6 1.32 82 195 137 260 61 38

1.6 0 4.5 0.44 75 204 145 257 52 38

1.6 0 4.5 0.88 72 179 124 218 54 38

1.6 0 4.5 1.32 73 193 125 251 59 35

1.6 -0.075 2.7 0.44 88 206 145 250 70 49

1.6 -0.075 2.7 0.88 76 181 137 258 60 43

1.6 -0.075 2.7 1.32 75 193 133 250 52 36

1.6 -0.075 3.6 0.44 95 209 141 233 79 50

1.6 -0.075 3.6 0.88 97 212 144 271 67 46

1.6 -0.075 3.6 1.32 70 191 135 242 50 32

1.6 -0.075 4.5 0.44 88 213 129 235 64 45

1.6 -0.075 4.5 0.88 78 198 144 273 53 39

1.6 -0.075 4.5 1.32 60 160 142 272 48 35

1.6 -0.15 2.7 0.44 90 207 150 264 68 51

1.6 -0.15 2.7 0.88 71 180 117 226 58 39

1.6 -0.15 2.7 1.32 76 191 129 235 53 38

1.6 -0.15 3.6 0.44 81 194 132 229 55 42

1.6 -0.15 3.6 0.88 69 177 130 249 52 41

1.6 -0.15 3.6 1.32 76 190 142 254 54 41

1.6 -0.15 4.5 0.44 82 206 145 252 61 49

1.6 -0.15 4.5 0.88 89 192 149 262 68 33

1.6 -0.15 4.5 1.32 85 206 131 225 63 39

1.7 0 2.7 0.44 203 288 287 430 165 123

1.7 0 2.7 0.88 193 286 288 430 162 108

1.7 0 2.7 1.32 167 263 266 396 126 95

1.7 0 3.6 0.44 190 285 291 418 142 102

1.7 0 3.6 0.88 184 275 268 408 130 86
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Table 4.12: Simulation of 10% Normality Tests on α-stable Samples
of Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 0 3.6 1.32 187 255 279 437 136 108

1.7 0 4.5 0.44 192 283 283 421 139 99

1.7 0 4.5 0.88 211 293 290 444 155 117

1.7 0 4.5 1.32 196 289 295 413 148 105

1.7 -0.075 2.7 0.44 179 273 254 398 128 97

1.7 -0.075 2.7 0.88 201 269 281 413 147 106

1.7 -0.075 2.7 1.32 191 285 297 437 155 113

1.7 -0.075 3.6 0.44 212 285 290 396 152 123

1.7 -0.075 3.6 0.88 189 279 276 417 143 115

1.7 -0.075 3.6 1.32 196 293 297 411 142 99

1.7 -0.075 4.5 0.44 183 272 278 402 136 100

1.7 -0.075 4.5 0.88 197 279 282 423 147 115

1.7 -0.075 4.5 1.32 185 260 278 417 139 102

1.7 -0.15 2.7 0.44 199 290 278 438 152 116

1.7 -0.15 2.7 0.88 181 259 269 413 143 111

1.7 -0.15 2.7 1.32 178 276 270 392 130 92

1.7 -0.15 3.6 0.44 207 307 301 448 160 116

1.7 -0.15 3.6 0.88 188 265 269 404 154 112

1.7 -0.15 3.6 1.32 196 300 309 440 159 122

1.7 -0.15 4.5 0.44 186 279 284 422 147 119

1.7 -0.15 4.5 0.88 203 286 299 423 163 121

1.7 -0.15 4.5 1.32 191 298 298 426 138 104

1.8 0 2.7 0.44 376 456 483 595 288 222

1.8 0 2.7 0.88 381 471 500 606 308 228

1.8 0 2.7 1.32 360 423 455 573 287 234

1.8 0 3.6 0.44 380 455 470 605 316 271

1.8 0 3.6 0.88 386 448 468 587 302 240
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Table 4.12: Simulation of 10% Normality Tests on α-stable Samples
of Size 100 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 0 3.6 1.32 393 472 500 594 305 235

1.8 0 4.5 0.44 393 464 502 611 314 254

1.8 0 4.5 0.88 373 442 460 586 297 237

1.8 0 4.5 1.32 411 483 495 610 326 262

1.8 -0.075 2.7 0.44 404 454 498 605 314 260

1.8 -0.075 2.7 0.88 380 456 482 595 281 231

1.8 -0.075 2.7 1.32 391 457 502 588 302 226

1.8 -0.075 3.6 0.44 403 462 510 612 320 262

1.8 -0.075 3.6 0.88 389 459 481 595 304 223

1.8 -0.075 3.6 1.32 374 432 474 577 299 245

1.8 -0.075 4.5 0.44 384 482 490 607 322 263

1.8 -0.075 4.5 0.88 371 451 479 597 305 251

1.8 -0.075 4.5 1.32 392 457 495 602 296 230

1.8 -0.15 2.7 0.44 400 458 498 614 307 243

1.8 -0.15 2.7 0.88 392 454 477 619 302 237

1.8 -0.15 2.7 1.32 392 465 495 616 315 261

1.8 -0.15 3.6 0.44 364 448 470 579 286 227

1.8 -0.15 3.6 0.88 392 462 495 634 320 249

1.8 -0.15 3.6 1.32 374 457 477 598 309 248

1.8 -0.15 4.5 0.44 397 476 505 611 296 239

1.8 -0.15 4.5 0.88 391 462 463 601 320 269

1.8 -0.15 4.5 1.32 414 481 499 618 324 268
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Table 4.13: Simulation of 10% Normality Tests on α-stable Samples
of Size 200 (1000 Replications)

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 0 2.7 0.44 6 262 20 84 3 1

1.6 0 2.7 0.88 14 276 27 89 7 3

1.6 0 2.7 1.32 10 278 27 73 7 6

1.6 0 3.6 0.44 3 269 14 65 2 2

1.6 0 3.6 0.88 7 278 20 77 3 1

1.6 0 3.6 1.32 10 287 24 68 4 1

1.6 0 4.5 0.44 6 263 18 74 4 3

1.6 0 4.5 0.88 7 282 13 58 7 4

1.6 0 4.5 1.32 9 267 21 77 3 2

1.6 -0.075 2.7 0.44 6 269 21 75 3 2

1.6 -0.075 2.7 0.88 7 271 22 73 4 1

1.6 -0.075 2.7 1.32 4 284 16 67 2 1

1.6 -0.075 3.6 0.44 5 282 16 63 4 2

1.6 -0.075 3.6 0.88 9 272 18 69 6 4

1.6 -0.075 3.6 1.32 7 282 20 77 5 3

1.6 -0.075 4.5 0.44 9 281 28 80 5 5

1.6 -0.075 4.5 0.88 10 281 23 81 5 1

1.6 -0.075 4.5 1.32 5 252 16 60 1 1

1.6 -0.15 2.7 0.44 4 266 13 74 1 2

1.6 -0.15 2.7 0.88 6 265 13 62 3 2

1.6 -0.15 2.7 1.32 4 283 17 72 3 3

1.6 -0.15 3.6 0.44 5 251 20 86 4 2

1.6 -0.15 3.6 0.88 7 250 15 69 4 2

1.6 -0.15 3.6 1.32 4 284 13 61 2 0

1.6 -0.15 4.5 0.44 8 273 25 65 4 0

1.6 -0.15 4.5 0.88 10 265 21 79 1 0
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Table 4.13: Simulation of 10% Normality Tests on α-stable Samples
of Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.6 -0.15 4.5 1.32 4 288 16 63 3 1

1.7 0 2.7 0.44 45 204 92 199 23 18

1.7 0 2.7 0.88 42 217 100 195 24 15

1.7 0 2.7 1.32 42 225 82 211 24 14

1.7 0 3.6 0.44 38 208 90 213 27 16

1.7 0 3.6 0.88 40 211 96 215 22 17

1.7 0 3.6 1.32 38 200 78 186 21 14

1.7 0 4.5 0.44 50 215 94 206 24 16

1.7 0 4.5 0.88 35 220 89 203 19 12

1.7 0 4.5 1.32 42 215 88 200 23 14

1.7 -0.075 2.7 0.44 55 175 109 243 36 19

1.7 -0.075 2.7 0.88 46 208 103 218 31 19

1.7 -0.075 2.7 1.32 53 206 97 217 26 15

1.7 -0.075 3.6 0.44 41 200 84 207 20 9

1.7 -0.075 3.6 0.88 51 204 89 195 28 13

1.7 -0.075 3.6 1.32 31 193 79 192 21 14

1.7 -0.075 4.5 0.44 53 211 98 205 31 16

1.7 -0.075 4.5 0.88 49 192 101 215 30 15

1.7 -0.075 4.5 1.32 52 216 91 203 19 10

1.7 -0.15 2.7 0.44 31 189 85 208 19 18

1.7 -0.15 2.7 0.88 47 185 95 213 25 17

1.7 -0.15 2.7 1.32 39 179 87 219 22 14

1.7 -0.15 3.6 0.44 43 217 87 196 26 18

1.7 -0.15 3.6 0.88 41 206 78 164 16 13

1.7 -0.15 3.6 1.32 54 234 111 230 30 16

1.7 -0.15 4.5 0.44 50 197 89 212 29 22

1.7 -0.15 4.5 0.88 45 203 92 224 25 11

Continued on next page

110



Section 4.5

Table 4.13: Simulation of 10% Normality Tests on α-stable Samples
of Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.7 -0.15 4.5 1.32 43 193 87 199 21 11

1.8 0 2.7 0.44 175 295 285 433 101 66

1.8 0 2.7 0.88 200 311 283 426 125 89

1.8 0 2.7 1.32 182 297 288 443 107 77

1.8 0 3.6 0.44 189 297 308 469 122 84

1.8 0 3.6 0.88 185 282 293 465 107 77

1.8 0 3.6 1.32 182 298 278 425 125 86

1.8 0 4.5 0.44 187 306 297 419 110 86

1.8 0 4.5 0.88 197 306 271 434 116 86

1.8 0 4.5 1.32 148 266 257 419 95 68

1.8 -0.075 2.7 0.44 190 306 290 439 105 72

1.8 -0.075 2.7 0.88 175 312 274 432 91 69

1.8 -0.075 2.7 1.32 183 322 289 460 119 85

1.8 -0.075 3.6 0.44 173 278 263 427 106 75

1.8 -0.075 3.6 0.88 183 289 290 427 105 83

1.8 -0.075 3.6 1.32 192 320 303 435 133 94

1.8 -0.075 4.5 0.44 170 280 287 448 111 87

1.8 -0.075 4.5 0.88 168 285 246 405 97 72

1.8 -0.075 4.5 1.32 167 267 255 422 98 73

1.8 -0.15 2.7 0.44 158 281 289 445 110 81

1.8 -0.15 2.7 0.88 184 304 272 437 111 84

1.8 -0.15 2.7 1.32 156 262 231 396 103 71

1.8 -0.15 3.6 0.44 146 248 257 424 84 52

1.8 -0.15 3.6 0.88 171 285 263 436 103 70

1.8 -0.15 3.6 1.32 188 296 291 448 126 87

1.8 -0.15 4.5 0.44 164 271 289 437 104 78

1.8 -0.15 4.5 0.88 169 274 278 429 107 73
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Table 4.13: Simulation of 10% Normality Tests on α-stable Samples
of Size 200 (1000 Replications) continued

No. of replications where normality hypothesis accepted

α-Stable Parameters Anderson- Cramer- Shapiro- Jarque-

α β γ δ Darling von Mises Lilliefors Pearson Wilk Bera

1.8 -0.15 4.5 1.32 207 322 319 470 114 85

Table 4.14: Simulation of Normality Tests on a Normal Distribution
(1000 replications)

No. of replications where normality hypothesis accepted

Simulation details Test

sample test Anderson- Cramer- Shapiro- Jarque-

size size st.dev mean Darling von Mises Lilliefors Pearson Wilk Bera

50 5 3.8 0.44 946 950 942 946 934 947

50 5 3.8 0.88 946 939 955 955 951 940

50 5 3.8 1.32 938 938 947 944 933 928

50 5 5.1 0.44 935 934 932 933 934 933

50 5 5.1 0.88 946 942 945 958 944 946

50 5 5.1 1.32 957 951 953 944 964 949

50 5 6.4 0.44 937 935 937 944 940 941

50 5 6.4 0.88 938 926 942 938 948 951

50 5 6.4 1.32 951 951 953 954 958 951

100 5 3.8 0.44 953 955 958 952 951 944

100 5 3.8 0.88 948 948 944 950 952 943

100 5 3.8 1.32 949 948 952 947 945 938

100 5 5.1 0.44 954 954 954 949 945 936

100 5 5.1 0.88 953 954 965 953 958 941

100 5 5.1 1.32 953 953 944 961 956 949

100 5 6.4 0.44 944 942 941 942 945 933

100 5 6.4 0.88 942 931 936 960 941 935

100 5 6.4 1.32 952 947 947 948 957 950
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Table 4.14: Simulation of Normality Tests on a Normal Distribution
(1000 Replications) continued

No. of replications where normality hypothesis accepted

Simulation details Test

sample test Anderson- Cramer- Shapiro- Jarque-

size size st.dev mean Darling von Mises Lilliefors Pearson Wilk Bera

200 5 3.8 0.44 949 953 954 956 953 948

200 5 3.8 0.88 940 947 943 946 948 943

200 5 3.8 1.32 949 951 953 939 949 937

200 5 5.1 0.44 952 952 956 941 945 954

200 5 5.1 0.88 952 953 953 944 957 948

200 5 5.1 1.32 970 967 961 951 952 953

200 5 6.4 0.44 956 954 949 949 963 955

200 5 6.4 0.88 947 945 950 938 952 949

200 5 6.4 1.32 947 946 948 943 953 950

50 1 3.8 0.44 983 982 983 985 987 983

50 1 3.8 0.88 990 992 994 993 986 989

50 1 3.8 1.32 988 990 991 992 987 982

50 1 5.1 0.44 981 982 986 986 981 984

50 1 5.1 0.88 985 986 989 993 992 982

50 1 5.1 1.32 992 991 992 989 994 989

50 1 6.4 0.44 985 983 989 988 984 984

50 1 6.4 0.88 986 981 987 987 990 989

50 1 6.4 1.32 991 990 991 994 992 990

100 1 3.8 0.44 993 993 994 992 992 987

100 1 3.8 0.88 993 991 991 993 993 985

100 1 3.8 1.32 990 990 989 993 986 986

100 1 5.1 0.44 989 989 988 988 989 977

100 1 5.1 0.88 992 992 990 994 991 985

100 1 5.1 1.32 985 986 987 993 988 987

100 1 6.4 0.44 989 986 992 988 983 980

100 1 6.4 0.88 988 987 985 990 982 988
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Table 4.14: Simulation of Normality Tests on a Normal Distribution
(1000 Replications) continued

No. of replications where normality hypothesis accepted

Simulation details Test

sample test Anderson- Cramer- Shapiro- Jarque-

size size st.dev mean Darling von Mises Lilliefors Pearson Wilk Bera

100 1 6.4 1.32 988 992 989 989 990 986

200 1 3.8 0.44 992 993 991 992 992 987

200 1 3.8 0.88 988 991 993 993 987 985

200 1 3.8 1.32 993 990 993 993 991 986

200 1 5.1 0.44 989 989 986 988 992 977

200 1 5.1 0.88 992 992 992 994 992 985

200 1 5.1 1.32 994 986 998 993 990 987

200 1 6.4 0.44 994 986 996 988 994 980

200 1 6.4 0.88 991 987 991 990 988 988

200 1 6.4 1.32 989 992 991 989 991 986

50 10 3.8 0.44 891 893 906 895 885 893

50 10 3.8 0.88 896 894 898 896 902 889

50 10 3.8 1.32 870 868 881 892 880 877

50 10 5.1 0.44 880 885 873 879 884 869

50 10 5.1 0.88 887 881 905 912 878 889

50 10 5.1 1.32 898 906 895 900 907 907

50 10 6.4 0.44 890 877 886 893 886 886

50 10 6.4 0.88 886 881 870 885 896 906

50 10 6.4 1.32 906 907 910 906 906 915

100 10 3.8 0.44 909 909 904 901 906 888

100 10 3.8 0.88 894 891 897 896 906 888

100 10 3.8 1.32 894 895 894 892 894 885

100 10 5.1 0.44 899 907 901 892 894 879

100 10 5.1 0.88 916 917 921 909 917 887

100 10 5.1 1.32 903 893 891 910 912 910

100 10 6.4 0.44 898 891 877 895 899 889

Continued on next page
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Table 4.14: Simulation of Normality Tests on a Normal Distribution
(1000 Replications) continued

No. of replications where normality hypothesis accepted

Simulation details Test

sample test Anderson- Cramer- Shapiro- Jarque-

size size st.dev mean Darling von Mises Lilliefors Pearson Wilk Bera

100 10 6.4 0.88 885 884 881 908 894 889

100 10 6.4 1.32 895 901 891 886 905 903

200 10 3.8 0.44 913 909 905 901 902 888

200 10 3.8 0.88 893 891 879 896 896 888

200 10 3.8 1.32 900 895 892 892 889 885

200 10 5.1 0.44 909 907 903 892 904 879

200 10 5.1 0.88 908 917 913 909 913 887

200 10 5.1 1.32 922 893 911 910 913 910

200 10 6.4 0.44 895 891 899 895 896 889

200 10 6.4 0.88 895 884 893 908 905 889

200 10 6.4 1.32 905 901 894 886 908 903
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CHAPTER 5

Value at Risk (VaR) and the α-stable Distribution1

5.1 Introduction

Today Value at Risk (VaR) is the most common measure of risk used in many

financial institutions. VaR at a p% level is estimated as the loss that might

be exceeded p% of the time. Like many other models in finance it is often

based on an assumption that losses follow a normal distribution. It is now

well known that extreme losses are greater than, and occur much more often

than, a normal distribution would predict. To allow for this, VaR measures

are sometimes based on a t-distribution or on ARCH/GARCH systems with

innovations having a normal or t-distribution. The emphasis here is on the

use of an α-stable distribution.2 Several other distributions or mixtures of

distributions have been proposed but none has received universal acceptance

1This Chapter is based on a paper (Frain (2008b)) presented at:

• TCD Graduate Seminar, December 2007.

• Seminar, Kemmy Business School, University of Limerick, April 2008.

• IEA Annual Conference April 2008.

2 For details of the α-stable distribution see Section 2.2 and Appendix A.
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and it is probable that none ever will.

The purpose of this exercise is to evaluate the merit of calculating VaR

on the assumption of an underlying non-normal α-stable distribution. Thus,

we calculate VaR at various levels assuming that losses follow either a static

α-Stable distribution or a TS-GARCH type process with α-stable innovations.

The resulting estimates are compared with estimates obtained from static

normal and t-distributions and GARCH(1,1) processes with normal and t-

innovations. VaR is estimated for six total return3 equity indices (ISEQ, CAC40,

DAX30, FTSE100, S&P500, Dow Jones Composite (DJAC)) at 10%, 5%, 1%, 0.5%

and 0.1% levels.

Section 5.2 of the Chapter gives a brief outline of the development and

definition of VaR. The main results of the analysis are in Section 5.3. All

parameter estimates are maximum likelihood estimates. Technical details and

results of the estimations along with descriptions of the data and software

used are in the appendices to this chapter. The results may be summarised

as follows.

First, the normal distribution performs very badly even at the conventional

5% and 1% levels. It tends to overestimate VaR at the higher probability levels

and underestimate at the lower. This is what one would expect given the

observed fat tails of the returns distribution and the exponential decay in the

tails of the normal distribution. It is misleading to management to the extent

that they may agree to some investments that would not be accepted if a more

accurate assessment of risk was used.

The t-distribution appears to perform very well, particularly in the tails of

the distribution. Empirically it is marginally (but not statistically significantly)

better than the α-stable. The simplicity of the t-distribution makes it an at-

tractive alternative. While it appears to work well empirically there is no good

theoretical or other economic explanation as to why this is so. Many time

series models perform well but they can usually be regarded as a reduced

form of some structural model. We do not know how a t-distribution can be

a reduced form of a structural model. We would fear that results based on a

t-distribution might not be robust.

3In calculating these indices it is assumed that dividends are reinvested in the portfolio.
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The GARCH distributions with normal innovations performs somewhat

better than the static normal distribution. Curiously the GARCH distribution

with t-innovations does not perform as well as the static t-distribution but is

better than the GARCH with normal innovations.

The static α-stable performance is about equivalent to the t-distribution

but is excellent at the conventional levels. Extreme VaR at levels less than 1%

tends to be conservative. Perhaps this is due to institutional factors within

the exchange, takeovers of failing companies or to actions by supervisory au-

thorities aimed at avoiding contagion. In such cases it is unlikely that any

recorded loss is the private loss and does not include elements of the pub-

lic cost of a failure.4 The α-stable GARCH(1,1) model for losses provides the

best measure of VaR. It gives good estimates at all VaR levels for all the in-

dices considered. The theoretical justification for the good results is given

in Appendix A. We have shown that the estimates of VaR derived from an

α-stable distribution are feasible and are a useful addition to the toolbox of a

risk manager or a financial regulator.

Section 5.4 summarises the analysis and sets out the conclusions that may

be drawn from the analysis.

5.2 Value at Risk (VaR)

The worldwide equity crisis in 1987, the fall in the Japanese equity market

in 1990, the Mexican peso crisis in 1994/95 and the severe losses suffered in

various derivative transactions in the 1990s were a strong incentive to both

market participants and regulators to measure and monitor market and other

exposures to risk. Jorian (2007, p. 32) estimates losses in the 1990s publicly

attributed to derivatives at over $ 30 billion. Given the overall volume of

derivative trading this is not an enormous sum. It is extremely problematic to

the individual companies that incurred the losses. Financial regulators would

also fear that losses such as these might have knock-on effects that would

4 The estimates in this chapter were completed before the current period of volatility. If
this period were included in the analysis it is likely that the stable distribution would be
even closer to reality.
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effect the efficient functioning of markets. Jorian (2007) lists five firms that

each had losses of more than $ 1 billion attributed to derivative trading:5

• Orange County, California, December 1994, Reverse Repos, loss $1810

billion.

• Showa Shell Sekiyu, Japan, February 1993, Currency Forwards, loss $1580

billion.

• Kashima Oil, Japan, April 1994, Currency Forwards, loss $1450 billion.

• Metallgesellschaft, January 1994, Germany, Oil Futures, loss $1340 bil-

lion.

• Barings, U.K., February 1995, Stock Index Futures, loss $1330 billion.

One lesson to be learned from these and similar events was the need to in-

troduce better methods of risk assessment and monitoring. At that time of-

ten simple rules based on guidelines like “high liquidity”, “low” interest rate

risk, hedging, limits on amount invested, sectors etc. were often used. Such

rules were often ambiguous or could easily be circumvented by “resource-

ful” traders. Many losses of the type outlined above were due to inadequate

and/or circumvented supervisory controls. In the US the Sarbanes-Oxley Act

of 2002 created a more rigourous legal environment for the board, the man-

agement committee, internal and external auditors, and the chief risk officer.

5 Other recent large financial losses, not covered in this list, include:

• Society Generale, $ 7.2 bn. European Index Futures, (New York Times, January 25
2008).

• Amaranth Advisors, $ 6.5 bn. Leveraged Gas Futures, (MoneyWeek, 6 October 2006).

• LTCM, $4 bn. Convergence Arbitrage Hedge Fund, (Hull (2007)).

• Sumitomo, $2.6 bn. Copper Futures (The Japan Times, 26 March, 1998).

• DAIWA $1.1 bn. Illegal bond trading in 11 years from 1984 to 1995.

Dowd (2002), page 12, reports that LTCM had a risk model that suggested that the loss it
suffered in the summer and autumn of 1998 was 14 times the standard deviation of its
expected profit/loss and that a 14-sigma event should not occur once in the entire history
of the universe. So LTCM were either very unlucky or their risk model was faulty. Each of
the other four losses was attributed to the actions of one individual in the company.
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These regulations apply to all companies with a quotation on a US exchange

and thus apply to several large Irish companies. Management and directors

of such institutions are now required to have risk measurement, audit and

control systems in place and to report regularly on these. The financial reg-

ulatory authorities have now adopted the Basel II Capital Adequacy Directive

which allows institutions to use, subject to approval, their internal risk mea-

surement systems to determine capital adequacy for regulatory purposes.

Value-at-Risk (VaR) is a commonly used measure of the risk of an invest-

ment or a portfolio or even an entire institution. A p% VaR is the lower limit

on the proportion of a portfolio that can be lost p% of the time. Thus a p%

VaR is the (100 − p)% quantile of the loss distribution i.e. the p% VaR, Vp is

given by

Prob[ loss ≥ Vp] = p.

This is illustrated in figure 5.1 where the value at the left boundary of the

shaded area represents the 5% VaR.

Thus if the daily loss on a portfolio is normally distributed with an ex-

pected value of 0.005% and a standard deviation of 0.010, one would expect

to lose:

• more than 0.0114% 5% of the time.

• more than 0.0183% 1% of the time.

The daily VaR of the portfolio is then 0.0114% and 0.0183% at the 5% and

1% levels respectively. A properly implemented VaR includes all sources of

risk and should encompass market, operational, credit, liquidity and model

risk. VaR may be calculated at enterprise level, at various sector levels within

the organisation and at individual trader level — the VaR at lower levels being

aggregated to estimate VaR at the higher levels. Operational VaR levels may

be set for individual traders. VaR limits for individual traders should also

facilitate control of operations as a dealer operating outside his limits will
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Figure 5.1: Loss Distribution and 5% Value at Risk

be detected if his dealings are properly recorded by the system.6 It should

be added that the risk management function in an organisation should not

depend solely on a VaR system but should have a range of tools available to it.

If one looks at many of the derivative disasters, a proper VaR implementation

might have saved a lot of embarrassment

Risk is a very complex subject which we are not going to examine in detail

here. In brief, it is the uncertainty in forecasted future returns. As such, like

utility, it is an ordinal concept. Any one-one (strictly) monotonic transforma-

tion of a risk measure is an equivalent risk measure. The statement that one

investment is 10% more risky than another simply does not make sense.

Artzner et al. (1999) set out a list of desirable properties that a measure of

risk should have. Let X and Y be two assets. A risk measure ρ() is coherent

if it has the following four properties

Subadditivity: ρ(X + Y) ≤ ρ(X)+ ρ(Y) (diversification reduces risk).

6A dealer making large profits but operating outside his limits should of course be sub-
ject to the same disciplinary action as his colleague who loses money in such circumstances.
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Homogeneity: For any number α > 0, ρ(αX) = αρ(X).

Monotonicity: ρ(X) ≥ ρ(Y) if X ≤ Y .

Risk Free Condition: ρ(X + k) = ρ(X)− k for any constant k.

VaR satisfies three of these conditions but may fail on subadditivity. To cope

with this shortcoming alternative measures of risk have been proposed. Ex-

pected Shortfall (ES) is one such measure. Expected Shortfall is defined as the

expected loss given that the VaR threshold has been exceeded. Daníelsson

et al. (2005) has shown that subadditivity holds for VaR in all the distributions

considered here. Subadditivity of VaR fails for assets which have super-fat

tails (e.g. α-stable distributions where α ≤ 1, return/loss distributions which

show very little variation apart from occasional jumps (e.g. "fixed" exchange

rates) and some transactions involving derivatives). In all the cases consid-

ered here VaR is a monotonic transformation of ES and thus an equivalent

measure of risk. The difference is in the explanation given to each measure.

Presenting and explaining both measures to management gives a more com-

plete picture of the situation and may allow a deeper understanding of the

actual risk. Where there is doubt both measures should be calculated.

The main advantage of VaR is that it is a simple idea, may be relatively

easy to calculate7 and is easily explained to non-technical persons in man-

agement. In 1994, at 4.15 p.m. each evening, J.P. Morgan started to take a

snapshot of their global trading positions to estimate, for management, their

Daily-Earnings-at-Risk . This system was based on estimated correlation ma-

trices, IGARCH systems and innovations with a normal distribution. In 1996

they made the relevant data and programs (Riskmetrics) available to all other

users. This move allowed many smaller users to implement VaR systems with-

out the required investment in data and programmes. The current version of

the Riskmetrics package allows innovations to follow a t-distribution.

One problem with VaR is the apparent precision of the measurements

which may lead management to underestimate the true risk or to miss some

7For a large financial institution dealing with a large number of exotic options, the cal-
culation of VaR is not easy but it is difficult to think of a simpler alternative.
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aspect of risk. Even in the simple cases considered here one can see that the

estimates are subject to considerable margins of error. Risk managers must

be aware of the limitations of VaR and avoid creating false impressions. VaR

or for that matter any measure of risk that tries to express risk as a single

number can never be a complete measure of risk.8 This may be inconvenient

but it is true.

A second criticism of VaR is that it takes no account of the shape of the

distribution beyond the VaR point. Strictly speaking VaR estimates of two

portfolios may be comparable only if the distributions of losses arising from

the two portfolios are similar. A dealer may be able to increase returns by

selling derivatives which might hedge the purchaser against some extreme

risk. If the probability of the extreme event was small this would have very

little effect of his calculated VaR. He has, however, changed the distribution

of his losses. This is a serious problem with VaR systems and demonstrates

the need to keep watch on the entire loss distribution. Risk management

is a dynamic process and not simply a black box. Risk managers need to be

extremely competent and be aware of the ability of traders to adapt to various

constraints imposed on them. The risk manager needs to oversee the entire

loss profile and not depend solely on an individual measure such as VaR. The

combined use of VaR and ES might prove useful in such circumstances.

Any risk assessment should be supplemented by scenario analysis. In this

procedure the loss is estimated for various scenarios which may be stylised or

derived from historical events. If this procedure is done properly it provides

a valuable addition to VaR and similar risk assessment.

Frain and Meegan (1996) contains an account of the concepts and analytics

of Value-at Risk. For more details see also Dowd (1998, 2002), Jorian (2007)

and Crouhy et al. (2006).

8 If all returns distributions were normal, then the estimated mean and variance are
sufficient statistics and the variance or standard deviation or VaR as a multiple of the
standard deviation would along with the mean returns give a complete picture of all that
could be learned from the data.
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5.3 Empirical Results

In this section we calculate and evaluate static and dynamic estimates of VaR.

The four static estimates are based on:

1. a normal distribution,

2. a t-distribution, or

3. an α-stable distribution and

4. a non-parametric quantile estimation procedure.

Our initial evaluation of the parametric estimates is based on a comparison

of the parametric and non-parametric estimators.

The dynamic VaR estimates are based on GARCH(1,1) processes with nor-

mal, t, and α-stable innovations. If an estimate of VaR at p% is good then it

should be exceeded in the sample close to p% of the time. For each of the

VaR estimates we calculate the exceedances and test the difference between

the observed and predicted exceedances. This same test is also applied to the

static estimates.

All distribution parameters are estimated by maximum likelihood. The

Tables in Appendix 5.5 give details of these estimates. Data sources and

software used are described in Appendix 5.5.4
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5.3.1 VaR Estimates

Tables 5.1 to 5.5 set out static estimates of the VaR at 10%, 5%, 1%, 0.5%

and 0.1% levels, respectively, for an investment in each of the six total return

equity indices:

• ISEQ (daily from 4 January 1988 to 31 January 2008).

• CAC40 (daily from 31 December 1987 to 31 January 2008).

• DAX30 (daily from 28 September 1959 to 31 January 2008).

• FTSE100 (daily from 31 December 1985 to 31 January 2008).

• Dow Jones Composite (DJAC) (daily from 30 September 1987 to 31 Jan-

uary 2008).

• S&P500 (daily from 29 December 1989 to 31 January 2008).

The quantiles are calculated on the basis of returns following:

• An α-stable distribution with parameters estimated by maximum likeli-

hood.

• A normal distribution with parameters estimated by maximum likeli-

hood.

• A t-distribution9 with nonzero mean, nonunitary scale and degrees of

freedom to be estimated by maximum likelihood

9 The standard t-distribution with ν degrees of freedom has zero mean and variance
ν/(ν−2) if ν > 2. The t-distribution considered here is a generalisation of this distribution
with mean µ, scale σ and degrees of freedom ν . Its probability density function is given by

f(x|µ,σ , ν) = Γ[(ν + 1)/2]

(πν)1/2Γ(ν/2)
σ−1

[1+ (x − µ)2/(σ 2ν)](ν+1)/2
, −∞ < x <∞.

where Γ(·) is the gamma function. Note that the standard deviation of x is σ
√

ν
ν−2 . If µ = 0

and σ = 1 this reduces to the standard Student’s t-distribution with ν degrees of freedom.
The heavier tails of the t-distribution are often used in economics and finance to model the
fat tails that are often observed. Often the justification is empirical. A Bayesian justification
involves a mixture of normal distributions with known mean and a prior inverse gamma
distribution for the variance. For more details and references see Weitzman (2007).
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Table 5.1: 10% VaR for each Equity Index for α-stable, Normal and t- distribu-
tions

Distribution (1) Sample Quantile
Index Stable Normal t Quantile s.e. (2)
ISEQ 1.04 1.23 1.13 1.03 0.03
CAC40 1.48 1.61 1.52 1.43 0.03
DAX30 1.27 1.49 1.31 1.23 0.02
FTSE100 1.15 1.30 1.22 1.13 0.02
DJAC 1.05 1.26 1.11 1.04 0.03
S&P500 1.10 1.20 1.14 1.09 0.03
(1) Harrell and Davis (1982)
(2) Bootstrap estimate

• A distribution free estimate of each quantile based on Harrell and Davis

(1982). A bootstrapped standard error of each non-parametric quantile

estimate was also calculated.

The estimates of the parametric distributions, in bold case, in the first three

columns are within two standard deviations of the non-parametric estimates.

If we regard the nonparametric estimates and their bootstrapped standard

errors as accurate such estimates are then, at least, consistent with the non-

parametric estimates and may be regarded as “good”.

On this criterion the estimates based on a normal distribution are of little

value. They overestimate VaR at 10%, are a little high at 5% and underestimate

risk at the lower levels.

The estimates for the α-stable distribution are very good at the 10% and

5% levels and not that bad at the 1% levels. At the 0.5% and 0.1% levels they

appear to overestimate the quantiles.

The t-distribution appears to perform well at the 1%, 0.5% and 0.1% levels

and not that bad at the 5% level.
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Table 5.2: 5% VaR for each Equity Index for α-stable, Normal and t- distribu-
tions

Distribution Sample Quantile
Index Stable Normal t Quantile (1) s.e. (2)
ISEQ 1.48 1.60 1.57 1.50 0.05
CAC40 2.02 2.08 2.07 2.04 0.05
DAX30 1.75 1.92 1.81 1.76 0.03
FTSE100 1.59 1.68 1.66 1.55 0.03
DJAC 1.46 1.63 1.53 1.47 0.05
S&P500 1.54 1.55 1.56 1.55 0.04
(1) Harrell and Davis (1982)
(2) Bootstrap estimate

Table 5.3: 1% VaR for each Equity Index for α-stable, Normal and t- distribu-
tions

Distribution Sample Quantile
Index Stable Normal t Quantile (1) s.e. (2)
ISEQ 3.19 2.28 2.86 2.99 0.14
CAC40 3.89 2.95 3.49 3.59 0.17
DAX30 3.46 2.73 3.18 3.19 0.11
FTSE100 3.09 2.40 2.81 2.92 0.12
DJAC 2.97 2.32 2.69 2.59 0.10
S&P500 3.25 2.21 2.75 2.73 0.10
(1) Harrell and Davis (1982)
(2) Bootstrap estimate

Table 5.4: 0.5% VaR for each Equity Index for α-stable, Normal and t- distri-
butions

Distribution Sample Quantile
Index Stable Normal t Quantile (1) s.e. (2)
ISEQ 4.67 2.53 3.58 3.66 0.17
CAC40 5.44 3.27 4.22 4.34 0.16
DAX30 4.91 3.02 3.91 4.12 0.21
FTSE100 4.33 2.66 3.40 3.48 0.23
DJAC 4.25 2.57 3.31 3.25 0.20
S&P500 4.70 3.45 3.40 3.10 0.09
(1) Harrell and Davis (1982))
(2) Bootstrap estimate
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Table 5.5: 0.1% VaR for each Equity Index for α-stable, Normal and t- distri-
butions

Distribution Sample Quantile
Index Stable Normal t Quantile (1) s.e. (2)
ISEQ 12.00 3.04 5.91 5.55 0.55
CAC40 12.98 3.94 6.33 6.15 0.48
DAX30 11.98 3.63 6.12 6.44 0.42
FTSE100 10.37 3.20 5.12 5.61 0.71
DJAC 10.52 3.10 5.22 6.27 1.45
S&P500 11.83 2.95 5.40 4.68 0.68
(1) Harrell -Davis (1982)
(2) Bootstrap estimate
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5.3.2 Exceedances of VaR Estimates

If a p% VaR estimate is reasonable we would expect that losses should exceed

it approximately p% of the time. In these circumstances, the distribution of

the number of times that the p% VaR is exceeded (the exceedances) can be

approximated by a Poisson10 distribution with parameter given by p% of the

sample size. Tables 5.6 to 5.10 present details of such counts of exceedances

and an estimate of the probability of a higher value than that found based on

the assumption of this Poisson distribution. Exceedances which accept the

null at 95% level are set in bold font.

The measures of VaR in the these tables include:

• Static normal distribution with parameters estimated by maximum like-

lihood.

• GARCH(1,1) with normal innovations estimated by maximum likelihood.

This gives rise to a dynamic VaR estimate which may be seen as a gener-

alisation of the traditional Riskmetrics Group (1999) methodology. See

appendix 5.5.2 for details of estimates and specification tests of the

GARCH(1,1) models.

• t-distribution with mean, scale and degrees of freedom estimated by

maximum likelihood (see footnote 9 on page 126)

• GARCH(1,1) with t-errors estimated by maximum likelihood. The result-

ing VaR may be compared to the Riskmetrics 2006 methodology (Zum-

bach (2006). See appendix 5.5.2 for details of estimates and specification

tests.

• α-stable distribution - parameters estimated by maximum likelihood.

See appendix 5.5.1 for details of estimates and specification tests.

• α-stable GARCH(1,1) - This is a variation of a TS-GARCH(1,1) with α-

stable innovations. See Appendix 5.5.3 for details.

10The Poisson approximation to the binomial is sufficient here.
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Table 5.6: % Exceedances for 10% VaR for each Equity Index for Normal, Nor-
mal GARCH, t, t GARCH, α-stable and α-stable GARCH

Total Return Index
ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559
Normal 7.35 8.13 7.20 7.48 6.79 8.64

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
GARCH(1,1) with 9.18 10.88 9.18 9.77 9.36 10.13

Normal Errors (0.98) (0.00) (1.00) (0.70) (0.92) (0.38)
t 8.11 8.48 8.57 7.76 7.83 8.62

(1.00) (0.99) (1.00) (1.00) (1.00) (1.00)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7
GARCH(1,1) with 6.19 9.14 8.12 8.78 7.15 8.36
t Errors (1.00) (0.02) (1.00) (1.00) (1.00) (1.00)
α-Stable 9.77 9.39 9.52 9.56 9.87 9.87

(0.69) (0.91) (0.95) (0.84) 0.61 (0.60)
α-Stable 10.18 10.48 10.18 10.44 10.61 10.91

GARCH(1,1) (0.32) (0.13) (0.26) (0.15) (0.08) (0.03)
Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 5.7: % Exceedances for 5% VaR for each Equity Index for Normal, Normal
GARCH, t, t GARCH, α-stable and α-stable GARCH

Total Return Index
ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559
Normal 4.40 4.79 4.07 4.10 4.11 4.98

(1.00) (0.74) (1.00) (1.00) (1.00) (0.51)
GARCH(1,1) with 4.39 4.47 4.40 3.87 4.32 4.47

Normal Errors (1.00) (0.95) (1.00) (1.00) (0.99) (0.94)
t 4.17 4.27 4.40 3.87 4.65 4.47

(1.00) (0.95) (1.00) (1.00) (0.86) (0.94)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7
GARCH(1,1) with 3.87 4.27 3.87 4.12 3.28 3.90
t Errors (1.00) (0.99) (1.00) (1.00) (1.00) (1.00)
α-Stable 5.18 4.98 5.00 4.66 5.02 5.13

(0.27) (0.50) (0.47) (0.87) (0.46) (0.33)
α-Stable 5.30 5.58 5.24 5.45 5.20 5.51

GARCH(1,1) (0.16) (0.03) (0.11) (0.06) (0.25) (0.06)
Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 5.8: % Exceedances for 1% VaR for each Equity Index for Normal, Normal
GARCH, t, t GARCH, α-stable and α-stable GARCH

Total Return Index
ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559
Normal 2.12 1.76 1.61 1.70 1.47 1.97

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
GARCH(1,1) with 1.32 1.52 1.32 1.47 1.82 1.78
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
t 1.03 1.01 1.00 1.08 0.83 0.92

(0.37) (0.44) (0.51) (0.26) (0.87) (.67)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7
GARCH(1,1) with 0.65 0.69 0.65 0.86 0.52 0.68
t Errors (1.00) (0.99) (1.00) (0.83) (1.00) (0.99)
α-Stable 0.79 0.83 0.81 0.82 0.62 0.35

(0.92) (0.87) (0.98) (0.90) (1.00) (1.00)
α-Stable 0.97 1.11 1.13 1.09 1.09 1.12

GARCH(1,1) (0.54) (0.20) (0.07) (0.22) (0.24) (0.19)
Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 5.9: % Exceedances for 0.5% VaR for each Equity Index for Normal, Nor-
mal GARCH, t, t GARCH, α-stable and α-stable GARCH

Total Return Index
ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559
Normal 1.55 1.31 1.17 1.34 1.00 1.43

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
GARCH(1,1) with 0.81 0.91 0.82 0.95 1.16 1.16
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
t 0.50 0.53 0.57 0.52 0.43 0.20

(0.46) (0.32) (0.12) (0.37) (0.74) (1.00)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7
GARCH(1,1) with 0.33 0.32 0.34 0.52 0.29 0.35

t Errors (0.99) (0.97) (0.99) (0.50) 0.98 (0.91)
α-Stable 0.18 0.18 0.31 0.25 0.21 0.09

(1.00) (1.00) (1.00) (1.00) 1.00 (1.00)
α-Stable 0.32 0.47 0.51 0.56 0.47 0.81

GARCH(1,1) (0.96) (0.55) (0.39 (0.24) (0.59) (0.81)
Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 5.10: % Exceedances for 0.1% VaR for each Equity Index for Normal,
Normal GARCH, t, t GARCH, α-stable and α-stable GARCH

Total Return Index
ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559
Normal 0.95 0.83 0.69 0.66 0.58 0.61

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
GARCH(1,1) with 0.34 0.33 0.34 0.43 0.54 0.55
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
t 0.11 0.08 0.12 0.13 0.14 0.09

(0.32) (0.57) (0.24) (0.20) (0.15 ) (0.48)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7
GARCH(1,1) with 0.06 0.12 0.11 0.11 0.11 0.11

t Errors (1.00) (0.25) (0.32) (0.48) (0.26) (0.31)
α-Stable 0.00 0.00 0.01 0.04 0.02 0.00

(0.99) (0.99) (1.00) (0.92) (0.96) (0.99)
α-Stable 0.06 0.06 0.05 0.04 0.06 0.04

GARCH(1,1) (0.74) (0.74) (0.96) (0.92) (0.76) (0.083)
Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 5.11 provides a summary of Tables 5.6 to 5.10 For each VaR level

and for each index it give details of:

• the number of times the proportion of exceedances was significantly

less than the VaR level. In these cases the estimate of the risk is too

high.

• the number of times that exceedances were not significantly different to

the VaR level. In these cases the measure of risk can not be rejected.

• the number of times the proportion of exceedances was significantly

more than the VaR level. In these cases risk has been under estimated.

On the basis of these results the VaR estimates derived from an α-stable

GARCH(1,1) are more accurate than the other estimates examined. The ob-

served exceedances are not statistically different from the expected for any of

the equity indices at any of the five levels considered. Table 5.25 on page 158

sets out, for the returns on each of the equity indices, the estimates for the pa-

rameters of this α-stable GARCH process. It should be noted that while they

are greater than the corresponding static estimates, the α parameters are sig-

nificantly less than 2 in all cases. Table 5.26 on page 159 gives exceedances

and percentage exceedances for this process.

Figure 5.2 shows a typical example of VaR estimated in this way and the

corresponding losses

The static α-stable and the t-distribution are next in order of merit. The

α-stable distribution performs best at the 10% and 5% levels and is some-

what conservative at the 1% and 0.1% level and very conservative at the 0.5%

level. The t-distribution performs extremely well in the extreme tails of the

distribution.

The ease of implementation of a VaR system based on a t-distribution,

compared to the equivalent based on an α-stable , combined with the results

here would incline many people to favour the t-distribution. However the

sum or average of independent observations from a t-distribution does not

follow a t-distribution. Thus if returns on individual components of an in-

vestment portfolio have a t-distribution the return on the portfolio will not
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Table 5.11: Summary Exceedances

Distribution
VaR Result Normal GARCH t-distr. GARCH α-Stable α-Stable All
Level (Normal) (t-distr) GARCH

low 6 2 6 5 0 0 19
10% equal 0 3 0 1 6 6 16

high 0 1 0 0 0 0 1

low 4 4 3 6 0 0 17
5% equal 2 2 3 0 6 6 19

high 0 0 0 0 0 0 0

low 0 0 0 5 3 0 8
1% equal 0 0 6 1 3 6 16

high 6 6 0 1 0 0 12

low 0 0 1 3 6 0 10
0.5% equal 0 1 5 3 0 6 15

high 6 5 0 1 0 0 11

low 0 0 0 1 4 0 5
0.1% equal 0 0 6 5 2 6 19

high 6 6 0 0 0 0 12

low 10 6 10 20 13 0 59
All equal 2 6 20 10 17 30 85

high 18 18 0 0 0 0 36

Result -
low : % exceedances < VaR level - conservative view
equal : % exceedances not significantly different from VaR level
high : % exceedances > VaR level - liberal view

137



Section 5.3

-6

-4

-2

 0

 2

 4

 6

 8

 1990  1992  1994  1996  1998  2000  2002  2004  2006  2008

1% VaR
Loss

Figure 5.2: Losses on S&P 500 and 1% VaR Based on an α-stable GARCH Pro-
cess

138



Section 5.3

have a t-distribution. If the return on the portfolio has a t-distribution then

the returns on the components will not have a t-distribution. If returns on an

asset or portfolio have a t-distribution at one frequency they will not have a

t-distribution at other frequencies. This lack of the stability property of the

t-distribution is a significant problem in using it to model returns. If the de-

grees of freedom of a t-distribution are less than two the t-distribution is in

the domain of attraction of a non-normal α-stable distribution with stability

parameter, α, equal to the degrees of freedom of the t-distribution. If the

degrees of freedom are two or greater the t-distribution is in the domain of

attraction of a normal distribution. The effect of aggregation of independent

observations on a t-distribution may be gauged from the following simula-

tion study. Six independent random samples, of size 1000, were drawn from

a standard t-distribution with 1.75 degrees of freedom and their mean across

each of the 1000 observations calculated. A t-distribution was then fitted to

the sample of 1000 means, using the methods described in this section. The

analysis was replicated 1000 times. In 856 cases the estimated degrees of

freedom was greater than 2. The mean degrees of freedom was 2.21 with a

standard deviation of 0.02. Thus approximating the distribution of the mean

(or sum of independent t-distributions as a t-distribution is likely to wrongly

place the distribution of the mean within the domain of attraction of a normal

distribution.

I also do not know of any theory in economics or finance that would lead

to a t-distribution for returns. The idea that a t-distribution for asset returns

results from a mixture of normal random variables with variance following

an inverse gamma distribution has been argued in Weitzman (2007) is math-

ematically correct and as he admits has been well known to Bayesian statisti-

cians but had no sound basis in economic theory. Many econometric models

that fall down fail, not because there are problems with their econometrics,

but because the economics behind the model is faulty or non-existent. The

t-distribution may provide a good measure of what has been going on in the

tails of the distribution but the results may be very sensitive to policy actions.

The normal distribution is conservative at the 10% level and greatly un-

derestimates risk at the 1% and lower levels. These quantile estimates based
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on the normal distribution are further evidence of the poor fit of the normal

distribution to the data.

Exceedances for the two GARCH models are not good with approximately

three quarters of the measures exceedances being significantly different from

their expected values.

5.4 Conclusions

The relative performance of the various measures of VaR considered may be

summarised as follows

The static normal distribution performs very badly even at the conven-

tional 5% and 1% levels. It tends to over estimate VaR at the higher probability

levels and under estimate at the lower. This is what one would expect given

the exponential decay in the tails of the normal distribution. A normal VaR at

1% may be extremely misleading if given to management.

The static t-distribution performs very well, particularly in the tails of

the distribution. In contrast to the normal and α-stable distributions the

t-distribution lacks the stability property and does not possess a domain of

attraction. The sometimes quoted justification for a t-distribution as a normal

mixture with variances following an inverse gamma distribution is not very

convincing.

The GARCH distributions with normal innovations performs somewhat

better than the static normal distribution. Curiously the GARCH distribution

with t-innovations does not performs better than the static t-distribution but

is better than the GARCH with normal innovations.

Thenα-stable distribution performance is about equivalent to the t-distribution

but is good at conventional VaR levels. Extreme VaR at levels less than 1%

tends to be somewhat conservative. While it is likely that the α-stable distri-

bution can be applied to all risk assessments it is an important measure that

provides a good measure of VaR at conventional levels and perhaps conser-

vative estimates at extreme levels. Given the likely effects of losses at these

extreme levels this is probably not a bad idea.
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Figure 5.3: 5% and 1% Static and Dynamic VaR of Losses on S&P 500

The α-stable GARCH(1,1) model for returns provides the best measure of

VaR. It gives good estimates at all VaR levels for all the indices considered.

The null hypothesis of a different rate of exceedances can not be rejected in

a single case.

For the Risk manager or the supervisor I have shown that accurate mea-

sures of VaR can be obtained using an α-stable distribution. Theoretical justi-

fication can be provided by the generalised central limit theorem and the time

aggregation and domain of attraction properties which define or are unique

to this distribution. Figure 5.3 compares the static and dynamic (GARCH)

α-stable 1% and 5% VaR for the S&P 500.

The volatility of the dynamic VaR may give rise to problems. Daníelsson

et al. (2001) have asked if the adoption of dynamic VaR systems of risk man-

agement lead to constrains on the financial system during times of liquidity

shortage. Masschelein (2007) has argued that, up to recent times, regulatory

VaR requirements have not been binding. It can be argued that if regulatory
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requirements had been more severe in less volatile times we may not have

encountered the severe liquidity crisis that exists today. The use of the kind

of static α-stable VaR estimates provided here might form a useful basis for

deciding appropriate levels for such an arrangement.

I have also shown that α-stable estimates of VaR are feasible. They are

a valuable and more accurate measure of VaR and would provide additional

information to a risk manager. They are, of course only one aspect of risk

management.

5.5 Appendices

5.5.1 Maximum Likelihood estimates of α-stable parameters

Table 5.12 gives results of maximum likelihood estimates of the α-stable pa-

rameters of the distribution of losses on total return indices for the ISEQ,

CAC40, DAX30, FTSE100, DJAC and S&P500. Estimation is by maximum like-

lihood computed in C++ using the stable library functions of Nolan (2005a).

The results here cover a longer period than those reported in table 2.2.11

Comparing the two tables we note that the results are basically similar apart

from the fact that the estimate of the skew statistic is significant for all in-

dices in the later table rather than for three in the earlier table. As we are

reporting results in terms of losses in this Chapter the signs of the skewness

and location statistic have been reversed.

5.5.2 GARCH estimates

Tables 5.13 to 5.24 gives results of maximum likelihood estimates of GARCH

models of the distribution of losses on total return indices for the ISEQ,

CAC40, DAX30, FTSE100, DJAC and S&P500. I estimate ARMA(p,q)-GARCH(1,1)

models for (p, q) ∈ {(0,0), (1,0), (2,0), (1,1)}. Although there are some

problems of autocorrelation in the more parsimonious models, the number

11 Table 2.2 is based on data to 26 September 2005. Table 5.12 is basee on data to end
January 2008.
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Table 5.12: Estimates of Parameters of Stable distributions of Equity Total Return
Indices (complete period)

ISEQ CAC40 DAX 30 FTSE100 DJAC S&P500

start date 04/01/88 31/12/87 28/09/59 31/12/85 30/09/87 03/01/89
end date 31/01/08 31/01/08 31/01/08 31/01/08 31/01/08 31/01/08

observations 5037 5056 12098 5578 5158 4559

αa 1.650 1.740 1.709 1.736 1.697 1.672
(0.043) (0.040) (0.027) (0.039) (0.041) (0.044)

β 0.103 0.172 0.092 0.170 0.129 0.173
(0.107) (0.130) (0.078) (0.123) (0.115) (0.116)

γ 0.539 0.761 0.657 0.601 0.545 0.551
(0.015) (0.020) (0.011) (0.015) (0.014) (0.016)

δ -0.047 -0.030 -0.020 -0.035 -0.038 -0.028

KS (stable) 0.013 0.012 0.008 0.007 0.016 0.022
p-value 0.326 0.473 0.481 0.938 0.111 0.026

LRb test of 831.6 463.3 2088.2 790.4 1217.5 471.9
Normality

a Figures in brackets under each coefficient estimate are the 95% confidence
interval half-width estimates

b Likelihood ratio test of the joint restriction α = 2 and β = 0. The test statistic
is asymptotically χ2(2) with critical values 5.99 and 9.21 at the 5% and 1%
levels respectively.
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of exceedances appears to be robust with respect to the choice of ARMA com-

ponents and the analysis is based on a constant mean. Specification tests in

bold case are not statistically significant. Estimation and testing of GARCH

processes, with normal and t innovations was completed using R (R Develop-

ment Core Team (2008)) and the Rmetrics library (Wuertz (2007)).
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Table 5.13: Estimated ARMA(p,q) GARCH(1,1), Normal Innovations (CAC40)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.066 -0.066 -0.066 -0.091

(0.015) (0.015) (0.015) (0.025)
φ1 0.179 0.019 0.363

(0.015) (0.015) (0.239)
φ2 0.019

(0.015)
θ1 0.380

(0.232)
ω 0.032 0.032 0.032 0.032

(0.006) (0.006) (0.006) (0.006)
α1 0.086 0.086 0.086 0.086

(0.009) (0.009) (0.009) (0.009)
β1 0.895 0.895 0.895 0.895

(0.011) (0.011) 0.011 (0.011)
Standardised Residual tests
J-B test 1090.50 1098.59 1104.99 1093.58
Residual Q10 17.66 15.70 15.46 16.16

Residual Q15 21.08 19.01 18.84 19.47

Residual Q20 24.33 22.52 22.37 23.04

Residual ARCH tests
ARCH Q10 13.94 13.92 13.77 13.92

ARCH Q15 17.02 17.01 16.85 17.01

ARCH Q20 18.54 18.50 18.37 18.53

Information Criterion Tests
AIC -3.115 -3.114 -3.112 -3.113
BIC -3.110 -3.108 -3.105 -3.106
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.14: Estimated ARMA(p,q) GARCH(1,1), t Innovations (CAC40)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.074 -0.063 -0.061 -0.051

(0.011) (0.010) (0.010) (0.011)
φ1 0.144 0.140 0.292

(0.014) (0.015) (0.091)
φ2 0.015

(0.014)
θ1 -0.153

(0.094)
ω 0.022 0.021 0.020 0.021

(0.006) (0.006) (0.006) (0.006)
α1 0.095 0.097 0.096 0.097

(0.016) (0.016) (0.016) (0.016)
β1 0.886 0.885 0.886 0.885

(0.019) (0.019) (0.019) (0.019)
ν 5.236 5.258 5.245 5.262

(0.373) (0.372) (0.372) (0.374)
Standardised Residual tests
Residual Q10 120.66 22.51 19.15 17.57

Residual Q15 128.44 28.66 25.15 23.44

Residual Q20 134.82 33.24 29.97 28.16

Residual ARCH tests
ARCH Q10 3.08 3.74 3.76 3.74

ARCH Q15 5.82 6.53 6.55 6.53

ARCH Q20 7.34 7.93 7.93 7.92

Information Criterion Tests
AIC -2.521 -2.499 -2.498 -2.499
BIC -2.514 -2.492 -2.489 -2.489
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.15: Estimated ARMA(p,q) GARCH(1,1) Normal Innovations (DAX 30)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.036 -0.032 -0.034 -0.044

(0.008) (0.008) (0.008) (0.011)
φ1 0.099 0.104 0.241

(0.010) (0.010) (0.072)
φ2 -0.051

(0.010)
θ1 0.347

(0.069)
ω 0.031 0.030 0.030 0.030

(0.003) (0.003) (0.003) (0.003)
α1 0.130 0.131 0.132 0.132

(0.008) (0.008) (0.008) (0.007)
β1 0.851 0.850 0.850 0.850

(0.009) (0.008) 0.008 (0.008)
Standardised Residual tests
J-B test 24402 22917 21696 17038
Residual Q10 126.84 27.28 24.36 20.53
Residual Q15 133.29 32.64 30.09 25.95
Residual Q20 43.87 41.36 39.61 34.95
Residual ARCH tests
ARCH Q10 4.65 4.38 4.44 4.50

ARCH Q15 6.37 6.47 6.58 6.66

ARCH Q20 7.67 7.97 8.15 8.24

Information Criterion Tests
AIC -2.842 -2.834 -2.814 -2.832
BIC -2.840 -2.831 -2.827 -2.828
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.16: Estimated ARMA(p,q) GARCH(1,1) t Innovations (DAX 30)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.041 -0.037 -0.039 -0.050

(0.008) (0.008) (0.008) (0.011)
φ1 0.093 0.098 -0.220

(0.009) (0.010) (0.070)
φ2 -0.048

(0.009)
θ1 0.320

(0.068)
ω 0.022 0.022 0.021 0.022

(0.003) (0.003) (0.003) (0.003)
α1 0.109 0.112 0.111 0.111

(0.008) (0.008) (0.008) (0.008)
β1 0.876 0.873 0.874 0.873

(0.008) (0.008) (0.008) (0.008)
ν 10.814 10.875 10.773 10.804

(0.826) (0.831) (0.821) (0.823)
Standardised Residual tests
Residual Q10 127.78 28.74 24.24 20.48
Residual Q15 134.36 34.26 30.15 26.08
Residual Q20 144.88 43.00 39.60 35.03
Residual ARCH tests
ARCH Q10 4.89 4.90 5.05 5.08

ARCH Q15 7.04 7.41 7.61 7.64

ARCH Q20 9.13 9.67 9.98 9.99

Information Criterion Tests
AIC -2.800 -2.792 -2.790 -2.790
BIC -2.797 -2.788 -2.785 =2.786
5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.17: Estimated ARMA(p,q) GARCH(1,1), Normal Innovations (FTSE100)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.065 -0.064 -0.064 -0.064

(0.011) (0.011) (0.011) (0.022)
φ1 0.024 0.024 0.019

(0.014) (0.014) (0.302)
φ2 -.002

(0.014)
θ1 -0.004

(0.303)
ω 0.018 0.018 0.018 0.018

(0.004) (0.004) (0.004) (0.004)
α1 0.091 0.091 0.091 0.091

(0.009) (0.009) (0.009) (0.009)
β1 0.893 0.893 0.893 0.893

(0.011) (0.011) 0.011 (0.011)
Standardised Residual tests
J-B test 10791 10856 10885 10857
Residual Q10 17.05 10.09 10.01 10.08

Residual Q15 23.38 16.10 16.04 16.09

Residual Q20 28.31 20.95 20.96 20.95

Residual ARCH tests
ARCH Q10 8.79 8.10 8.09 8.10

ARCH Q15 11.49 10.80 10.80 10.80

ARCH Q20 15.83 15.21 15.20 15.21

Information Criterion Tests
AIC -2.644 -2.643 -2.642 -2.642
BIC -2.639 -2.637 -2.635 -2.635
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.18: Estimated ARMA(p,q) GARCH(1,1) t Innovations (FTSE100)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.068 -0.067 -0.068 -0.079

(0.014) (0.011) (0.011) (0.025)
φ1 0.021 0.022 -0.155

(0.014) (0.014) (0.313)
φ2 -0.017

(0.014)
θ1 0.178

(0.312)
ω 0.014 0.014 0.014 0.014

(0.003) (0.003) (0.003) (0.003)
α1 0.080 0.078 0.079 0.080

(0.009) (0.008) (0.008) (0.008)
β1 0.906 0.906 0.907 0.906

(0.009) (0.010) (0.010) (0.009)
ν 12.397 12.432 12.272 12.404

(1.549) (1.558) (1.532) (1.553)
Standardised Residual tests
Residual Q10 17.04 10.53 11.277 10.26

Residual Q15 23.36 16.57 17.39 16.28

Residual Q20 28.36 21.49 22.51 21.24

Residual ARCH tests
ARCH Q10 12.30 11.37 11.33 11.29

ARCH Q15 14.99 14.06 14.02 13.98

ARCH Q20 19.14 18.28 18.16 18.18

Information Criterion Tests
AIC -2.608 -2.607 -2.606 -2.606
BIC -2.602 -2.600 -2.598 -2.2.598
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.19: Estimated ARMA(p,q) GARCH(1,1), Normal Innovations (ISEQ)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.075 -0.062 -0.061 -0.048

(0.012) (0.012) (0.012) (0.012)
φ1 0.150 0.146 0.341

(0.016) (0.016) (0.099)
φ2 0.018

(0.016)
θ1 -0.197

(0.104)
ω 0.034 0.033 0.033 0.033

(0.012) (0.006) (0.006) (0.006)
α1 0.090 0.089 0.089 0.089

(0.011) (0.011) (0.011) (0.011)
β1 0.877 0.877 0.876 0.877

(0.016) (0.015) 0.015 (0.015)
Standardised Residual tests
J-B test 14401.46 15342.95 15272.99 15182.22
Residual Q10 119.87 21.10 17.56 15.47

Residual Q15 127.60 27.28 23.58 21.27

Residual Q20 134.68 32.47 29.06 27.72

Residual ARCH tests
ARCH Q10 2.55 3.69 3.80 3.63

ARCH Q15 4.58 5.77 5.93 5.73

ARCH Q20 5.57 6.63 6.70 6.59

Information Criterion Tests
AIC -2.633 -2.613 -2.612 -2.612
BIC -2.628 -2.606 -2.604 -2.604
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.20: Estimated ARMA(p,q) GARCH(1,1) t Innovations (ISEQ)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.074 -0.063 -0.061 0.051

(0.011) (0.010) (0.010) (0.011)
φ1 0.144 0.140 0.292

(0.014) (0.015) (0.091)
φ2 0.015

(0.014)
θ1 -0.153

(0.094)
ω 0.022 0.021 0.020 0.021

(0.006) (0.006) (0.006) (0.006)
α1 0.095 0.097 0.096 0.097

(0.016) (0.016) (0.016) (0.016)
β1 0.886 0.885 0.886 0.885

(0.019) (0.019) (0.019) (0.019)
ν 5.236 5.258 5.245 5.262

(0.373) (0.372) (0.372) (0.374)
Standardised Residual tests
Residual Q10 120.66 22.51 19.15 17.57

Residual Q15 128.44 28.66 25.15 23.44

Residual Q20 134.82 33.24 29.97 28.16

Residual ARCH tests
ARCH Q10 3.08 3.74 3.76 3.74

ARCH Q15 5.82 6.53 6.55 6.53

ARCH Q20 7.34 7.93 7.93 7.92

Information Criterion Tests
AIC -2.521 -2.499 -2.498 -2.499
BIC -2.514 -2.492 -2.489 -2.489
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.21: Estimated ARMA(p,q) GARCH(1,1), Normal Innovations (S&P500)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.063 -0.059 -0.059 -0.062

(0.011) (0.011) (0.011) (0.018)
φ1 0.059 0.059 0.009

(0.016) (0.016) (0.227)
φ2 -0.001

(0.016)
θ1 -0.049

(0.227)
ω 0.009 0.009 0.009 0.009

(0.002) (0.002) (0.002) (0.002)
α1 0.066 0.066 0.066 0.066

(0.008) (0.008) (0.008) (0.008)
β1 0.925 0.926 0.926 0.926

(0.009) (0.008) (0.009) (0.009)
Standardised Residual tests
J-B test 1129 1139 1144 1 1148
Residual Q10 31.02 10.24 10.25 10.19

Residual Q15 43.71 21.86 21.79 21.79

Residual Q20 44.43 22.61 22.54 22.54

Residual ARCH tests
ARCH Q10 5.01 4.85 4.85 4.85

ARCH Q15 7.28 7.12 7.12 7.11

ARCH Q20 8.91 8.49 8.49 8.48

Information Criterion Tests
AIC -2.525 -2.521 -2.520 -2.520
BIC -2.519 -2.514 -2.512 -2.512
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.22: Estimated ARMA(p,q) GARCH(1,1) t innovations (S&P500)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.075 -0.071 -0.073 -0.090

(0.011) (0.011) (0.011) (0.020)
φ1 0.046 0.047 -0.201

(0.015) (0.015) (0.188)
φ2 -0.025

(0.015)
θ1 0.250

(0.187)
ω 0.005 0.005 0.005 0.005

(0.002) (0.002) (0.002) (0.002)
α1 0.059 0.060 0.060 0.060

(0.008) (0.008) (0.008) (0.008)
β1 0.937 0.936 0.936 0.936

(0.009) (0.009) (0.009) (0.009)
ν 7.39 7.537 7.438 7.507

(0.769) (0.795) (0.779) (0.789)
Standardised Residual tests
Residual Q10 31.85 13.03 14.42 12.79

Residual Q15 44.57 24.88 26.14 24.52

Residual Q20 45.31 25.62 26.90 25.25

Residual ARCH tests
ARCH Q10 5.93 5.59 5.58 5.60

ARCH Q15 8.26 8.01 7.90 7.96

ARCH Q20 10.32 9.86 9.71 9.79

Information Criterion Tests
AIC -2.484 -2.480 -2.479 -2.479
BIC -2.476 -2.472 -2.469 -2.469
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.23: Estimated ARMA(p,q) GARCH(1,1), Normal Innovations (Dow
Jones Composite)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.068 -0.066 -0.068 -0.107

(0.011) (0.011) (0.011) (0.021)
φ1 0.026 0.026 -0.571

(0.015) (0.015) (0.144)
φ2 -0.020

(0.015)
θ1 0.603

(0.141)
ω 0.022 0.023 0.023 0.022

(0.003) (0.004) (0.004) (0.004)
α1 0.091 0.092 0.091 0.092

(0.008) (0.008) (0.007) (0.008)
β1 0.889 0.889 0.889 0.889

(0.010) (0.010) (0.010) (0.010)
Standardised Residual tests
J-B test 11353 11939 11887 11831
Residual Q10 24.41 14.86 15.19 13.35

Residual Q15 32.11 22.91 23.21 21.32

Residual Q20 37.65 28.47 28.78 26.82

Residual ARCH tests
ARCH Q10 2.08 2.70 2.74 1.97

ARCH Q15 4.08 5.29 5.35 4.31

ARCH Q20 5.76 6.84 6.90 5.87

Information Criterion Tests
AIC -2.584 -2.584 -2.583 -2.582
BIC -2.579 -2.577 -2.575 -2.575
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 5.24: Estimated ARMA(p,q) GARCH(1,1), t Innovations (Dow Jones Com-
posite)

ARMA model
p 0 1 2 1
q 0 0 0 1
µ -0.071 -0.069 -0.072 -0.107

(0.010) (0.010) (0.010) (0.024)
φ1 0.019 0.020 -0.513

(0.014) (0.014) (0.250)
φ2 -0.035

(0.014)
θ1 0.541

(0.094)
ω 0.014 0.014 0.014 0.014

(0.003) (0.003) (0.003) (0.003)
α1 0.059 0.059 0.059 0.059

(0.007) (0.008) (0.008) (0.008)
β1 0.925 0.925 0.926 0.925

(0.009) (0.009) (0.009) (0.009)
ν 6.172 6.191 6.112 6.211

(0.500) (0.503) (0.494) (0.504)
Standardised Residual tests
Residual Q10 24.22 16.42 19.03 13.47

Residual Q15 32.15 24.89 27.45 21.82

Residual Q20 37.56 30.28 32.88 27.19

Residual ARCH tests
ARCH Q10 5.77 6.45 6.77 5.99

ARCH Q15 7.12 8.25 8.58 7.61

ARCH Q20 8.46 9.51 9.83 8.85

Information Criterion Tests
AIC -2.496 -2.499 -2.493 -2.494
BIC -2.489 -2.492 -2.484 -2.485
5% critical points for χ2 distribution with 2 ,10, 15 and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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5.5.3 α-stable GARCH Estimates and VaR

In the usual GARCH(p,q) model the disturbance takes the form

εt = ztσt,

where zt is an iid process with zero mean and unit variance. The conditional

variance of this process is σ 2
t . σ 2

t is taken to follow various stochastic pro-

cesses. The GARCH process is defined as the following process:

σ 2
t =ω+

p∑

i=1

αiε
2
t−i +

p∑

i=1

βiσ
2
t−i.

In the GARCH estimates above zt was taken to follow either a standard normal

or a t-distribution. The residuals in both the normal and t-distributions for

zt showed considerable excess kurtosis.

It would be attractive to model the zt with an α-stable distribution. The

exact formulation can not be followed in the general case when α < 2 as the

second moment of the distribution of zt does not exist. Following Panorska

et al. (1995) or Rachev and Mittnik (2000) we say that X follows a stable

GARCH(α,p,q) if Xt is α-stable with parameters α, β, γt and δ where

γt =ω+
q∑

i=1

ai|xt−i − δ| +
p∑

i=1

biγt−i (5.1)

and ai, i = 1, . . . , q and bj, i = 1, . . . , p and ω > 0. Panorska et al. (1995)

establishes stationarity conditions for the process in Equation (5.1). For the

stable GARCH(1,1) process, estimated here, we require that b1 + λa1 < 1

where λ is a function of α and, for example, λ = 1.5091, 1.3709, and 1.2687

for α = 1.6, 1.7, and 1.8 respectively. All α-stable processes estimates here

satisfy these restrictions and are taken to be stationary.

Parameters were estimated by maximum likelihood using C++ and the

STABLE library functions of Nolan (2005a). The optimisation12 process was

12Maximisation was completed by minimising the negative of the log likelihood.
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Table 5.25: Estimated Parameters of α-stable GARCH Loss Distributions

ISEQ CAC40 DAX30 FTSE100 DJAC S&P500
α 1.80 1.95 1.94 1.95 1.88 1.91

(0.020) (0.0084) (0.0085) (0.016) (.023) (0.0024)

β 0.175 0.727 0.362 0.851 0.438 0.703
(0.035) (0.0041) (0.0078) (0.165) (0.066) (0.0014)

δ -0.0581 -0.0657 -0.0315 -0.0522 -0.513 -0.550
(0.047) (0.00026) (0.00070) (0.0098) (0.022) (2.7e-5)

ω 0.00984 0.0104 0.0128 .00862 0.00761 0.00463
(.00028) (2.4e-05) (0.00018) (0.0054) (0.00088) (5.8e-6)

α1 0.0599 0.0570 0.0738 0.0584 .0426 0.0471
(0.0024) (9.7e-05) (0.00040) (0.0085) (0.00073) (5.0e-5)

β1 0.911 0.922 0.897 0.919 0.937 0.939
(0.0033) (0.0013) (0.0012) (0.173) (.0016) (0.00053)

initialised using the Nelder-Mead minimisation algorithm and continued to

completion using the BFGS algorithm. Standard errors of the estimates were

derived from the inverse Hessian matrix calculated during the minimisation

process. Parameter estimates and standard errors are given in Table 5.25. Ta-

ble 5.26 gives details of sample exceedances and percentage exceedances for

α-stable GARCH VaR estimates. These are very close to expected values at all

levels of VaR considered.
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Table 5.26: Exceedances and Percentage Exceedances for α-stable GARCH VaR
Estimates

Index VaR Level
Observations 10.0% 5.0% 1.0% 0.5% 0.1%

ISEQ Count 5037 513 267 49 16 3
% 10.18 5.30 0.97 0.32 0.06

CAC40 Count 5056 530 282 56 24 3
% 10.48 5.58 1.11 0.47 0.06

DAX30 Count 12098 1232 634 137 62 6
% 10.18 5.24 1.13 0.51 0.05

DJAC Count 5156 547 268 56 24 3
% 10.61 5.20 1.09 0.47 0.06

FTSE100 Count 5575 582 304 61 31 2
% 10.44 5.45 1.09 0.56 0.04

S&P500 Count 4557 497 251 51 18 2
% 10.91 5.51 1.12 0.39 0.04

All Count 37479 3901 2006 410 175 19
% 10.41 5.35 1.09 0.47 0.05
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5.5.4 Data and Software

Data

The total return indices used in this analysis were downloaded from the

Reuters EcoWin database. The series used were:

• France, Paris SE, CAC 40 Index, Total Return, Close, EUR, (ew:fra15660).

• Germany, Deutsche Boerse, DAX 30, Index, Total Return, Close, EUR,

(ew:deu15500).

• United States, Dow Jones, Averages, Composite Index, Total Return,

Close, USD, (ew:usa15575200).

• United Kingdom, FTSE100, Index, Total Return, Close, GBP,

(ew:gbr15500200).

• United States, Standard & Poors, 500 Composite, Equal Weighted Index,

Total Return, Close, USD, (ew:usa15508200).

• Ireland, Irish SE, ISEQ Index, Total Return, Close, EUR, (ew:irl15550).

Software

The parameters of α-stable distributions were estimated by Maximum Like-

lihood using C++ and the Dynamic link Libraries of Nolan (2005a). Other

statistical analysis was completed in R (R Development Core Team (2008))

(using the Rmetrics (Wuertz (2007)), QRMlib (McNeil and Ulman (2007)) and

related R packages), Gretl (Cottrell and Lucchetti (2007)) and MATHEMATICA

(Wolfram (2003)).
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APPENDIX A

An Introduction to the α-stable distribution

This appendix outlines the properties of the α-stable family of distributions

and compares these with the properties of a normal distribution. Proofs are

not given. These and further details may be found in Feller (1966, 1971), Gne-

denko and Kolmogorov (1954), Janicki and Weron (1994), Rachev and Mittnik

(2000), Samorodnitsky and Taqqu (1994), Uchaikin and Zolotarev (1999) or

Zolotarev (1986).

A.1 Central Limit Theorems

An assumption of a normal distribution has formed part of almost all de-

velopments in theoretical and empirical finance in the last half century. In

the introduction we have already referred to the Capital Asset Pricing Model,1

optimal portfolio allocation and option pricing as depending on a normality

assumption. Some form of central limit theorem2 has been implicit in all

1 See Section A.6 in this appendix for the extension of the CAPM to include returns with
an α-stable distribution.

2According to Jaynes (2003, p. 242) the name ”Central Limit Theorem” was first used in
print in Pólya (1920). In the German the adjective central modifies the word theorem and
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these developments.

One can look at the central limit theorem to see why it might be appro-

priate to returns distributions and to gain insight into how it might fail. The

elementary version of the theorem quoted in many econometrics texts (e.g.

Hayashi (2000, p. 96)) may be set out as follows:

Lindeberg-Levy Central Limit Theorem: Let X1, X2, . . . , Xn be independent

random variables with identical distributions with mean µ and finite variance

σ 2, then

1√
n σ

n∑

k=1

(Xk − µ) d→ N(0,1). (A.1)

These assumptions may be weakened considerably. If one keeps the in-

dependence assumption and allows the distributions of the Xi to vary but

impose certain restrictions on the variances of the distributions we may state

the following.

Lindeberg-Levy-Feller Theorem: Let X1, X2, . . . be independent random

variables with finite variances, and set, for k ≥ 1, E Xk = µk, Var Xk = σ 2
k ,

and, for n ≥ 1, s2
n =

∑n
k=1σ

2
k . The Lindeberg conditions are:

L1(n) =max
1≤k≤n

σ 2
k

s2
n

→ 0 as n→∞. (A.2)

L2(n) =
1

s2
n

n∑

k=1

E[|Xk − µk|2]I{|Xk − µk| > εsn} → 0 as n→∞, (A.3)

where I{A} is the indicator function of (the set) A.

not the word limit. The theorem is central to probability and statistics.
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If Equation (A.3) is satisfied then so is Equation (A.2) and3

1

s2
n

n∑

k=1

(Xk − µk) d→ N(0,1) as n→∞. (A.4)

A proof of this theorem is given in Gut (2005). Thus the sum of indepen-

dent random variables is normal subject to some fairly unrestrictive condi-

tions on the tails of the distribution. The value of many variables of interest

in economics or finance are the result of the cumulative effect of a large num-

ber of shocks and are thus taken as having a normal distribution. Returns

on equities or on a portfolio of equities may be regarded as the outcome of

a large number of transactions or as the result of the accumulation of news.

Returns would tend to normal if, in the limit, the effect of individual items in

the accumulation does not have a significant effect on the sum. A first reac-

tion is that individual items do not have a significant effect on the aggregate

and that the only question outstanding is whether the number of effects in

the accumulation is sufficient to justify using the asymptotic normal limit.

However, how many times is it necessary, in econometrics, to insert a dummy

variable for an outlier? Outliers can occur by chance even if a normal distri-

bution is appropriate but they might also be an indication of a failure of the

central limit theorem. In such a case we have the generalised central limit

theorem which states conditions under which aggregates tend towards an α-

stable distribution. In the generalised central limit theorem the restriction

that individual items do not have a significant effect on the distribution of

the aggregate is replaced by a condition that they do. We return to the gen-

eralised central limit theorem in A.3 after a review of the properties of the

α-stable distribution.

3The notation
d→ implies a limit in distribution. The notation

d= implies that the variables
on either side of the sign have the same distribution.
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A.2 The α-stable Distribution

Let X, X1, X2, . . . be independent identically distributed random variables and

let

(X1 +X2 + · · · +Xn) d= bnX + an, (A.5)

where

• bn > 0 and an are real constants, an is a location parameter and bn a

scaling factor.

• lim
n→∞

max{P(|Xjb−1
n | > ε) : j = 1,2, . . . , n} = 0. A sufficient condition for

this to hold is that bn →∞ as n→∞. (P{A} is the probability of the set

A).

• n is any positive integer, and

• the distribution of X is not degenerate.

Then X is an α-stable random variable.4 The term “stable” refers to the prop-

erty that the sum of identically distributed independent random variables has

the same distribution as the original, up to scale (bn) and location (an) factors.

The term “stable” here implies that the distribution of a random variable is

invariant or stable under addition of independent copies. Neglecting possible

time of day, day of week, seasonal and other effects of a similar nature, one

might expect that returns on equities would have this property.

If the X’s are normal with mean µ and variance σ 2 the appropriate scale

and location factors are

bn =
√
n = n 1

2 ,

an = (1−n
1
2 )µ.

4 When an = 0 we say that the distribution is strictly α-stable. Lévy (1954) referred to
this strictly α-stable distribution as a “loi stable”. See also footnote 7 on page 17.
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It can also be shown (see Feller (1971, p. 170)) that the value of the scaling

factor bn is restricted and can only take a value given by

bn = n
1
α , for, 0 < α ≤ 2. (A.6)

For the normal distribution α = 2. The parameter α is referred to as the

stability parameter or characteristic exponent of the α-stable distribution.

The α-stable distribution is, in effect, a family of distributions indexed by the

value of the stability parameter.

The characteristic function of an α-stable distribution can be deduced

from the stability property and is given by

φ(t) = E[eitx]

=
∫
eitxdS(x)

=




exp(−γα|t|α[1− iβ(tan πα
2 ) sign t] + iδt), if α ≠ 1 ;

exp(−γ |t| [1+ iβ 2
π
( sign t) log(|t|)]+ iδt), if α = 1.

(A.7)

(see Zolotarev (1986) or Samorodnitsky and Taqqu (1994)). E is the expecta-

tion function, S(x) is the α-stable distribution function and i =
√
−1. The

sign t function is defined as

sign t =





−1, t < 0;

0, t = 0;

1, t > 0.

(A.8)
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The distribution depends on four parameters α, β, γ and δ. These param-

eters5 can be interpreted as follows:

• α is the basic stability parameter. It determines the weight in the tails.

It is the same α as that in Equation (A.6).

• β is a skewness parameter and −1 ≤ β ≤ 1. A zero beta implies that the

distribution is symmetric. Negative or positive β imply that the distri-

bution is skewed to the left or right, respectively.

• The parameter γ is positive and measures dispersion. When the α-stable

distribution is normal then γ = σ/
√

2, where σ is the standard deviation

of the normal distribution.

• The parameter δ is a real number and may be thought of as a location

measure. When the α-stable distribution is normal then δ = µ
5Note that different notation is adopted by various authorities. The principal differences

include

• reversal of the sign of β

• Substitution of c = γα

• Substitution of σ/
√

2 for γ

• The characteristic function in Equation (A.7) is not continuous at α = 1. This may
lead to problems in certain circumstances. If one makes the substitution

δ0 =
{
δ+ βγ tan πα

2 α 6= 1

δ+ β 2
π γ logγ α = 1,

following the notation of Nolan (2007) we may write the characteristic function of an
α-stable function as

∫
eitxdS(x) =





exp
(
−γα|t|α[1+ iβ(tan πα

2 )(sign u)(|γt|1−α − 1)]+ iδ0t]
)
α 6= 1

exp
(
−γ|t|[1+ iβ 2

π (sign u) log(γ|t|)]+ iδ0t
)

α = 1

Because of the better behaviour of this parametrisation at α = 1 it is the form most often
used in numerical calculations. Nolan refers to this as an SSS(α,β, γ, δ; 0) distribution. The
parametrisation in Equation (A.7) is referred to as an SSS(α,β, γ, δ; 1) distribution and is the
form most often used here. In the SSS(α,β, γ, δ; 1) note that when 1 < α ≤ 2, E X = µ. In
the SSS(α,β, γ, δ; 0) this does not hold, in general. Note than if β = 0 or α = 2 the two
parameterisations coincide. Here, in the SSS(α,β, γ, δ; 1) parametrisation the density and
distribution functions will be denoted by s(x,α,β, γ, δ) and S(x,α,β, γ, δ) respectively. If
the variables are standardised (γ = 1 and δ = 0) we may use the symbols s(x,α,β) and
S(x,α,β) for the density and distribution respectively.
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The characteristic function of the α-stable distribution is absolutely in-

tegrable and thus α-distributions are absolutely continuous with a bounded

continuous density function which can be obtained by the standard inversion

formula for characteristic functions. The density function of the α-stable

distribution is differentiable on the real line (see Gnedenko and Kolmogorov

(1954)). The α-stable density function is unimodal (Kanter (1976)). If β = 0

the characteristic function is

φ(t) =
∫
eitxdS(x) = eitδ−γα|t|α . (A.9)

If, in addition, δ = 0, the characteristic function is real and the distribution is

symmetric.

Except in three special cases the density function of the α-stable distribu-

tion can not be expressed in terms of elementary functions. The special cases

are:

Normal Distribution If α = 2 the characteristic function in Equation (A.7)

reduces to

φ(t) =
∫
eitxdH(x) = e(iδt+γ2t2), (A.10)

which is the characteristic function of the normal distribution

1

2γ
√
π

exp
(x − δ)2

4γ2
, −∞ < x <∞

with mean δ and variance 2γ2. Note that as tanπ = 0 the skewness

parameter, β, does not appear in the characteristic function in this case.

Conventionally it is taken to be zero.

Cauchy Distribution When α = 1 and β = 0 the characteristic function re-

duces to

φ(t) = exp(−γ|t| + iδt),
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which is the characteristic function of the Cauchy Distribution

1

π(γ2 + (x − δ)2), −∞ < x <∞.

Lévy Distribution When α = 1/2 and β = −1 the characteristic function

reduces to

φ(t) = exp(−
√
γ|t|(1+ sign t)+ iδt),

which is the characteristic function of a Lévy distribution

(
σ

2π

)1/2 1

(x − µ)3/2 exp

(
− σ

2(x − µ)

)
, µ < x <∞.

Figures A.1 to A.3 illustrate various properties of α-stable distributions.

Figure A.1 shows the density functions for symmetric (β = 0) α stable distri-

butions with α = 2 (normal), α = 1.5 and α = 1.0 (Cauchy). As α is reduced,

the peak gets higher and the tails get heavier. This process continues as α is

reduced. Figure A.2 is an enlarged version of the left tail of the distribution

and shows clearly the heavier tails.

Figure A.3 shows the effect of varying the symmetry parameter β for fixed

α. With α = 1.5 As β falls from 0 to −1 the left tail becomes heavier relative

to the right tail and the mode of the distribution shifts to the left of the mean.

Similar transformations occur in the opposite direction when β moves from

0 to 1. The skewness caused by a particular value of β is more marked as α

is reduced.

A.3 A Generalised Central Limit Theorem

Consider a random variable X with density function f(x) such that

f(x) ∼




B−|x|−(1+a) as x → −∞
B+|x|−(1+a) as x → ∞,

(A.11)
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Figure A.1: Normal, α-stable (α = 1.5) and Cauchy Distributions
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Figure A.2: Tails of Normal, α-stable (α = 1.5) and Cauchy Distributions
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Figure A.3: α-stable Distribution, α = 1.5, β various
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where 0 < a < 2 and B− and B+ are appropriate positive constants. Thus,

asymptotically, the tails of the distribution are proportional to a Pareto dis-

tribution.6 Put

B = B+ − B−
B+ + B−

= B+
B+ + B−

− B−
B+ + B−

(A.12)

B measures the excess proportional weight in the positive or negative tails

respectively. A more exact statement of this condition would require the use

of regularly varying functions (see Feller (1971), page 312).

If X1, X2, . . . Xn are independent, identically distributed random variables

for which these conditions hold, then the random variable

S = 1

n
1
a

n∑

i=1

Xi (A.13)

has a limit in distribution which is α-stable with parameters α = a and β = B.

Returns on assets are often modelled with a binomial tree. In this process

a return may move up with probability p and down with probability 1 − p.

The asymptotic limit of the sum of such a process is a normal distribution.

To get a corresponding discrete process for an α stable process consider the

6The Pareto distribution was used by Pareto almost one hundred years ago to model
the distribution of incomes above a certain threshold. A random variable has a Pareto
distribution if its density function is of the form:

f(x;a,b) = abax−(1+a) x > b, a > 0, b > 0.

This distribution has a remarkable property. If we increase the threshold the shape of the
distribution remains the same apart from a scaling factor. For example, by integration,
P{X ≥ cb} = c−a. Then the distribution of X given that X ≥ cb, where c > 1 is given by

fX(x;a, cb) = a(cb)ax−(1+a) x > cb, a > 0, b > 0, c > 1.

Thus P{X ≥ c2b|X ≥ 2b} = c−a. To illustrate let the distribution of the wealth of persons
with wealth greater than say €1,000,000 be Pareto with parameter a = 1.5 Then the proba-
bility that a person in this group will have wealth of twice the threshold is about 0.35. Now
let the threshold be €2,000,000 then the probability that a person above that threshold
will have a wealth of twice that threshold (€4,000,000) is again 0.35. This is in complete
contrast to the normal or lognormal distribution. Note that the mean of this distribution
exists if a > 1 and the variance if a > 2.
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Pareto distribution

f(x;α,b) = αbαx−(α+1), x ≥ b, b > 0, α > 0.

We may consider this as one tail of a process. Consider the following case

where the tail of the distribution (x > b > 0) has a Pareto distribution and

λ > 1.

P{(x < b} = p

P{b ≤ x < λb} = (1− p)
(

1−
(

1

λ

)α)

. . .

P{λk−1b ≤ x < λkb} = 1

λα(k−1)
(1− p)

(
1−

(
1

λ

)α)

. . .

This leads us to consider the following generalisation of a random walk.

We have a process that at each increment of time takes a step the size of

which may be ±b, ±bλ, . . . , ±bλk−1, . . . with probabilities given by

±b p

2

±λb (1−p)
2

(
1−

(
1
λ

)α)

. . . . . .

±λkb 1
λα(k−1)

(1−p)
2

(
1−

(
1
λ

)α)

. . . . . .

The tails of this process are asymptotically proportional to a Pareto dis-

tribution with parameter α. The kth absolute moment of this distribution is

given by

E[|X|k] = bk

p + λ(1− p)

(
1−

(
1

λ

)α)



∞∑

j=1

1

λ(j−1)(α−k)




 .

For λ > 1 this converges only for k < α. Thus if α > 2 the variance exists
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and is finite and the standard central limit theorem, Equation (A.1), implies

that the asymptotic distribution of sums of independent random variables

drawn from this distribution will be normal. If 0 < α ≤ 2, the variance does

not exist. The asymptotic distribution of the tails of the distribution are such

that the generalised central limit theorem applies. Thus the asymptotic distri-

bution of sums of independent random variables drawn from this distribution

will be α-stable with stability parameter α.

A.4 Some properties of α-stable distributions

Some of the more important properties of α-stable distributions are given

below

• The only α-stable distribution for which moments of all orders exist is

the normal distribution. When 1 < α < 2 the variance is not defined

(infinite) and E[Xk] exists only when k < α. In this case in our notation

the mean exists when α > 1 and is given by E[X] = δ. Apart from the

lack of a simple form for the density function of an α-stable density

function, the non-existence of a variance is the greatest barrier to its

use. Put simply, measures of the variance of an α-stable process will

increase with sample size and will not converge.7

If 0 < α ≤ 1 the mean does not exist. If α < 1 the sampling distribution

of the mean is even more dispersed than the individual measurements.

In applications of the α-stable distribution to finance, values of α of

the order of 1.5 to 1.8 are usually appropriate. The values estimated in

table 2.2 vary from 1.63 to 1.73.

• The α-stable density is symmetric with respect to simultaneous changes

of the sign of x and β, that is

s(x,α,β, γ, δ) = s(−x,−β,γ, δ). (A.14)

7 See footnote 11 on page 19. For values of α close to those found in finance it may be
difficult to observe this effect.
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• If a and b > 0 are real constants and the density of x is given by

s(x,α,β, γ, δ) then the density of x−a
b

is given by

1

b
s(
x − a
b

,α,β,
γ

b
,
δ− a
b
) (A.15)

or in particular that of x−δ
γ

by

1

γ
s(
x − δ
γ

,α,β,1,0). (A.16)

• Let X1 and X2 beα-stable random variables with densities s(x,α,βi, γi, δi),

i = 1,2. Then X1 +X2 is α-stable with

β = β1γ
α
1 + β2γ

α
2

γα1 + γα2
, γ = (γα1 + γα2 )

1
α , δ = δ1 + δ2 (A.17)

A.5 Domains of Attraction

Let X1, X2, . . . , Xn be independent identically distributed random variables.

If these random variables have a finite variance the central limit theorem im-

plies that one can find an and bn such that

X1 +X2 + · · · +Xn
an

− bn d→ G

where G is the normal distribution function. The distribution of X is said to

be in the domain of attraction of the normal distribution. The generalised

central limit also implies that for each value of α, the α-stable distribution

also has a domain of attraction. In Section A.3 we have already looked at one

member of the domain of attraction of a stable distribution. It can be proven

that the only distributions that have domains of attraction are the α-stable

distributions (see Feller (1971), Chapter IX). The implication is that even if

equity returns do not have an exact α-stable distribution then an α-stable

distribution will provide an approximation to their distribution.

Consider the example in Section A.3. We have argued in Chapter 5 that
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an observed shortfall in the extreme tails of the observed data relative to the

α-stable distribution may have two possible causes. First a supervisory au-

thority or an exchange may intervene to alleviate extreme losses. Alternatively

a severe loss on equities may involve externalities and one may be observing

the private cost of the loss rather than the public cost. To measure public cost

it is necessary to isolate the effects of the equity loss from other factors that

may have diminished economic growth rates. The diminished growth rates

may themselves have contributed to the equity loss. Two possible ways have

been proposed to model the deficit in the tails of the observed distribution.

1. Abandon the idea of measuring the entire sample of returns and concen-

trate on modelling extremes. This is the topic of Extreme Value Theory

which is comprehensively covered in the books such as McNeil et al.

(2005) and Embrechts et al. (1997). Applications of Extreme Value The-

ory in Hydrology, Environmental Sciences, Finance and Insurance and

Material and Life Sciences are covered in Reiss and Thomas (2007). It is

possible that this methodology may give good VaR estimates on many

occasions. Such measures of risk are based on an assumption that the

tails of the distribution have an asymptotic distribution

f(x,α) = cx−(1+α) for x > x0 and x0 large, α > 0,

but do not impose the condition α ≤ 2. In particular the t-distribution

and Pareto distribution (trivially) have this property. If 0 < α ≤ 2 we

are still in the realm of an α-stable distribution. Many sources have

estimated an α of the order of 4 and claim that this rules out an α-

stable distribution. On the contrary Weron (2001) finds that if α is in

the range typically estimated for returns data then extreme value theory

may give estimates of α > 2. We should also note that distributions

such as the t-distribution are not scaling.8

2. Magenta and Stanley (1994) consider the case of a physical system in

which there is a natural cutoff (e.g. the quantity of a compound can not

8 Apart from the particular case where there is one degree of freedom and the t-
distribution becomes a Cauchy distribution.
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fall below a single molecule). There may also be a physical upper bound.

In the example in Section A.3 this would correspond to the case where

the discrete distribution is cut off above and below at some truncation

point. The variance of the truncated discrete distribution is then finite,

the ordinary central limit will apply and the asymptotic distribution of

the sums will be normal. If the truncation points are far from the mean,

the relevant α-stable distribution provides a better fit to the empirical

distribution than the normal. As the number of summands is increased

the fit of the normal will improve and the relative fit of the α-stable

will deteriorate. There is a turnover point where the normal distribu-

tion becomes more accurate. However, as the truncation points become

remote the turnover point increases rapidly. Menn and Rachev (2005)

extend this idea to “Smoothly Truncated Stable Distributions” where the

tails of the α-stable distribution are replaced by similarly sized tails of

a normal distribution in such a way as to maintain continuity of the

density function. These arguments are an alternative solution to the

problems outlined in the previous point. It may be possible that the ex-

tremes of returns data are censored by acts of an exchange or regulatory

body who wish to avoid contagion and step in to support or limit cer-

tain effects. Such actions may reduce the private cost of a “crash” but

the returns data will not reflect the total social cost. Regulatory bod-

ies should be more interested in the public cost. The additional safety

margin which an α-stable distribution provides should find favour in a

regulatory body.

A.6 CAPM Models and the α-stable Distribution

Fama (1965b, 1971) showed how the Sharpe-Lintner Capital Asset Pricing

Models could be extended to take account of returns that might have an α-

stable distribution. He assumes that the returns on n individual assets arise

from the fact that there is a common market factor M that affects the returns

on all n assets in addition to an individual specific effect εi that impinges only
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on the individual asset. He notes that additional variables may also be in-

cluded in the regression without altering the main argument. The one-period

return on asset i can be written

ri = αCAPMi + βCAPMi M + εi, i = 1,2, . . . , n (A.18)

where the superscript “CAPM” is used to distinguish the CAPM parameters

αCAPM and βCAPM from the parameters of the α-stable distribution. Fama

assumes that M and εi i = 1,2, . . . , n, have independent symmetric α-stable

distributions with the same stability parameter α. Note that each return is a

sum of independent effects but the returns are not independent as each has

the common factor M . The return on asset i is thus symmetric α-stable with

stability parameter α, β = 0 and scale and location parameters γi and δi given

by

γi =
(
γα

CAPM

M

∣∣∣xiβCAPMi

∣∣∣
αCAPM

+ γαCAPMεi
|xi|α

)1/αCAPM

and

δi = αCAPMi + βCAPMi E[M], respectively.

The return on the portfolio is then symmetric α-stable with the same α

parameter as the individual assets. If xi, i = 1,2, . . . , n, are the shares of

each asset in the portfolio then the return, δP , expected return, E[δP], and

scale parameters, γP , are given by

δP =
n∑

i=1

xiα
CAPM
i +

n∑

i=1

xiβ
CAPM
i M +

n∑

i=1

xiεi

E[δP] =
n∑

i=1

xiα
CAPM
i +

n∑

i=1

xiβ
CAPM
i E[M]

γP =


γαCAPMM

∣∣∣∣∣∣

n∑

i=1

xiβ
CAPM
i

∣∣∣∣∣∣

αCAPM

+
n∑

i=1

γα
CAPM

εi
|xi|α

CAPM




1/αCAPM

Fama (1971) shows that if consumers are risk averse maximisers of ex-

pected utility with an inter-temporal utility function u(c1, c2) of period 1
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Figure A.4: CAPM Efficient Frontiers

(c1) and period 2 (c2) consumptions that is monotone increasing and strictly

concave in (c1, c2) then, in the usual two-period model, the expected utility

E[u(c1, c2)] can be expressed as a function, V(δP , γP), of the α-stable location

and scale parameters of the portfolio. With no risk-free asset the optimisa-

tion process continues in a very similar way to that of the corresponding

Markovich portfolio optimisation except that the risk measure, standard de-

viation or equivalently variance, is replaced by the α-stable scale parameter

γ. Thus, this portfolio optimisation problem is to find the values of xi that

minimise γP for fixed δP and
∑
xi = 1. With no risk free asset the efficient set

is the curve ab in Figure A.4.

Assume that one may be long or short, to any extent, in a risk free asset

with a rate of return of rf . Let rp and γp are the return and scale parameter of

a portfolio on the boundary of the Markovich efficient curve ab in Figure A.4.

By borrowing or investing at the risk-free rate we can achieve any point on

the line joining the points where total investment is in the risk free asset

(0, rf ) and this boundary point. The slope of this line, (rp − rf )/γp is the

rate at which return is increased per unit of scale parameter. This slope is
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functionally the equivalent of the Sharpe ratio as that ratio is usually defined.

With this in mind we will also refer to the revised ratio as the Sharpe ratio.

One can always achieve a higher utility level if the Sharpe ratio is higher. In

Figure A.4 The highest Sharpe ratio is achieved when the line dTe is tangent

to the Markovich efficiency curve.

The CAPM theory makes various assumptions about markets. These gener-

ally include frictionless markets, ability to borrow or lend unlimited amounts

at the risk free-rate, investors are price takers, neutral taxes and all investors

have the same knowledge of returns and risk. The CAPM assumptions im-

ply that in order for the market to clear the market portfolio must be on the

minimum variance portfolio frontier.

This implies that the relationship between the expected return, E[ri], on

the ith component of the portfolio and the expected return of the market

portfolio, E[rm], is given by

E[ri]− rf = βCAPMi (E[rm]− rf ).

In the normal case

βCAPMi = Cov(ri, rM)
σ 2(rM)

.

In the non-normal α-stable case Fama (1971) showed that

βCAPMi = 1

γm

∂γm

∂xj

Considerable work has gone into the estimation and testing of the normal

CAPM and its many extensions. See, for example, Campbell et al. (1997) or

Cochrane (2005). Four different estimates for the non-normal α-stable βCAPM

can be considered.

1. OLS estimates are consistent but are inefficient. Confidence intervals for

the regression coefficients are not available.

2. Blattberg and Sargent (1971) proposed an unbiased minimum dispersion

estimator of a univariate regression coefficient where the independent
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variable is deterministic and the disturbances follow an α-stable distri-

bution. Again confidence intervals are not available. Franke et al. (2000)

compare the results of these first two estimates of the βCAPM . They also

give Monte-Carlo based standard deviations for both estimates. OLS rel-

ative efficiency fall as α is reduced. Their sample size of 250 is small

for inference about α. It should be noted that the Blattberg and Sargent

(1971) estimators were derived on the basis of non-stochastic regres-

sors.

3. The methods described in Chapter 3 might be applied. The confidence

limits are not appropriate as the theory there is based on non-stochastic

regressors. We have encountered several problems in applying this

methodology to a project "Evaluating the Trading and Risk Management

Style of Fixed-Income Hedge Fund Managers". It may be possible to use

the methods described in point 4 following.

4. It is possible to base estimates of βCAPM on the theory of multivariate

stable estimators. Hardin, Jr. et al. (1991a,b) cover the theory. We do

not know of any application of this methodology to CAPM estimation

but intend to pursue this line at a later stage.

Some may consider the assumption of a constant α to be restrictive but

one should remember that the usual arguments based on a normal distribu-

tion include the assumption of a fixed α = 2.

All the references to CAPM and the non-normal α-stable distribution in-

clude an assumption that the distribution is symmetric. This assumption

can be relaxed to the extent of assuming that the returns distributions of

all the candidate assets have the same skewness parameter. In this case the

application of the α-stable properties described in Section A.4 imply that all

portfolios which are linear combinations of these assets will have the same

skew parameter as the original assets. The stability and skew parameters of

the α-stable distribution are not effected by portfolio size or by leverage. The

CAPM argument outlined above still holds.

If the portfolio contains assets with different skewness parameters it may

be possible to construct two portfolios with the same expected return and
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spread but different skew. An agent is likely to prefer the return which has

the smaller relative negative losses. This problem applies to all skewed dis-

tributions.

A.7 Numerical Analysis

A.7.1 Evaluation of Density and Likelihood functions

Nolan (1997) reviews the numerical inversion of the characteristic function of

an α-stable distribution. He also describes the methods used in the program

STABLE (Nolan (2005b, 2006)). The numerical method used is based on the

representation of α-stable distributions by integrals in Zolotarev (1986). The

STABLE program also offers a faster approximation to the functions which

was not used in this analysis. The library version of the STABLE routines used

in conjunction with C++ provides a fast and convenient way of working with

α-stable distributions if one has some knowledge of C++. Here the STABLE

program was used in conjunction with DEV-C++ (http://www.bloodshed.net/devcpp.html)

and the Mingw port of GCC (GNU Compiler Collection). The stand alone ver-

sion of STABLE provides basic functions to estimate α-stable densities, distri-

butions and to fit and test the fit of a series to an α-stable distribution. The

stand alone version is available for download from http://academic2.american.edu/~jpnolan/

The library version is available from http://www.robustanalysis.com/.

Thanks are due to John P. Nolan who made the library version available for

this research.

Bob Rimmer’s (Rimmer (2007)) package for MATHEMATICA adds α-stable

functions to MATHEMATICA. This package allows these to be estimated di-

rectly (numerical integration of inverse Fourier transforms or using interpo-

lation over a preestimated grid of values. The MATHEMATICA source code of

the current version of these routines is available and these can be amended

to give very high accuracy at the expense of processing time. The MATHE-

MATICA numerical integration routines can be used to estimate the density

function but care must be taken to ensure that the integrals converge prop-

erly.
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The Rmetrics routines Wuertz (2007) use the numerical integration rou-

tines in R to calculate the density function. We found that these routines

were slower than the routines in MATHEMATICA and in the STABLE program.

A.7.2 Feasibility of Maximum Likelihood Estimation

The theory of maximum likelihood for estimation of α-stable parameters was

set out in DuMouchel (1971, 1973, 1975). This requires a considerable amount

of computation which was not fully feasible at the time. 9 Now both versions

of the STABLE program provided maximum likelihood estimates of the pa-

rameters of an α-stable process. The calculations are fast and accurate for

the range of parameter values encountered. It also provides standard errors

of the parameter estimates. The method of calculating these standard errors

is outlined in Nolan (2001) and is based on a precalculated grid. We used the

Library density functions with C++ to estimate the α-stable GARCH processes

in Chapter 5.

The MATHEMATICA routines do not provide standard errors of the pa-

rameters but these can be added by calculating and inverting the information

matrix. An example of the MATHEMATICA density routines, used in the esti-

mation of the regressions in Chapter 3, is given below.

Maximum likelihood estimation with the α-stable density functions in Rmet-

rics and the optimisation functions in R did not always converge. Sometimes

convergence was only achieved after considerable fine-tuning. Convergence

to an optimum was slow. It is possible that performance could be improved

by resetting default parameters and varying the optimisation method. C++

programs based on Nolan’s STABLE packages and the Rimmer MATHEMAT-

ICA routines performed better when used here. Appendix B.2 contains a copy

of a C++ program used to calculate maximum likelihood estimates of the pa-

rameters of an α-stable GARCH process.

9 To reduce the amount of calculations required DuMouchel based his maximum likeli-
hood procedures on grouped data in the centre of the distribution.
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APPENDIX B

Computer Listings

B.1 MATHEMATICA Program to Estimate Day of Week

Effects

This section contains the output of the MATHEMATICA (Wolfram (2003)) pro-

gram used to estimate the day of the week effects for returns on the ISEQ in

Chapter 2. The original code was run in Version 5 but the version here has

been updated to run in Version 6. There are some very minor changes in re-

sults between versions but these are not significant. The program output has

been edited to allow long lines to flow to the next page. The output of some

of the program has been suppressed.
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Day of week analysis with stable residuals - Germany DAX30

Read and check data

Needs["StableM "̀]Needs["StableM "̀]Needs["StableM "̀]

Directory[];Directory[];Directory[];

SetDirectory["C:\\WORK\\PHD\\Thesis\\thesis_1\\weekday\\MATHEMATICA_6"];SetDirectory["C:\\WORK\\PHD\\Thesis\\thesis_1\\weekday\\MATHEMATICA_6"];SetDirectory["C:\\WORK\\PHD\\Thesis\\thesis_1\\weekday\\MATHEMATICA_6"];

data = Import["returns.csv","CSV"];data = Import["returns.csv","CSV"];data = Import["returns.csv","CSV"];

{nobs, vars} = Dimensions[data];{nobs, vars} = Dimensions[data];{nobs, vars} = Dimensions[data];

nobs = nobs− 2;nobs = nobs− 2;nobs = nobs− 2;

Table[data[[ii, jj]], {ii,1,4}, {jj,1, vars}];Table[data[[ii, jj]], {ii,1,4}, {jj,1, vars}];Table[data[[ii, jj]], {ii,1,4}, {jj,1, vars}];
Table[data[[ii, jj]], {ii,nobs− 1,nobs+ 2}, {jj,1, vars}];Table[data[[ii, jj]], {ii,nobs− 1,nobs+ 2}, {jj,1, vars}];Table[data[[ii, jj]], {ii,nobs− 1,nobs+ 2}, {jj,1, vars}];
return = Table[data[[ii,2]], {ii,3,nobs+ 2}];return = Table[data[[ii,2]], {ii,3,nobs+ 2}];return = Table[data[[ii,2]], {ii,3,nobs+ 2}];

Summary Statistics

Full Period

{"Mean = ",Mean[return],{"Mean = ",Mean[return],{"Mean = ",Mean[return],

"\nMedian = ",Median[return],"\nMedian = ",Median[return],"\nMedian = ",Median[return],

"\nVariance = ",Variance[return],"\nVariance = ",Variance[return],"\nVariance = ",Variance[return],

"\nStandard Deviation = ", StandardDeviation[return],"\nStandard Deviation = ", StandardDeviation[return],"\nStandard Deviation = ", StandardDeviation[return],

"\nSkewness = ", Skewness[return],"\nSkewness = ", Skewness[return],"\nSkewness = ", Skewness[return],

"\nKurtosis = ",Kurtosis[return]};"\nKurtosis = ",Kurtosis[return]};"\nKurtosis = ",Kurtosis[return]};
jb = nobs

(
(Kurtosis[return]−3)2

24 + Skewness[return]2

6

)
;jb = nobs

(
(Kurtosis[return]−3)2

24 + Skewness[return]2

6

)
;jb = nobs

(
(Kurtosis[return]−3)2

24 + Skewness[return]2

6

)
;

α-stable fit of return series

parm1 = SFit[return,1]//AbsoluteTiming;parm1 = SFit[return,1]//AbsoluteTiming;parm1 = SFit[return,1]//AbsoluteTiming;

parm1;parm1;parm1;

parm1 = parm1[[2]];parm1 = parm1[[2]];parm1 = parm1[[2]];

"Estimates of Stable Parameters of returns using FFT to estimate PDF""Estimates of Stable Parameters of returns using FFT to estimate PDF""Estimates of Stable Parameters of returns using FFT to estimate PDF"

Clear[maxlike];Clear[maxlike];Clear[maxlike];

maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=
−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];
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i4 = IdentityMatrix[4];i4 = IdentityMatrix[4];i4 = IdentityMatrix[4];

h = 10−$MachinePrecision/4;h = 10−$MachinePrecision/4;h = 10−$MachinePrecision/4;

k = 10−$MachinePrecision/4;k = 10−$MachinePrecision/4;k = 10−$MachinePrecision/4;

u = parm1;u = parm1;u = parm1;

nhess =nhess =nhess =
Table[Table[Table[

1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−
maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),

{ii,1,4}, {jj,1,4}];{ii,1,4}, {jj,1,4}];{ii,1,4}, {jj,1,4}];
cov4 = Inverse[−Partition[Flatten[nhess],4]];cov4 = Inverse[−Partition[Flatten[nhess],4]];cov4 = Inverse[−Partition[Flatten[nhess],4]];

cor4 = Table
[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;cor4 = Table

[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;cor4 = Table

[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;

stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];
TableForm[Table[{parm1[[ii]], stdev4[[ii]],parm1[[ii]]/stdev4[[ii]]}, {ii,1,4}],TableForm[Table[{parm1[[ii]], stdev4[[ii]],parm1[[ii]]/stdev4[[ii]]}, {ii,1,4}],TableForm[Table[{parm1[[ii]], stdev4[[ii]],parm1[[ii]]/stdev4[[ii]]}, {ii,1,4}],
TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]
{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm1,1]}{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm1,1]}{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm1,1]}
"****************************************************""****************************************************""****************************************************"

Estimates of Stable Parameters of returns using FFT to estimate PDF

Estimate St. error z-value

α 1.63252 0.0245188 66.5824

β −0.0535249 0.0523431 −1.02258

γ 0.500529 0.00798075 62.717

δ 0.0548347 0.0156043 3.51408
{Maximum Likelihood,−5864.63}
****************************************************

SLogLikelihood[return,parm1,1]//AbsoluteTiming;SLogLikelihood[return,parm1,1]//AbsoluteTiming;SLogLikelihood[return,parm1,1]//AbsoluteTiming;

FLogLikelihood[return,parm1,1]//AbsoluteTiming;FLogLikelihood[return,parm1,1]//AbsoluteTiming;FLogLikelihood[return,parm1,1]//AbsoluteTiming;

Week Day effects - Full Sample

OLS Regression Estimates

<< LinearRegressioǹ<< LinearRegressioǹ<< LinearRegressioǹ

Clear[monday, tuesday,wednesday, thursday, friday]Clear[monday, tuesday,wednesday, thursday, friday]Clear[monday, tuesday,wednesday, thursday, friday]

Clear[regdata]Clear[regdata]Clear[regdata]
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regdata = Table[{data[[ii+ 2,3]],data[[ii+ 2,4]],data[[ii+ 2,5]],data[[ii+ 2,6]],regdata = Table[{data[[ii+ 2,3]],data[[ii+ 2,4]],data[[ii+ 2,5]],data[[ii+ 2,6]],regdata = Table[{data[[ii+ 2,3]],data[[ii+ 2,4]],data[[ii+ 2,5]],data[[ii+ 2,6]],

data[[ii+ 2,7]], return[[ii]]}, {ii,1,nobs}];data[[ii+ 2,7]], return[[ii]]}, {ii,1,nobs}];data[[ii+ 2,7]], return[[ii]]}, {ii,1,nobs}];
Regress[regdata, {monday, tuesday,wednesday, thursday, friday},Regress[regdata, {monday, tuesday,wednesday, thursday, friday},Regress[regdata, {monday, tuesday,wednesday, thursday, friday},
{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False]{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False]{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False]

DesignedRegress::tsos : Warning: the total sum of squares in the ANOVA

Table is uncorrected (not centered on the response mean) when there is

no constant term in the model; it is designated U Total.

DesignedRegress::rsqr : Warning: the RSquared and Adjusted

RSquared diagnostics are redefined when there is no constant term in the model.



ParameterTable →

Estimate SE TStat PValue

monday 0.0462835 0.0308487 1.50034 0.133595

tuesday 0.0471105 0.030832 1.52797 0.126587

wednesday 0.0450905 0.030832 1.46246 0.143685

thursday 0.0624206 0.0308487 2.02344 0.043085

friday 0.0566579 0.0308487 1.83664 0.0663274





RSquared → 0.00306445

AdjustedRSquared → 0.00198482

EstimatedVariance → 0.879318

ANOVA Table →





DF SumOfSq MeanSq FRatio PValue

Model 5 12.4793 2.49587 2.83841 0.0145358

Error 4617 4059.81 0.879318

U Total 4622 4072.29





regrule = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},regrule = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},regrule = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},
{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,

RegressionReport → {BestFitParameters, FitResiduals}];RegressionReport → {BestFitParameters, FitResiduals}];RegressionReport → {BestFitParameters, FitResiduals}];
beta0 = BestFitParameters/.regrulebeta0 = BestFitParameters/.regrulebeta0 = BestFitParameters/.regrule

{0.0462835,0.0471105,0.0450905,0.0624206,0.0566579}
resids = FitResiduals/.regrule;resids = FitResiduals/.regrule;resids = FitResiduals/.regrule;

Length[resids]Length[resids]Length[resids]

4622

ListPlot[resids]ListPlot[resids]ListPlot[resids]
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Length[resids];Length[resids];Length[resids];

Mean[resids];Mean[resids];Mean[resids];

Median[resids];Median[resids];Median[resids];

Commonest[resids];Commonest[resids];Commonest[resids];

Skewness[resids];Skewness[resids];Skewness[resids];

Kurtosis[resids];Kurtosis[resids];Kurtosis[resids];

jb = nobs
(

Skewness[resids]2

6 + Kurtosis[resids]2

24

)
;jb = nobs

(
Skewness[resids]2

6 + Kurtosis[resids]2

24

)
;jb = nobs

(
Skewness[resids]2

6 + Kurtosis[resids]2

24

)
;

regrule2 = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},regrule2 = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},regrule2 = Regress[regdata, {monday, tuesday,wednesday, thursday, friday},
{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,{monday, tuesday,wednesday, thursday, friday}, IncludeConstant → False,

RegressionReport → {CovarianceMatrix,CorrelationMatrix}];RegressionReport → {CovarianceMatrix,CorrelationMatrix}];RegressionReport → {CovarianceMatrix,CorrelationMatrix}];
regrule2;regrule2;regrule2;

parm0 = SFit[resids]; (*Initial values for Stable estimates*)parm0 = SFit[resids]; (*Initial values for Stable estimates*)parm0 = SFit[resids]; (*Initial values for Stable estimates*)

FLogLikelihood[resids,parm0,1];FLogLikelihood[resids,parm0,1];FLogLikelihood[resids,parm0,1];

SLogLikelihood[resids,parm0,1];SLogLikelihood[resids,parm0,1];SLogLikelihood[resids,parm0,1];

"Estimates of Stable Parameters of Residuals of OLS Regression - Initial values""Estimates of Stable Parameters of Residuals of OLS Regression - Initial values""Estimates of Stable Parameters of Residuals of OLS Regression - Initial values"

Clear[maxlike];Clear[maxlike];Clear[maxlike];

maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (d_)?NumericQ}]:=
−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];−Dimensions[return]Log[c]+ FLogLikelihood[(return− d)/c, {a,b,1,0},1];
i4 = IdentityMatrix[4];i4 = IdentityMatrix[4];i4 = IdentityMatrix[4];

h = 10−$MachinePrecision/4;h = 10−$MachinePrecision/4;h = 10−$MachinePrecision/4;

k = 10−$MachinePrecision/4;k = 10−$MachinePrecision/4;k = 10−$MachinePrecision/4;

u = parm1;u = parm1;u = parm1;

nhess =nhess =nhess =
Table[Table[Table[

1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−1
4hk(maxlike[u+ hi4[[ii]]+ ki4[[jj]]]−maxlike[u− hi4[[ii]]+ ki4[[jj]]]−
maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),maxlike[u+ hi4[[ii]]− ki4[[jj]]]+maxlike[u− hi4[[ii]]− ki4[[jj]]]),

{ii,1,4}, {jj,1,4}];{ii,1,4}, {jj,1,4}];{ii,1,4}, {jj,1,4}];
cov4 = Inverse[−Partition[Flatten[nhess],4]];cov4 = Inverse[−Partition[Flatten[nhess],4]];cov4 = Inverse[−Partition[Flatten[nhess],4]];

cor4 = Table
[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;cor4 = Table

[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;cor4 = Table

[
cov4[[ii, jj]]

/√
cov4[[ii, ii]]cov4[[jj, jj]] , {ii,1,4}, {jj,1,4}

]
;

stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];stdev4 = Table[Sqrt[cov4[[ii, ii]]], {ii,1,4}];
TableForm[Table[{parm0[[ii]], stdev4[[ii]],parm0[[ii]]/stdev4[[ii]]}, {ii,1,4}],TableForm[Table[{parm0[[ii]], stdev4[[ii]],parm0[[ii]]/stdev4[[ii]]}, {ii,1,4}],TableForm[Table[{parm0[[ii]], stdev4[[ii]],parm0[[ii]]/stdev4[[ii]]}, {ii,1,4}],
TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]TableHeadings → {{"α","β","γ","δ"}, {"Estimate","St. error","z-value"}}]
{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm0,1]}{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm0,1]}{"Maximum Likelihood",ml4 = FLogLikelihood[return,parm0,1]}
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"****************************************************""****************************************************""****************************************************"

NullNullNull

Estimates of Stable Parameters of Residuals of OLS Regression - Initial values

Estimate St. error z-value

α 1.63206 0.0245188 66.5637

β −0.0524173 0.0523431 −1.00142

γ 0.500401 0.00798075 62.701

δ 0.00340179 0.0156043 0.218004
{Maximum Likelihood,−5875.31}
****************************************************

Stable Estimates

function Definitions

Clear[sregfit, fregfit]Clear[sregfit, fregfit]Clear[sregfit, fregfit]

fregfit[s_]:=fregfit[s_]:=fregfit[s_]:=

Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},
nobs2 = Length[s];nobs2 = Length[s];nobs2 = Length[s];

{a0,b0, c0,d0} = parm0;{a0,b0, c0,d0} = parm0;{a0,b0, c0,d0} = parm0;

{b10,b20,b30,b40,b50} = beta0;{b10,b20,b30,b40,b50} = beta0;{b10,b20,b30,b40,b50} = beta0;

za0 = N[Sqrt[Log[2/a0]]];za0 = N[Sqrt[Log[2/a0]]];za0 = N[Sqrt[Log[2/a0]]];

maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,

(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=

−nobs2Log[c]+−nobs2Log[c]+−nobs2Log[c]+
FLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,FLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,FLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,

{a,b,1,0},1];{a,b,1,0},1];{a,b,1,0},1];
w = FindMaximum

[
a = 2Exp

[
−za2

]
;w = FindMaximum

[
a = 2Exp

[
−za2

]
;w = FindMaximum

[
a = 2Exp

[
−za2

]
;

maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],

{{za,za0,−10.0,10.0}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},{{za,za0,−10.0,10.0}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},{{za,za0,−10.0,10.0}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},
{b3,b30}, {b4,b40}, {b5,b50}}];{b3,b30}, {b4,b40}, {b5,b50}}];{b3,b30}, {b4,b40}, {b5,b50}}];
{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];

sregfit[s_]:=sregfit[s_]:=sregfit[s_]:=

Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},Module[{w,za0,zb0,zc0, a0,b0, c0,d0,za,zb,b10,b20,b30,b40,b50,nobs2},
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nobs2 = Length[s];nobs2 = Length[s];nobs2 = Length[s];

{a0,b0, c0,d0} = parm0;{a0,b0, c0,d0} = parm0;{a0,b0, c0,d0} = parm0;

{b10,b20,b30,b40,b50} = beta0;{b10,b20,b30,b40,b50} = beta0;{b10,b20,b30,b40,b50} = beta0;

za0 = N[Sqrt[Log[2/a0]]];za0 = N[Sqrt[Log[2/a0]]];za0 = N[Sqrt[Log[2/a0]]];

maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,maxlike[(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ,

(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=(b2_)?NumericQ, (b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ]:=

−nobs2Log[c]+−nobs2Log[c]+−nobs2Log[c]+
SLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,SLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,SLogLikelihood[(s − (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,

{a,b,1,0},1];{a,b,1,0},1];{a,b,1,0},1];
w = FindMaximum

[
a = 2Exp

[
−za2

]
;w = FindMaximum

[
a = 2Exp

[
−za2

]
;w = FindMaximum

[
a = 2Exp

[
−za2

]
;

maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],maxlike[a, If[Abs[b] > 1, Sign[b], b],Abs[c],b1,b2,b3,b4,b5],

{{za,za0,−10,10}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},{{za,za0,−10,10}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},{{za,za0,−10,10}, {b,b0,−1,1}, {c, c0,−∞,∞}, {b1,b10}, {b2,b20},
{b3,b30}, {b4,b40}, {b5,b50}}];{b3,b30}, {b4,b40}, {b5,b50}}];{b3,b30}, {b4,b40}, {b5,b50}}];
{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];{w[[1]],2∗ Exp[−za∧2], b, c,b1,b2,b3,b4,b5}/.w[[2]]];

Clear[monday, tuesday,wednesday, thursday, friday]Clear[monday, tuesday,wednesday, thursday, friday]Clear[monday, tuesday,wednesday, thursday, friday]

monday = Table[data[[ii,3]], {ii,2,nobs+ 1}];monday = Table[data[[ii,3]], {ii,2,nobs+ 1}];monday = Table[data[[ii,3]], {ii,2,nobs+ 1}];
tuesday = Table[data[[ii,4]], {ii,2,nobs+ 1}];tuesday = Table[data[[ii,4]], {ii,2,nobs+ 1}];tuesday = Table[data[[ii,4]], {ii,2,nobs+ 1}];
wednesday = Table[data[[ii,5]], {ii,2,nobs+ 1}];wednesday = Table[data[[ii,5]], {ii,2,nobs+ 1}];wednesday = Table[data[[ii,5]], {ii,2,nobs+ 1}];
thursday = Table[data[[ii,6]], {ii,2,nobs+ 1}];thursday = Table[data[[ii,6]], {ii,2,nobs+ 1}];thursday = Table[data[[ii,6]], {ii,2,nobs+ 1}];
friday = Table[data[[ii,7]], {ii,2,nobs+ 1}];friday = Table[data[[ii,7]], {ii,2,nobs+ 1}];friday = Table[data[[ii,7]], {ii,2,nobs+ 1}];
parmtotal = fregfit[return];parmtotal = fregfit[return];parmtotal = fregfit[return];

{−"5864.32","1.63218",−"0.0536357",{−"5864.32","1.63218",−"0.0536357",{−"5864.32","1.63218",−"0.0536357",

"0."̀,"0.0491851","0.0693213","0."̀,"0.0491851","0.0693213","0."̀,"0.0491851","0.0693213",

"0.0516465","0.0594664"}"0.0516465","0.0594664"}"0.0516465","0.0594664"}
parm8total = Table[parmtotal[[ii]], {ii,2,9}]parm8total = Table[parmtotal[[ii]], {ii,2,9}]parm8total = Table[parmtotal[[ii]], {ii,2,9}]
{1.63218,−0.0536357,0.500413,0.0444915,0.0491851,0.0693213,0.0516465,0.0594664}
"Estimates of Standard Errors of Stable Parameters and Regression coefficients"Estimates of Standard Errors of Stable Parameters and Regression coefficients"Estimates of Standard Errors of Stable Parameters and Regression coefficients

with Stable Errors (using FFT to estimate PDF)"with Stable Errors (using FFT to estimate PDF)"with Stable Errors (using FFT to estimate PDF)"

Clear[maxlike, i8, h, k,u,nhess, cov8, cor8];Clear[maxlike, i8, h, k,u,nhess, cov8, cor8];Clear[maxlike, i8, h, k,u,nhess, cov8, cor8];

maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ, (b2_)?NumericQ,maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ, (b2_)?NumericQ,maxlike[{(a_)?NumericQ, (b_)?NumericQ, (c_)?NumericQ, (b1_)?NumericQ, (b2_)?NumericQ,

(b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ}]:=(b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ}]:=(b3_)?NumericQ, (b4_)?NumericQ, (b5_)?NumericQ}]:=
−Dimensions[return]Log[c]+−Dimensions[return]Log[c]+−Dimensions[return]Log[c]+
FLogLikelihood[(return− (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,FLogLikelihood[(return− (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,FLogLikelihood[(return− (b1monday+ b2tuesday+ b3wednesday+ b4thursday+ b5friday))/c,
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{a,b,1,0},1];{a,b,1,0},1];{a,b,1,0},1];
i8 = IdentityMatrix[8];i8 = IdentityMatrix[8];i8 = IdentityMatrix[8];

h = 10−$MachinePrecision/5;h = 10−$MachinePrecision/5;h = 10−$MachinePrecision/5;

k = 10−$MachinePrecision/5;k = 10−$MachinePrecision/5;k = 10−$MachinePrecision/5;

u = parm8total;u = parm8total;u = parm8total;

nhess =nhess =nhess =
Table[Table[Table[

1
4hk(maxlike[u+ hi8[[ii]]+ ki8[[jj]]]−maxlike[u− hi8[[ii]]+ ki8[[jj]]]−1
4hk(maxlike[u+ hi8[[ii]]+ ki8[[jj]]]−maxlike[u− hi8[[ii]]+ ki8[[jj]]]−1
4hk(maxlike[u+ hi8[[ii]]+ ki8[[jj]]]−maxlike[u− hi8[[ii]]+ ki8[[jj]]]−
maxlike[u+ hi8[[ii]]− ki8[[jj]]]+maxlike[u− hi8[[ii]]− ki8[[jj]]]),maxlike[u+ hi8[[ii]]− ki8[[jj]]]+maxlike[u− hi8[[ii]]− ki8[[jj]]]),maxlike[u+ hi8[[ii]]− ki8[[jj]]]+maxlike[u− hi8[[ii]]− ki8[[jj]]]),

{ii,1,8}, {jj,1,8}];{ii,1,8}, {jj,1,8}];{ii,1,8}, {jj,1,8}];
cov8 = Inverse[−Partition[Flatten[nhess],8]];cov8 = Inverse[−Partition[Flatten[nhess],8]];cov8 = Inverse[−Partition[Flatten[nhess],8]];

cor8 = Table
[
cov8[[ii, jj]]

/√
cov8[[ii, ii]]cov8[[jj, jj]] , {ii,1,8}, {jj,1,8}

]
;cor8 = Table

[
cov8[[ii, jj]]

/√
cov8[[ii, ii]]cov8[[jj, jj]] , {ii,1,8}, {jj,1,8}

]
;cor8 = Table

[
cov8[[ii, jj]]

/√
cov8[[ii, ii]]cov8[[jj, jj]] , {ii,1,8}, {jj,1,8}

]
;

stdevtotal = Table[Sqrt[cov8[[ii, ii]]], {ii,1,8}];stdevtotal = Table[Sqrt[cov8[[ii, ii]]], {ii,1,8}];stdevtotal = Table[Sqrt[cov8[[ii, ii]]], {ii,1,8}];
TableForm[Table[{parm8total[[ii]], stdevtotal[[ii]],parm8total[[ii]]/stdevtotal[[ii]]},TableForm[Table[{parm8total[[ii]], stdevtotal[[ii]],parm8total[[ii]]/stdevtotal[[ii]]},TableForm[Table[{parm8total[[ii]], stdevtotal[[ii]],parm8total[[ii]]/stdevtotal[[ii]]},
{ii,1,8}],{ii,1,8}],{ii,1,8}],
TableHeadings → {{"α","β","γ","b1","b2","b3","b4","b5"},TableHeadings → {{"α","β","γ","b1","b2","b3","b4","b5"},TableHeadings → {{"α","β","γ","b1","b2","b3","b4","b5"},
{"Estimate","St. error","z-value"}}]{"Estimate","St. error","z-value"}}]{"Estimate","St. error","z-value"}}]

{"Maximum Likelihood",mltotal = maxlike[parm8total]}{"Maximum Likelihood",mltotal = maxlike[parm8total]}{"Maximum Likelihood",mltotal = maxlike[parm8total]}
Estimates of Standard Errors of Stable Parameters and Regression

coefficients with Stable Errors (using FFT to estimate PDF)

Estimate St. error z-value

α 1.63218 0.024538 66.5167

β −0.0536357 0.0522964 −1.02561

γ 0.500413 0.00797772 62.7263

b1 0.0444915 0.027191 1.63626

b2 0.0491851 0.027377 1.79658

b3 0.0693213 0.027202 2.54839

b4 0.0516465 0.0271538 1.902

b5 0.0594664 0.0274676 2.16497
{Maximum Likelihood, {−5864.32}}
****************************************************
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B.2 C++ Program to Estimate α-stable GARCH Pro-

cess

The program below was used to estimate the α-stable processes which were

used in the VaR estimates in tables 5.25 and 5.26. The program uses the

STABLE library functions (Nolan (2005a)) which have been described in Sub-

sections A.7.1 and A.7.2 of Appendix A. The program also calls routines from

Press et al. (2007). Their file quasinewton.h was amended to ensure conver-

gence. Some error checking that was included in the original program has

been deleted in the version below. The program outputs data for analysis in

R (R Development Core Team (2008)).

//

// stablegarch.cpp

//

// Program to estimate Stable-garch process (TS-Garch with

// alpha-stable innovations

// John Frain

// Version of 16 August 2008

// (derived from Version of 2 May 2008)

#include <iostream>

#include <cmath>

#include <fstream>

// Include files from Numerical Recipes

#include "C:\WORK\CPP_general\nr_301\include\nr3.h"

#include "C:\WORK\CPP_general\nr_301\include\moment.h"

#include "C:\WORK\CPP_general\nr_301\include\erf.h"

#include "C:\WORK\CPP_general\nr_301\include\amoeba.h"

#include "C:\WORK\CPP_general\nr_301\include\ludcmp.h"

#include "C:\WORK\CPP_general\nr_301\include\qrdcmp.h"

#include "C:\WORK\CPP_general\nr_301\include\roots_multidim.h"

#include "C:\WORK\CPP_general\nr_301\include\quasinewton2.h"

#include "C:\WORK\CPP_general\nr_301\include\gaussj.h"

// Include header files from John Nolan’s STABLE Library

#include "stable.hpp"
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//own header file

#include "stablegarch.h"

using namespace std;

Int main()

{

// read data and load file

Int nrow,ncol;

string txt;

ifstream fp("loss.dat");

fp >> nrow >> ncol;

cout << "matrix is " << nrow << " by " << ncol << "\n" ;

if (fp.fail()){

cout << "Data file loss.dat not found" << endl;

return 1;

}

//NR::nrerror("Data file loss.dat not found");

NRmatrix<Doub> inputmat(nrow,ncol); // matrix to hold input data

// Read file

for (int ii=0;ii<nrow;ii++){

getline(fp,txt);

for (int jj=0;jj<ncol;jj++) {

fp >> inputmat[ii][jj];

}

}

// Extract returns

NRvector<Doub> returns(nrow);

for (Int ii=0;ii<nrow;ii++){

returns[ii] = inputmat[ii][3];

}

// Estimate gamma[0] to pass to revised likelihood function

double theta[4];

double * xtemp;

xtemp= new double[nrow];

for (int i = 0; i<nrow ;i++){

xtemp[i]=inputmat[i][3];

}

Int param = 1;

Int ierr = 1;

STABLEFITMLE(&nrow,xtemp,theta,&param,&ierr); // we need theta[2]

Doub gamma0 = theta[2];
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// Run Nedler Mead

//

cout << "\nInitial Estimate of Parameters using Nedler Mead"<<endl;

param_ll loglik1(returns, nrow, gamma0);

VecDoub point(6);

point[0] = 1.80135; // Starting Values for Parameters - alpha

point[1] = 0.199358; // beta

point[2] = -0.00857765; // delta

point[3] = 0.026424; // omega

point[4] = 0.091525; // alpha1

point[5] = 0.904622; // beta1

Doub del = 0.0001;

const Doub ftol = 1.0e-6;

Amoeba am(ftol);

VecDoub pmin(6);

pmin=am.minimize(point, del, loglik1);

Doub ave, adev, sdev, var, skew, curt;

moment(returns, ave, adev, sdev, var, skew, curt);

cout << "Loglikelihood " <<setprecision(12) <<am.fmin<< endl;

cout << "Number of function evaluations was " << am.nfunc <<endl;

cout << "alpha = "<< pmin[0] << endl;

cout << "beta = "<< pmin[1] << endl;

cout << "delta = "<< pmin[2] << "\n" << endl;

cout << "omega = "<< pmin[3] << endl;

cout << "alpha1 = "<< pmin[4] << endl;

cout << "beta1 = "<< pmin[5] << endl;

cout << "\n" <<endl;

cout << "\nMean of original data " << ave << endl;

cout << "Standard Deviation " << sdev << endl;

cout << "Loglikelihood " << am.fmin<< endl;

cout << "Number of function evaluations was " << am.nfunc <<endl;

Funcd<param_ll> ll(loglik1);

//cout<< "functor likelihood " << ll (point)<<endl;

const Doub gtol = 1.0e-8;

Int iter;

Doub fret;

MatDoub hessout(nrow,nrow);

dfpmin(pmin,gtol,iter,fret,ll,hessout);

cout << "\nFinal Parameter Estimates using DFP " <<endl;
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cout << "Loglikelihood " <<setprecision(12) <<fret<< endl;

cout << "Number of iterations was " << iter << "\n"<<endl;

cout << "alpha = "<< pmin[0] << endl;

cout << "beta = "<< pmin[1] << endl;

cout << "delta = "<< pmin[2] << endl;

cout << "omega = "<< pmin[3] << endl;

cout << "alpha1 = "<< pmin[4] << endl;

cout << "beta1 = "<< pmin[5] << endl;

cout << "\nVariance-covariance matrix derived from inverse of Hessian from ML " <<endl;

cout << hessout[0][0] <<", "<<hessout[0][1]<<", "<<hessout[0][2]<<", "<<hessout[0][3]

<<", "<<hessout[0][4]<<", "<<hessout[0][5] <<endl;

cout << hessout[1][0] <<", "<<hessout[1][1]<<", "<<hessout[1][2]<<", "<<hessout[1][3]

<<", "<<hessout[1][4]<<", "<<hessout[1][5] <<endl;

cout << hessout[2][0] <<", "<<hessout[2][1]<<", "<<hessout[2][2]<<", "<<hessout[2][3]

<<", "<<hessout[2][4]<<", "<<hessout[2][5] <<endl;

cout << hessout[3][0] <<", "<<hessout[3][1]<<", "<<hessout[3][2]<<", "<<hessout[3][3]

<<", "<<hessout[3][4]<<", "<<hessout[3][5] <<endl;

cout << hessout[4][0] <<", "<<hessout[4][1]<<", "<<hessout[4][2]<<", "<<hessout[4][3]

<<", "<<hessout[4][4]<<", "<<hessout[4][5] <<endl;

cout << hessout[5][0] <<", "<<hessout[5][1]<<", "<<hessout[5][2]<<", "<<hessout[5][3]

<<", "<<hessout[5][4]<<", "<<hessout[5][5] <<endl;

cout << "\nStandard Errors derived from inverse of Hessian from ML " <<endl;

// Hessout is inverse of hessian

cout << sqrt(hessout[0][0]) <<endl;

cout << sqrt(hessout[1][1]) <<endl;

cout << sqrt(hessout[2][2]) <<endl;

cout << sqrt(hessout[3][3]) <<endl;

cout << sqrt(hessout[4][4]) <<endl;

cout << sqrt(hessout[5][5]) <<endl;

cout<<"\n"<<endl;

//Alternative estimate of variances

Int nparm;

nparm=point.size(); // Number of parameters estimates

MatDoub altcovar(nparm,nparm); // Covariance Matrix Matrix

ncovar(point, returns, nrow, gamma0, altcovar);

cout << "\nAlternative estimate of variance-covariance matrix" <<endl;

cout << "Numerical derivatives of Loglikelihood function\n" << endl;
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cout << altcovar[0][0] <<", "<<altcovar[0][1]<<", "<<altcovar[0][2]<<", "<<altcovar[0][3]

<<", "<<altcovar[0][4]<<", "<<altcovar[0][5] <<endl;

cout << altcovar[1][0] <<", "<<altcovar[1][1]<<", "<<altcovar[1][2]<<", "<<altcovar[1][3]

<<", "<<altcovar[1][4]<<", "<<altcovar[1][5] <<endl;

cout << altcovar[2][0] <<", "<<altcovar[2][1]<<", "<<altcovar[2][2]<<", "<<altcovar[2][3]

<<", "<<altcovar[2][4]<<", "<<altcovar[2][5] <<endl;

cout << altcovar[3][0] <<", "<<altcovar[3][1]<<", "<<altcovar[3][2]<<", "<<altcovar[3][3]

<<", "<<altcovar[3][4]<<", "<<altcovar[3][5] <<endl;

cout << altcovar[4][0] <<", "<<altcovar[4][1]<<", "<<altcovar[4][2]<<", "<<altcovar[4][3]

<<", "<<altcovar[4][4]<<", "<<altcovar[4][5] <<endl;

cout << altcovar[5][0] <<", "<<altcovar[5][1]<<", "<<altcovar[5][2]<<", "<<altcovar[5][3]

<<", "<<altcovar[5][4]<<", "<<altcovar[5][5] <<endl;

cout << "\nAlternative estimate of standard errors" <<endl;

cout << sqrt(altcovar[0][0]) << endl;

cout << sqrt(altcovar[1][1]) << endl;

cout << sqrt(altcovar[2][2]) << endl;

cout << sqrt(altcovar[3][3]) << endl;

cout << sqrt(altcovar[4][4]) << endl;

cout << sqrt(altcovar[5][5]) << endl;

// Gather results and output to a file;

// Columns of matrix include

//

// Column 0 : year

// Column 1 : month

// Column 2 : day

// Column 3 : data

// Column 4 : fit (mu in this case)

// Column 5 : residual(t) ( x(t) - mu )

// Column 6 : sigmasq(t)

// Column 7 : standardised residual ( residual(t)/sqrt(sigmasq(t)))

MatDoub results(nrow,13);

double alpha = pmin[0];

double beta = pmin[1];

double delta =pmin[2];

double omega = pmin[3];

double alpha1 = pmin[4];

double beta1 = pmin[5];

results[0][0]=inputmat[0][0];// Year

results[0][1]=inputmat[0][1];// Month

results[0][2]=inputmat[0][2];//Day

results[0][3]=inputmat[0][3];// loss

results[0][4]=delta;//
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results[0][5]=inputmat[0][3]-delta;// unstandardised residual

results[0][6]=gamma0;//

results[0][7]=results[0][5]/results[0][6];// standardised residual

int no_quantile = 5 ;

double p[5] = {.900, .950, .990, .995, .999}; // quantile levels

double quantile[no_quantile];

int iparam = 1;

STABLEQUANT(&no_quantile,p,quantile,&alpha,&beta,&gamma0,&delta,&iparam,&ierr);

// STABLEQUANT(&nrow, p, q, &alpha, &beta, &gamma0, &delta,&param, &ierr);

errchk("STABLEQUANT",&ierr);

results[0][8]= quantile[0]; //10% quantile

results[0][9]= quantile[1]; //5% quantile

results[0][10]=quantile[2]; //1% quantile

results[0][11]=quantile[3]; //0.5% quantile

results[0][12]=quantile[4]; //0.1% quantile

for ( int i = 1; i< nrow; i++){

results[i][0]=inputmat[i][0];

results[i][1]=inputmat[i][1];

results[i][2]=inputmat[i][2];

results[i][3]=inputmat[i][3];

results[i][4]=delta;

results[i][5]=inputmat[i][3]-delta;

results[i][6]=omega + alpha1 * abs(results[i-1][5]) +

beta1 * results[i - 1][6];

results[i][7]=results[i][5]/results[i][6];

STABLEQUANT(&no_quantile, p, quantile, &alpha, &beta, &results[i][6], &delta,&param, &ierr);

errchk("STABLEQUANT",&ierr);

results[i][8]= quantile[0]; //10% quantile

results[i][9]= quantile[1]; //5% quantile

results[i][10]=quantile[2]; //1% quantile

results[i][11]=quantile[3]; //0.5% quantile

results[i][12]=quantile[4]; //0.1% quantile

}

ofstream out;

out.open("results.csv");

if (!out){

cout<<"Unable to open output file: " <<endl;

cerr<<"Unable to open output file: " <<out <<endl;

return -1;

}

out << "Year, Month, Day, Loss, Fit, Residual, Sigmasq, zt, VAR100, VAR050, VAR010, VAR005, VAR001" << endl;

for ( int i = 0; i< nrow; i++){

out << setprecision(4)<< results[i][0] << ","

<< setprecision(2)<< results[i][1] << ","
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<< setprecision(2)<< results[i][2] << ","

<< setprecision(12)<< results[i][3] << ","

<< setprecision(12)<< results[i][4] << ","

<< setprecision(12)<< results[i][5] << ","

<< setprecision(12)<< results[i][6] << ","

<< setprecision(12)<< results[i][7] << ","

<< setprecision(12)<< results[i][8] << ","

<< setprecision(12)<< results[i][9] << ","

<< setprecision(12)<< results[i][10] << ","

<< setprecision(12)<< results[i][11] << ","

<< setprecision(12)<< results[i][12] << endl;

}

return 0;

}

//

// stablegarch.h

//

// Header file for stablegardh.cpp

#ifndef GARCHFIT_H__

#define GARCHFIT_H__

// Various probability density functions

Doub pdf1(Doub x, Doub mean, Doub std);

Doub pdf2(Doub x, Doub mean, Doub std);

Doub pdf3(Doub x, Doub alpha, Doub beta, Doub gamma, Doub delta);

// Error check for Stable routines

int errchk(char *str, int *ierr);

int ncovar(const VecDoub_I &x, const VecDoub &returns,const Int nrow, MatDoub_O &var);

int ncovar2(const VecDoub_I &x, const VecDoub &returns, const Int nrow, MatDoub_O &var);

Doub pdf1(Doub x, Doub mean, Doub std)

{

return (1/(sqrt(2.0*M_PI)*std))*( exp(-pow((x-mean)/std,2)/2)) ;

}
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Doub pdf2(Doub x, Doub mean, Doub std)

{

Normaldist gauss(mean,std);

return gauss.p(x);

}

Doub pdf3(Doub x, Doub alpha, Doub beta, Doub gamma, Doub delta){

Doub y;

Int ierr;

Int iparam = 1;

Int n=1;

STABLEPDF(&n,&x,&y,&alpha,&beta,&gamma,&delta,&iparam,&ierr);

return y;

}

struct param_ll {

VecDoub x;

Int nobs;

Doub gamma0;

param_ll(VecDoub_I xx, Int nnobs,Doub ggamma0):x(xx), nobs(nnobs) , gamma0(ggamma0){ }

Doub operator () (VecDoub_I params)

{

Doub alpha = params[0];

Doub beta = params[1];

Doub delta = params[2];

Doub omega = params[3];

Doub alpha1 = params[4];

Doub beta1 = params[5];

if ( alpha > 2 | alpha <1 | beta <-1 | beta >1 |

omega <= 0.0 | alpha1 < 0.0 | beta1<0.0 ) {

cout<< "problem ? "<<endl;

cout<<alpha<<", "<<beta<<", "<<delta<<", "<<omega<<", "<<alpha1<<", "<<beta1<< "\n"<<endl;

return 1.0e8;

}

VecDoub gamma(nobs, 0.0);

gamma[0] = gamma0;

Doub ll = log(pdf3(x[0], alpha, beta, gamma[0] ,delta));

for (Int ii = 1; ii < nobs; ii++) {

gamma[ii] = omega + alpha1 * abs(x[ii - 1]-delta) +

beta1 * gamma[ii - 1];

ll += log(pdf3(x[ii], alpha, beta, gamma[ii], delta));

}

return - ll;

}

};
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//

int ncovar(const VecDoub_I &x, const VecDoub &returns, const Int nrow, const Doub gamma0, MatDoub_O &var)

{

param_ll loglik(returns,nrow,gamma0);

Int n=x.size();

Doub h1 = 1.0e-4; // multipliers to calculate finite differences

Doub k1 = 1.0e-4;

Doub h, k; // Finite differences

VecDoub_IO x1;

VecDoub_IO x2;

VecDoub_IO x3;

VecDoub_IO x5;

VecDoub_IO x6;

VecDoub_IO x7;

MatDoub hessian1(n,n);

for (Int i=0;i<n;i++) {

x1=x;

x6=x;

h=h1 * abs(x[i]);

x1[i]=x[i]+h;

x6[i]=x[i]-h;

hessian1[i][i]=( (loglik(x1)-loglik(x))-(loglik(x)-loglik(x6)) )/(h*h);

for (Int j=0;j<i;j++){

x1=x;

x2=x;

x3=x;

x5=x;

x6=x;

x7=x;

h=h1 * abs(x[i]);

k=k1 * abs(x[j]);

x1[i]=x[i]+h;

x1[j]=x[j]+k;

x2[i]=x[i]+h;

x3[j]=x[j]+k;

x5[i]=x[i]-h;

x5[j]=x[j]-k;

x6[i]=x[i]-h;

x7[j]=x[j]-k;

hessian1[i][j]= (

( (loglik(x1)-loglik(x2)) - (loglik(x3)-loglik(x)) )+

( (loglik(x5)-loglik(x6)) - (loglik(x7)-loglik(x)) ) )/(2.0*h*k);

hessian1[j][i]=hessian1[i][j] ;

}

}

LUdcmp alu(hessian1);

alu.inverse(var);
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return 0;

}

// Error Check for stable routines

int errchk(char *str, int *ierr) {

if (*ierr != 0) {

cout << "\n Stable error " << ierr<< " in " << str <<endl;

return -1;

}

return 0;

}

#endif // GARCHFIT_H__
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