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EC2040 Topic 3 - Multi-variable Calculus

Reading

1 Chapter 7.4-7.6, 8 and 11 (section 6 has lots of economic examples)
of CW

2 Chapters 14, 15 and 16 of PR

Plan

1 Partial differentiation and the Jacobian matrix

2 The Hessian matrix and concavity and convexity of a function

3 Optimization (profit maximization)

4 Implicit functions (indifference curves and comparative statics)
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Multi-variable Calculus

Functions where the input consists of many variables are common in
economics.

For example, a consumer’s utility is a function of all the goods she
consumes. So if there are n goods, then her well-being or utility is a
function of the quantities (c1, . . . , cn) she consumes of the n goods.
We represent this by writing U = u(c1, . . . , cn)
Another example is when a firm’s production is a function of the
quantities of all the inputs it uses. So, if (x1, . . . , xn) are the
quantities of the inputs used by the firm and y is the level of output
produced, then we have y = f (x1, . . . , xn).

We want to extend the calculus tools studied earlier to such functions.
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Partial Derivatives

Consider a function y = f (x1, . . . , xn).

The partial derivative of f with respect to xi is the derivative of f with
respect to xi treating all other variables as constants and is denoted,

∂f

∂xi
or fxi

Consider the following function: y = f (u, v) = (u + 4) (6u + v).

We can apply the usual rules of differentiation, now with two
possibilities:

∂f

∂u
= 1 (6u + v) + 6 (u + 4) = 12u + v + 24

∂f

∂v
= 0 (6u + v) + 1 (u + 4) = u + 4
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Partial Derivatives - Economic Examples

Again, suppose y = f (x1, . . . , xn). Assume n = 2 and x1 = K and
x2 = L; that is, y = f (K , L).

Then assume the following functional form: f (K , L) = K 0.25L0.75;
i.e., a Cobb-Douglas production function.

The partial derivatives are given by,

∂f

∂K
= 0.25K−0.75L0.75,

∂f

∂L
= 0.75K 0.25L−0.25

Alternatively; suppose utility is U = cα
a c1−α

b , where a =apples,
b =bananas. We find:

∂U

∂ca
= α

(
cb

ca

)1−α

,
∂U

∂cb
= (1− α)

(
ca

cb

)α

So, for a given labor input, more capital raises output. For given
consumption of apples, consuming more bananas makes you happier.
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Interpretation of Partial Derivatives

Mathematically, the partial derivative of f with respect to xi tells us
the rate of change when only the variable xi is allowed to change.

Economically, the partial derivatives give us useful information. In
general terms:

1 With a production function, the partial derivative with respect to the
input, xi , tells us the marginal productivity of that factor, or the rate
at which additional output can be produced by increasing xi , holding
other factors constant.

2 With a utility function, the partial derivative with respect to good ci

tells us the rate at which the consumer’s well being increases when
she consumes additional amounts of ci holding constant her
consumption of other goods. I.e., the marginal utility of that good.
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Derivative of a Linear Function

As with functions of one variable, to gain some intuition, we start
with functions that are linear.

We motivated the notion of a derivative by saying that it was the
slope of the line which “looked like the function around the point x0.”

When we have n variables, the natural notion of a “line” is given by

y = a0 + a1x1 + . . . + anxn

When there are two variables, x1 and x2, the function
y = a0 + a1x1 + a2x2 is the equation of a plane.

In general, the function y = a0 + a1x1 + . . . + anxn is referred to
simply as the equation of a plane.

Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 7 / 51



Two Variable Linear Function

Consider the plane y = a0 + a1x1 + a2x2.

How does the function behave when we change x1 and x2? Clearly, if
dx1 and dx2 are the amounts by which we change x1 and x2, we have,

dy = a1dx1 + a2dx2

Note furthermore that the partials are,

∂y

∂x1
= a1 and

∂y

∂x2
= a2

We can then write,

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 8 / 51



Jacobian Matrix

We can take this result (i.e., that dy = ∂y
∂x1

dx1 + ∂y
∂x2

dx2) and recast it
in matrix (here, vector) form.

dy =
[

∂y
∂x1

∂y
∂x2

]
︸ ︷︷ ︸

≡J

[
dx1

dx2

]

We call J the Jacobian.

Take our previous example. The vector
[

∂y
∂x1

∂y
∂x2

]
=
[

a1 a2

]
is

what we can think of as the derivative of the plane.

This vector tells us the rates of change in the directions x1 and x2.
The total change is therefore computed as a1dx1 + a2dx2.
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General Functions

Now consider a more general two variable function, y = f (x1, x2).

With a general function y = f (x1, x2), the idea is to find a plane
which looks locally like the function around the point (x1, x2).

Since the partial derivatives give the rates of change in x1 and x2, it
makes sense to pick the appropriate plane which passes through the
point (x1, x2) and has slopes ∂f /∂x1 and ∂f /∂x2 in the two
directions.

The derivative (or the total derivative) of the function f (x1, x2) at

(x1, x2) is simply the vector
[

∂y
∂x1

∂y
∂x2

]
where the partial derivatives

are evaluated at the point (x1, x2).

We can interpret the derivative as the slopes in the two directions of
the plane which looks “like the function” around the point (x1, x2).
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An Example

When we have a function y = f (x1, . . . , xn), the derivative at

(x1, . . . , xn) is simply the vector
[

∂y
∂x1

. . . ∂y
∂xn

]
.

Take a more concrete example. Suppose,

y = 8 + 4x2
1 + 6x2x3 + x3

The Jacobian must be,[
8x1 6x3 1

]
=
[

∂y
∂x1

∂y
∂x2

∂y
∂x2

]
So we can write,

dy =
[

8x1 6 1
]  dx1

dx2

dx3
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An Economic Example

Consider the utility function from before; U = cα
a c1−α

b , where
a =apples, b =bananas. The Jacobian is a vector of the partials
(which we already computed).

The change in utility is therefore given by the following.

dU =
[

∂U
∂ca

∂U
∂cb

] [ dca

dcb

]
=
[

α
(

cb
ca

)1−α
(1− α)

(
ca
cb

)α ] [ dca

dcb

]
The same is true for the Cobb-Douglas production function,
f (K , L) = K 0.25L0.75.
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Second-Order Partial Derivatives

We now move on to second-order partial derivatives. Our motivation
will be economic problems/interpretation.

Given a function f (x1, . . . , xn), the second-order derivative ∂2f
∂xixj

is the

partial derivative of ∂f
∂xi

with respect to xj .

The above may suggest that the order in which the derivatives are
taken matters: in other words, the partial derivative of ∂f

∂xi
with

respect to xj is different from the partial derivative of ∂f
∂xj

with respect
to xi .

While this can happen, it turns out that if the function f (x1, . . . , xn)
is well-behaved then the order of differentiation does not matter. This
result is called Young’s Theorem.

We shall only be dealing with well-behaved functions (i.e., Young’s
Theorem will always hold).
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Economic Example

For the production function y = K 0.25L0.75, we can evaluate the

second-order partial derivative, ∂2y
∂K∂L , in two different ways.

First, since ∂y
∂K = 0.25K−0.75L0.75, taking the partial derivative of this

with respect to L, we get,

∂

∂L

∂y

∂K
=

3

16
K−0.75L−0.25

And since ∂f
∂L = 0.75K 0.25L−0.25, we have,

∂

∂K

∂y

∂L
=

3

16
K−0.75L−0.25

This illustrates Young’s Theorem: no matter in which order we
differentiate, we get the same answer.
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Economic Interpretation

The second-order partial derivatives can be interpreted economically.

Our example production function is y = K 0.25L0.75.

Therefore,
∂2y

∂K 2
= − 3

16
K−1.75L0.75

This is negative, so long as K > 0 and L > 0.

This tells us that the marginal productivity of capital decreases as we
add more capital.
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Economic Interpretation

As another example, consider,

∂2y

∂K ∂L
=

3

16
K−0.75L−0.25

This is positive, so longas K > 0, L > 0.

This says that the marginal productivity of labour increases as you
add more capital.

It also suggests a symmetry. The above can be interpreted as saying
that the marginal productivity of capital increases when you add more
labor.

Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 16 / 51



Concave and Convex Functions

Our interest in these SOCs is motivated by the local versus global
max/min of functions. Previously, we related this to concavity and
convexity.

In the case of one variable, we defined a function f (x) as concave if
f ′′(x) ≤ 0 and convex if f ′′(x) ≥ 0.

Notice that in the single-variable case, the second-order total is,

d2y = f ′′(x)(dx)2

Hence, we can (equivalently) define a function of one variable to be
concave if d2y ≤ 0 and convex if d2y ≥ 0. The advantage of writing
it in this way is that we can extend this definition to functions of
many variables.
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Second-Order Total Differential

Suppose y = f (x1, x2).

The first order differential is dy = fx1dx1 + fx2dx2.

Think of dy as a function. It’s differential is,

d(dy) = [fx1x1dx1 + fx1x2dx2] dx1 + [fx1x2dx1 + fx2x2dx2] dx2

Collecting terms,

d2y = fx1x1(dx1)2 + 2fx1x2dx1dx2 + fx2x2(dx2)2

The second-order total differential depends on the second-order
partial derivatives of f (x1, x2).
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Second-Order Total Differential

Corollary: If we have a general function y = f (x1, . . . , xn), one can
use a similar procedure to get the formula for the second-order total
differential.

This is a little more complicated but it can be written compactly as,

d2y =
n

∑
i=1

n

∑
j=1

fxixj dxidxj

E.g., y = f (x1, x2, x3) the expression becomes,

d2y = fx1x1(dx1)2 + fx2x2(dx2)2 + fx3x3(dx3)2

+ 2fx1x2dx1dx2 + fx1x3dx1dx3 + fx2x3dx2dx3

Again, we care about this because a function y = f (x1, . . . , xn) will
be concave if d2y ≤ 0 and convex if d2y ≥ 0.
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Maxima/Minima/Saddle Points

As in the single variable case, we are really after maxima and minima.
The first order conditions alone cannot distinguish between local
maxima and local minima.

Likewise, the first order conditions cannot identify whether a
candidate solution is a local or global maxima. We thus need second
order conditions to help us.

For a point to be a local maxima, we must have d2y < 0 for any
vector of small changes (dx1, . . . , dxn); that is, y needs to be a
strictly concave function.

Similarly, for a point to be a local minima, we must have d2y > 0 for
any vector of small changes (dx1, . . . , dxn); that is, y needs to be a
strictly convex function.
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Hessian Matrix - Two Variable Case

As things stand, none of this is not particularly useful since it is not
clear how to go about verifying that the second-order total differential
of a function of n variables is never positive or never negative.

However, notice that we can write the second order differential of a
function of two variables (that is,
d2y = f11(dx1)2 + 2f12dx1dx2 + f22(dx2)2) in matrix form in the
following way.

d2y =
[

dx1 dx2

] [ f11 f12

f12 f22

] [
dx1

dx2

]

The matrix

[
f11 f12

f12 f22

]
is called the Hessian matrix, H. It is simply

the matrix of second-order partial derivatives.

Whether d2y > 0 or d2y < 0 leads to specific restrictions on the
Hessian.
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Hessian Matrix - General Case

In the general case, the second order differential can be written as,

d2y =
[

dx1 dx2 . . . dxn

] 
f11 f12 . . . f1n

f12 f22 . . . f2n

. . . . . . . . . . . .
f1n f2n . . . fnn




dx1

dx2
...

dxn


If we want to know something about d2y all we need to do is
evaluate the Hessian.
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Hessian Matrix - Economic Example

Returning to the Cobb-Douglas utility case; U = cα
a c

β
b , where

a =apples, b =bananas. The first-order differential was,

dU =
[

αcα−1
a c

β
b βcα

a c
β−1
b

] [ dca

dcb

]
The second-order differential is,

d2U =
[

dca dcb

] [ ∂2U
∂ca∂ca

∂2U
∂ca∂cb

∂2U
∂cb∂ca

∂2U
∂cb∂cb

] [
dca

dcb

]
where,[

∂2U
∂ca∂ca

∂2U
∂ca∂cb

∂2U
∂cb∂ca

∂2U
∂cb∂cb

]
=

[
α (α− 1) cα−2

a c
β
b αβcα−1

a c
β−1
b

αβcα−1
a c

β−1
b β (β− 1) cα

a c
β−2
b

]
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Positive Definite and Negative Definite Matrices

The Hessian matrix is square. We can say something about square
matrices:

A symmetric, square matrix, An, is said to be positive definite if for
every column vector x 6= 0 (dimension 1× n) we have xT Ax > 0.

A symmetric, square matrix An is negative definite if for every
column vector x 6= 0 (dimension 1× n), we have xT Ax < 0.

To check for concavity/convexity we evaluate the Hessian. But the
Hessian (for our purposes) can be PD or ND.

If the Hessian is ND the function is concave. If the Hessian is PD the
function is convex. All we need to be able to do then is detemine
whether a given matrix is ND or PD.
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Checking for PD-ness and ND-ness

Let A =


a11 a12 . . . a1n

a12 a22 . . . a2n

. . . . . . . . . . . .
a1n a2n . . . ann

 be a n× n symmetric square matrix.

The principal minors of A are the n determinants,

a11,

∣∣∣∣ a11 a12

a12 a22

∣∣∣∣ ,

∣∣∣∣∣∣
a11 a12 a13

a12 a22 a23

a13 a23 a33

∣∣∣∣∣∣ , . . . , |A|

The matrix A is positive-definite if and only if all the principal minors
are positive.

The matrix A is negative-definite if and only if its principal minors
alternate in sign, starting with a negative.
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Examples of PD and ND Matrices

One can see how this works if we look at the matrices In and −In.
The principal minors of I are uniformly 1; on the other hand the
principal minors of −I start with −1 and then alternate in sign.
Thus, the matrices In and −In are trivially positive-definite and
negative-definite.

Consider,

[
1 1
1 4

]
. One can easily show that the matrix is

positive-definite. How? Well, the principle minors are 1 and 3.

The matrix

[
−1 1
1 −4

]
is negative-definite as the principle minors

are −1 and 3.

A matrix may be neither positive-definite nor negative-definite. For

instance, consider the matrix

[
−1 1
1 4

]
.
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ND and PD Relation to Concavity and Convexity

We defined a function to be concave if d2y ≤ 0 for all x and to be
convex if d2y ≥ 0 for all x .

If the function satisfies a stronger condition – d2y < 0 for all x –
then it will be said to be strictly concave. Analogously, if d2y > 0 for
all x , then it will be said to be strictly convex.

We can also relate the notions of positive-definiteness and
negative-definiteness to strict concavity and strict convexity.

1 A function f is strictly concave if the Hessian matrix is always
negative definite.

2 A function f is strictly convex if the Hessian matrix is always positive
definite.
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Example

Consider the following. Is f (x , y) = x1/4y1/2 concave or convex
over the domain (x , y) ≥ 0?

Compute the second order partials. E.g.,
fxy (x , y) = fyx (x , y) = (1/8) x−3/4y−1/2 and
fxx (x , y) = − (3/4) (1/4) x−7/4y1/2. So,

H =
[
− (3/4) (1/4) x−7/4y1/2 (1/8) x−3/4y−1/2

(1/8) x−3/4y−1/2 − (1/4) x1/4y−3/2

]
The principle minors are, − (3/4) (1/4) x−7/4y1/2 < 0 and,∣∣∣∣ − (3/4) (1/4) x−7/4y1/2 (1/8) x−3/4y−1/2

(1/8) x−3/4y−1/2 − (1/4) x1/4y−3/2

∣∣∣∣
= (3/64) x−7/4y1/2x1/4y−3/2 − (1/64) x−3/4y−1/2x−3/4y−1/2

= (1/64)
[

2x−6/4
]

/y > 0

We conclude x1/4y1/2 is convex over the domain (x , y) ≥ 0.
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Unconstrained Optimization with Multiple Variables

We now link concavity and convexity to optimization problems in
economics.

Consider the general maximization problem,

max f (x1, . . . , xn)

The first order conditions for maximization can be identified from the
condition that the first order differential should be zero at the optimal
point.

That is, a vector of small changes (dx1, ..., dxn) should not change
the value of the function.

We thus have

dy = fx1dx1 + fx2dx2 + . . . + fxndxn = 0
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First Order Conditions

Suppose that we have a function of 2 variables y = f (x1, x2). Then,
the first order condition dy = 0 implies that fx1dx1 + fx2dx2 = 0.

Therefore, the only way we can have fx1dx1 + fx2dx2 = 0 is when
fx1 = 0 and fx2 = 0.

By the same logic, for a general function y = f (x1, . . . , xn), the first
order conditions are

fx1 = 0, fx2 = 0, . . . , fxn = 0

Note that these conditions are necessary conditions in that they hold
for minimization problems also.
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Relation to SOCs for Optimization

We can now summarize the first and second order conditions for an
optimization problem in the following way:

If (x∗1 , . . . , x∗n ) is a local maximum, then the first order conditions
imply that fi (x∗1 , . . . , x∗n ) = 0 for i = 1, . . . , n. The second order
condition implies that the Hessian matrix evaluated at (x∗1 , . . . , x∗n )
must be negative definite.

If (x∗1 , . . . , x∗n ) is a local minimum, then the first order conditions
imply that fi (x∗1 , . . . , x∗n ) = 0 for i = 1, . . . , n. The second order
condition implies that the Hessian matrix evaluated at (x∗1 , . . . , x∗n )
must be positive definite.
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Economic Example: Profit Maximization

To better understand all of this, we can look at a firm’s optimization
problem.

Suppose a firm can sell it’s output at $10 per unit and that it’s
production function is given by y = K 1/4L1/2.

What combination of capital and labour should the firm use so as to
maximize profits assuming that capital costs $2 per unit and labour
$1 per unit?

The firm’s profits are given by

Π(K , L) = 10y − 2K − L︸ ︷︷ ︸
revenue minus costs

= 10K 1/4L1/2 − 2K − L

This is a problem of unconstrained optimization with multiple
variables.
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Economic Example Continued

We can use the first order conditions to obtain potential candidates
for optimization, as with one variable.

For the firm we have the following profit maximization problem:

Π(K , L) = 10K 1/4L1/2 − 2K − L

The first order conditions are

∂Π
∂K

= (5/2)K−3/4L1/2 − 2 = 0

∂Π
∂L

= 5K 1/4L−1/2 − 1 = 0
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Economic Example Continued

Dividing the first first-order condition by the second first-order
condition gives us (1/2)L/K = 2, or,

L = 4K

Substituting this into the second first-order condition, we get
5K 1/4(4K )−1/2 = 1, or K−1/4 = 2/5, or,

K = (5/2)4 = 625/16

Finally, we have,
L = 625/4

This is our candidate solution for a maximum. But to verify that it
really is the maximum we need to check the second-order conditions.
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Economic Example Continued

The candidate solutions are, K ∗ = 625/16 and L∗ = 625/4.

The Hessian matrix at any (K , L) is given by

H =
[
− 15

8 K−7/4L1/2 5
4K−3/4L−1/2

5
4K−3/4L−1/2 − 5

2K 1/4L−3/2

]
Note that since K > 0, L > 0.

f11 = −15

8
K−7/4L1/2 < 0

|H | = −
(
−5

2

)
15

8
K−7/4+1/4L−3/2+1/2 −

(
5

4

)2

K−3/4−3/4L−1/2−1/2

= (75/16)K−3/2L−1 − (25/16)K−3/2L−1

= (50/16)K−3/2L−1 > 0

This shows that the second order conditions are satisfied at (K ∗, L∗),
which shows it is a local maximum.
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Implicit Functions and Comparative Statics

So far, we have consider the interpretation of functions with more
than one variable through the Jacobian and the Hessian.

We have also related the Hessian to the notions of concavity and
convexity and maxima and minima, via an optimization problem.

However, when we deal with functions of more than one variable, we
also run into other complications.

Basically, we tend to think of the LHS variable of a function as
endogenous and the RHS variable(s) as exogenous. But sometimes
exogenous variables and endogenous variables cannot be separated
and we need to differentiate implicitly.

Implicit differentiation is also useful when thinking about utility
functions (indifference curves) and production functions (isoquant
curves).
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Implicit Function Theorem

An example of an implicit function, i.e., one where the exogenous and
endogenous variables cannot be separated, is,

F (x , y) = x2 + xyey + y2x − 10 = 0

It is not clear how to separate out y from x or even whether it can be
done. However, we may still want to find out how the endogenous
variable changes when the exogenous variable changes.

Under certain circumstances, it turns out that even when we cannot
separate out the variables, we can nonetheless find the derivative
dy/dx .
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Implicit Function Theorem

The following result enables us to find the derivatives for implicit
functions.

Theorem: Let f (x , y) = 0 be an implicit function which is
continuously differentiable and (x0, y0) be such that f (x0, y0) = 0.
Suppose that ∂f

∂y (x0, y0) 6= 0. Then,

dy

dx

∣∣∣(x0,y0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

So, without specifying x and y we can find dy
dx at a given point, here

(x0, y0).
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Abstract Example of Implicit Function Theorem

Consider f (x , y) = x2 + xyey + y2x − 10 = 0. Suppose we want to
evaluate the derivative at some point (x0, y0) such that f (x0, y0) = 0.

Using the rules of differentiation,

∂f

∂y
= xey + xyey + 2xy

This can be zero for some x and y but assume that the point (x0, y0)
is not one of them. Now differentiate with respect to x ,

∂f

∂x
= 2x + yey + y2

The implicit function theorem allows us to write the following.

dy

dx

∣∣∣(x0,y0) = − 2x0 + y0ey0 + y2
0

x0ey0 + x0y0ey0 + 2x0y0

Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 39 / 51



Economic Example of Implicit Function Theorem

One use of the implicit function theorem in Economics is to find the
slopes of indifference curves and isoquants.

Consider the production function used earlier.

y = K 0.25L0.75

If we fix y = y0, then the combination of all (K , L) which gives y0

units of output is called an isoquant.

Suppose (K0, L0) is one such combination.

We want to find the slope of the isoquant, that is dK
dL

∣∣∣(K0,L0) .
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Economic Example Continued

Setting y = y0, we can write the production function in implicit
function form as,

F (K , L) = K 0.25L0.75 − y0 = 0

Using the values for the partial derivatives found earlier, we have,

dK

dL

∣∣∣(K0,L0) = −0.75K 0.25
0 L−0.25

0

0.25K−0.75
0 L0.75

0

= −3
K0

L0

Note that K0 6= 0, L0 6= 0.

This equation tells us the slope of the isoquant at (K0, L0).
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Indifference Curves

As a final example, consider the following utility function:

U =
[
αc

η
a + βc

η
b

]1/η
, where a =apples, b =bananas. This is called a

constant elasticity of substitution utility function. When η = 0 we
get back to the Cobb-Douglas utility function.

Holding utility fixed, we have the following:[
αc

η
a + βc

η
b

]1/η − U0 = 0. Now use the implicit function theorem.

dca

dcb

∣∣∣(ca,0,cb,0) = −
∂U
∂ca

(ca,0, cb,0)
∂U
∂cb

(ca,0, cb,0)

= −α

β

(
ca

cb

)η−1

Suppose we look at the MRS at the point (tca, tcb). The indifference
curves have the same slope at (ca, cb) and at (tca, tcb) for any t > 0.
The CES utility function is an example of preferences that are
homothetic.
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Comparative Statics and Implicit Relations: Supply and
Demand

One question we also often need to answer is how underlying
parameters affect the equilibrium of a supply and demand system.

Suppose that we have a market where the demand and supply
functions are given by the following.

D = a− bp + cy , S = α + βp

The parameters a, b, c , α, β are all positive constants.

The equilibrium price is,

p∗ =
a− α + cy

b + β

We can now check how the underlying parameters (a, b, c, y , α, β)
affect the equilibrium price.

Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 43 / 51



Comparative Statics: Supply and Demand

In our simple example, we can get the partial derivative,

∂p∗/∂a = 1/(b + β)

All other things remaining constant, an increase in a, increases the
equilibrium price.

We can similarly find the impact of changes in other parameters on
the equilibrium price.

Importantly, we can also, in many cases, conduct the comparative
statics without solving for the equilibrium values of the endogenous
variables.
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General Function Example of Supply and Demand

Consider the following system more general demand and supply
system.

qd = D(p, T ), qs = S(p, T )

Here, T is the temperature on a given day. We assume that Dp < 0,
DT > 0, Sp > 0, ST < 0.

Equilibrium requires that D(p, T ) = S(p, T ) but we cannot compute
the equilibrium price explicitly.

Denote the equilibrium price p∗(T ): observe that it is a function of
the parameter T .

Inserting p∗(T ) into the equilibrium condition, we have,

D(p∗(T ), T ) = S(p∗(T ), T )
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General Function Example of Supply and Demand

We differentiate both sides with respect to T which gives,

Dp
dp∗

dT
+ DT = Sp

dp∗

dT
+ ST

Rearranging, we get
dp∗

dT
=

ST −DT

Dp − Sp

Note that since ST < 0, DT > 0, Dp < 0, Sp > 0 it follows that
dp∗/dT > 0.

Hence, even without being able to compute p∗(T ) explicitly, we can
still say that the equilibrium price increases following an increase in
the temperature.
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Example Continued

Can we say anything about the equilibrium quantity?

Note that the equilibrium quantity must satisfy,

q∗(T ) = D(p∗(T ), T )

Differentiating with respect to T we get

dq∗

dT
= Dp

dp∗

dT
+ DT =

DpST − SpDT

Dp − Sp

In this case, the denominator is positive but we cannot say anything
about the numerator unless we have more specific information about
the magnitudes of Dp, Sp, DT and ST .
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General Formulation

Suppose we have a general set of equilibrium conditions given by

f 1(x1, . . . , xn; α1, . . . , αm) = 0

f 2(x1, . . . , xn; α1, . . . , αm) = 0

. . . = . . .
f n(x1, . . . , xn; α1, . . . , αm) = 0

Let us suppose that we can solve this set of equations to get
(x∗1 , . . . , x∗n ). Note that each x∗i will be a function of all the
underlying parameters (α1, . . . , αn).

In comparative statics, we typically are interested in knowing how
(x∗1 , . . . , x∗n ) change when there is a small change in one of the
parameters, say αi .
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General Formulation

We proceed by differentiating each of the equilibrium conditions with
respect to αi . This gives

f 1
1

dx∗1
dαi

+ f 1
2

dx∗2
dαi

+ . . . + f 1
n

dx∗n
dαi

= −f 1
αi

f 2
1

dx∗1
dαi

+ f 2
2

dx∗2
dαi

+ . . . + f 2
n

dx∗n
dαi

= −f 2
αi

... =
...

f n
1

dx∗1
dαi

+ f n
2

dx∗2
dαi

+ . . . + f n
n

dx∗n
dαi

= −f n
αi
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General Formulation

In matrix notation this can be written as
f 1
1 f 1

2 . . . f 1
n

f 2
1 f 2

2 . . . f 2
n

...
...

...
...

f n
1 f n

2 . . . f n
n




dx∗1
dαi
dx∗2
dαi

...dx∗n
dαi

 =


−f 1

αi

−f 2
αi

...
−f n

αi


How do we solve for dx∗j /dαi? Using the usual methods (like
Cramer’s rule).

All of this gives us a very powerful tool more analyzing relatively
complicated economics models in a simple way.
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Roundup

You should now be able to do/understand the following:

1 Partial differentiation and the Jacobian matrix

2 The Hessian matrix and concavity and convexity of a function

3 Optimization (profit maximization)

4 Implicit functions (indifference curves and comparative statics)
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