
Necessity is the Mother of Invention:

Input Supplies and Directed Technical Change∗

W. Walker Hanlon

UCLA Economics Department

Feb. 7, 2013

Abstract

The leading theory of directed technical change, developed by Acemoglu (2002),
offers two main predictions. First, when inputs are sufficiently substitutable, a
change in relative input supplies will generate technical change that augments
inputs which become relatively more abundant. Second, if this effect is suf-
ficiently strong, the relative price of the relatively more abundant inputs will
increase – the strong induced-bias hypothesis. This paper provides the first
empirical test of these predictions using the shock to the British cotton textile
industry caused by the U.S. Civil War (1861-1865). Using detailed new patent
data, I show that the shock increased innovation in Britain directed towards
taking advantage of Indian cotton, which had became relatively more abun-
dant. The relative price of Indian cotton first declined and then rebounded,
consistent with strong induced-bias. Given my elasticity of substitution esti-
mates, these findings are consistent with the predictions of the theory.
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1 Introduction

The idea that a change in the availability or price of inputs to production can play an

important role in influencing the rate and direction of technical progress has been used

to explain a diverse set of economic phenomena.1 To cite one example, it has been

suggested that the increase in skilled workers in the U.S. in the 1970s caused skill-

biased directed technical change, and that this directed technical change allowed the

skill premium to increase in spite of the increase in the relative abundance of skilled

workers (Acemoglu (1998), Kiley (1999)). This example highlights two relationships

which will be the focus of this paper. First, that a change in the relative supply

of inputs can cause innovation to be directed towards technologies which augment

either one or the other of the inputs. Second, that in some cases directed technical

change can cause generate a positive long-run relationship between relative quantities

of inputs to production and the relative price of those inputs.

These ideas have been formalized by by Acemoglu (2002, 2007), building on previ-

ous work by Hicks (1932) and others.2 Acemoglu shows that the direction of technical

change depends crucially on the elasticity of substitution between inputs, represented

by σ. When this elasticity is low (σ < 1), technical change will be directed towards

technologies that augment the input which has become relatively scarce. In contrast,

when the elasticity of substitution between inputs is high (σ > 1), technical change

will be directed towards technologies that augment the input which has become rel-

atively more abundant. Next, he shows that, when the elasticity of substitution

between inputs is sufficiently high (σ > 2), technical change will be so strongly di-

rected towards technologies that augment the more abundant input that the relative

price of that input can increase. This strong induced-bias hypothesis may explain, for

1In economic history, it has been suggested that a shortage of labor drove the development of
labor-saving innovations which played an important role in industrialization in Britain and the U.S.
(Habakkuk (1962), Allen (2009)). In the environmental literature, it has been pointed out that the
impact of regulations that change the price of inputs, such as a carbon tax, will depend crucially on
whether these changes generate directed technical change, and on the direction that this innovation
takes (Acemoglu et al. (2012)). Related papers in the environmental literature include Porter (1991),
Lanjouw & Mody (1996) and Jaffe & Palmer (1997). The idea of directed technical change has also
been applied to consider the impact of high energy prices (Newell et al. (1999), Popp (2002)), the
causes of cross-country productivity differences (Acemoglu & Zilibotti (2001), Caselli & Coleman
(2006)), and agricultural productivity trends (Hayami & Ruttan (1970), Olmstead & Rhode (1993)).

2Other important contributions to this literature include Kennedy (1964), Samuelson (1965) and
Drandakis & Phelps (1966).
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example, how an increase in the supply of skilled workers may increase the skill wage

premium.

The aim of this paper is to test these predictions. To do so, I consider a large

exogenous shock to the British cotton textile industry caused by the U.S. Civil War

(April 1861 - April 1865). The war, which included a blockade on Southern shipping

by the Union Navy, sharply increased the cost of supplying U.S. cotton from the

South, which provided most of the raw cotton imported into Britain prior to the war

(77% in 1860). This forced British producers to turn to raw cotton from alternative

suppliers, such as India, Brazil, and Egypt. In response to the resulting high prices,

all of these alternative suppliers, led by India, substantially increased their exports to

Britain. However, the cotton available from these alternative suppliers differed from

American cotton in important ways. This was particularly true for cotton from India,

the second largest supplier, which was a low-quality variety that was difficult to clean

and prepare. This cleaning and preparation was undertaken using machines such as

cotton gins, openers, scutchers, and carding machines. This fact that I can identify

the specific types of machines needed for using Indian cotton allows me to identify

the direction of technical change by tracking innovation patterns in these technologies

relative to other types of cotton textile technologies. Thus, the Civil War generated

a large exogenous shift in the relative supply of similar, but not identical, inputs to

production that can be used to identify the causal impact on the direction of technical

change and input prices.

This empirical setting has a number of features which are important for my study.

First, the impact of the Civil War on the cotton textile industry was large and lasted

for several years. There is evidence that output in the industry dropped by as much

as 50%. Hundreds of thousands of mill operatives found themselves out of work

or working short-time. Thus, this event was large enough to influence innovation

rates. Second, I can compare outcomes in the the cotton textile industry to other

similar textile industries – based on wool, linen, and silk – which were also important

in Britain during this time, but which were not negatively impacted by the Civil

War.3 This will help me control for other time-varying factors that may be affecting

innovation rates. Third, despite the magnitued of the shock, there was virtually no

government intervention. This was primarily due to the strong free-market ideology

3If anything, these industries benefited somewhat from the reduction in competition from cotton
textiles.
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which was dominant in Britain at this time. This reduces the chance that the effects

I observe are influenced by government action, which may be a serious concern in

other contexts.

In order to identify the direction of technological change, I gathered new data

on British patents containing a high level of detail on the types of new technologies

being created. Using these patent data it is possible to track patterns of innovation

in particular types of cotton textile machines. The patent data show that there was a

substantial increase in cotton-textile related innovation during the Civil War period.

This increase was concentrated in those machines that were particularly important

for using Indian cotton. This increase peaked two to four years into the war, a time-

frame that is consistent with qualitative evidence on the lag needed to produce new

technologies such as cotton gins. The same features appear when I focus only on

high-quality patents, using three measures of patent quality that I gathered. Thus, I

find that the shock generated directed technical change towards the input which had

become relatively more abundant, Indian cotton.

Next, using new data on the prices of these cotton varieties gathered from The

Economist magazine, I look at the impact of the shock on relative input prices. In

the absence of directed technical change, the price of alternative cotton varieties, rel-

ative to U.S. cotton, should have fallen as they became relatively more abundant.

On the other hand, the technical change directed towards augmenting Indian cotton

may offset this, by increasing the demand for that variety. Graphing the relative

price of Indian to U.S. cotton shows a decrease in the first two years of the Civil War,

followed by a rapid rebound starting in 1863, around the time when the new technolo-

gies were becoming available. This pattern is consistent with the strong-induced bias

hypothesis. I contrast this with the pattern I observe for Brazilian cotton, a smaller

alternative variety that does not appear to have benefited from directed technical

change. I find that the relative price of Brazilian to U.S. cotton fell at the begin-

ning of the war, as Brazilian cotton became relatively more abundant, and remained

low throughout the period in which Brazilian cotton remained relatively abundant,

consistent with what we would expect in the absence of directed technical change.

Comparing these patterns econometrically allows me to control for other time-varying

factors that affected the cotton industry. I show that there was a significant decrease

in the relative price of Brazilian cotton over the ten years following the onset of the

war. In contrast, the relative price of Indian cotton did not decrease and may have
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increased, on average, during this period, despite the large increase in the relative

abundance of Indian cotton.

To relate these findings to the theory, I estimate the elasticity of substitution

between Indian and U.S. cotton. Once I have this elasticity parameter, I know the

predictions of the theory and can compare them to my empirical results in order to

test the theory. I take two complementary approaches to estimating this parameter.

First, I use an approach based on the Almost Ideal Demand System which has been

widely used in the existing literature. However, I discuss some potential sources of

bias that may be present in this approach. To address these, I use an alternative

approach that exploits two other unexpected short-term shocks to the relative supply

of Indian cotton. These are the Indian Mutiny of 1857, which disrupted economic

activity and reduced exports of Indian cotton in 1858, and the Great Indian Famine

of 1876-78, which directly impacted the cotton crop. Regardless of the approach used,

I find evidence that the elasticity of substitution between Indian and U.S. cotton was

above one and also likely above two. Given these, the model correctly predicts both

the direction of technological progress and the impact of directed technical change on

relative input prices.

Several previous empirical studies have also looked at the relationship between

input supplies (or prices) and the direction of technological progress (Newell et al.

(1999), Popp (2002), Aghion et al. (2010)).4 The main feature that distinguishes this

paper from these existing studies is that I observe the prices and quantities of multiple

inputs into the production process. This means that I can estimate the elasticity of

substitution between these inputs, derive the predictions of the theory, and compare

these predictions to what I observe in the data. Also, previous studies used input

prices as their main independent variable, which meant that they were unable to look

at the impact of a change in relative quantities on relative input prices. Thus, this is

the first study to investigate the strong-induced bias hypothesis. Another important

4An alternative approach is taken by Blum (2010) who uses cross-country trade data in an
effort to find evidence of directed technical change at a macro level. In particular, he finds that
changes in relative factor endowments are negatively correlated with relative factor prices, and
that this correlation is larger for factor prices in the long run, which he interprets as evidence
of technical change biased toward the factor which became relatively scarce. This approach is
potentially complementary to microeconomic studies such as my paper. However, standing alone it
is difficult to be sure that the changes he observes are truly due to directed technical change rather
than other factors, since technology is not observed, and controlling for other potential explanations
is difficult in a cross-country context.
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difference is that this study uses a large exogenous shock to provide causal evidence

in a cleaner way than was previously possible. A final difference is that my empirical

setting is largely free of government intervention, which may be a concern in other

settings.

While this study is focused on the impact of changes in input supplies on innova-

tion, there are complementary studies that consider the influence of demand factors

or competition. On the demand side, Acemoglu & Linn (2004) consider the impact

of demand fluctuations on innovation rates in the pharmaceutical industry and find

that shifts in demand can be an important driver of new product development. For

competition, Bloom et al. (2009) use several measures of technical change, including

patents and R&D expenditures, to show that an increase in competition from Chinese

producers led European firms to upgrade their technology.

The next section presents the theoretical framework. Section 2 details the em-

pirical setting and presents my elasticity estimates. The patent data are described

in Section 4. I analyze the impact on innovation patterns using the patent data in

Section 5. The impact on input prices is analyzed in Section 6. In Section 7 I estimate

the elasticity of substitution parameters that determine the predictions of the theory

and compare these predictions to my empirical results in order to evaluate the theory.

Section 8 concludes.

2 Empirical setting

During the second half of the 19th century, cotton textiles were Britain’s largest

export and raw cotton was Britain’s largest import.5 For example, in 1860 cotton

textile exports were valued at £52 million, dwarfing the next largest export categories,

wool textile exports at £15.7 million and iron and steel at £13.6 million.6

2.1 The Cotton Textile Production Process

It is helpful to have some understanding of the cotton textile production process, and

the technologies involved, before proceeding. There are four stages in the cotton tex-

5Of course, this was not the case during the U.S. Civil War.
6Data from Mitchell & Deane (1962).
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tile production process: Preparation, Spinning, Weaving, and Finishing. Preparation

involved separating the cotton fibers from the seeds, using gins, opening the cotton

fibers using openers, and cleaning the cotton by removing leaves, dirt, and other mat-

ter using scutchers and carding machines.7 In the spinning stage, the prepared raw

cotton was spun into yarn.8 The yarn was then made into fabric, through weaving,

after which the fabric could be finished through bleaching, dying, or printing.

All of these production stages relied heavily on machinery which was supplied by

Britain’s large and innovative textile machinery sector. The two main textile tech-

nology categories, Spinning and Weaving, were among the top ten patent technology

categories, out of 146 total categories, based on the number of patents filed from

1855-1883.9 They made up 6% and 5%, respectively, of all British patents during this

period, a time at which Britain was a world technology leader.

While cotton was the largest textile industry in Britain, textile industries based

on wool, linen, and silk were also of significant size. The technology and other inputs

used by these industries was generally similar to that used by the cotton textile

industry.

2.2 The impact of the U.S. Civil War

The British cotton textile industry was entirely dependent on imported raw cotton,

as growing cotton in Britain was infeasible. At the beginning of the study period, the

cotton textile industry was heavily dependent on cotton growers in the U.S. South, as

is evident in the left-hand panel of Figure 1. After the beginning of the U.S. Civil War

in April of 1861 the North almost immediately declared a naval blockade of South-

ern ports. While initially ineffective, the blockade became increasingly disruptive to

Southern commerce, including the export of raw cotton, as the war continued and the

Union Navy expanded. While other suppliers, particularly India, but also Egypt and

Brazil, attempted to increase output, they were not able to increase their production

rapidly enough to replace the flows from the U.S. The right-hand panel of Figure 1

7Definitions of these and other textile-related terms are available in Appendix A.2. The first
stage of the preparatory process, ginning, generally took place in the cotton producing region, while
later stages, such as opening and carding, generally took place in manufacturing centers such as
Britain.

8This stage took place in Britain or other manufacturing centers.
9See Appendix A.1.

6



shows that there was a significant drop in British domestic cotton consumption from

1861-1865, a good indicator of production in the industry.10

Figure 1: British cotton imports and domestic consumption 1815-1910

British cotton imports British domestic cotton consumption

Data from Mitchell & Deane (1962).

Figure 2 shows the impact on the level of imports from each major supplier (left

panel), and the share of total imports from the U.S., India, and other suppliers (right

panel).11 It is clear that the shock caused a sharp drop in imports from the U.S.

and an increase in imports from other suppliers, particularly India. While imports

from the U.S. dropped sharply during the war, significant supplies remained on the

market, allowing me to obtain reliable price data for U.S. cotton throughout the shock

period.12

10It is reasonable to think of the amount of cotton required for a given amount of cotton textiles
as being largely fixed, though, or course, small savings could be made. The reduction in production
also led to massive unemployment in the cotton textile districts, resulting in the “Lancashire Cotton
Famine”. Brady (1963) argues that in fact the drop in production was driven by an oversupply of
cotton textile goods on the market in 1860-1861, rather than a drop in the availability of inputs.
His argument is based on the fact that the ratio of cotton stocks to imports remained high during
the war. However, when one considers the size of the reduction in imports and the drawdown in
stocks over the 1861-1865 period, rather than comparing ratios, it is clear that his argument cannot
be correct.

11Note that the import data shown in Figure 1 and 2 come from two different sources. The
Mitchell & Deane (1962) used in Figure 1 provide the longest time coverage but do not distinguish
between imports from different sources.

12Imports from the U.S. never drop below 70,000 bales per year. For comparison, there were only
100,000 bales of Brazilian cotton imports in 1861.
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Figure 2: British cotton imports and share of imports by supplier 1850-1880

Cotton imports by supplier 1850-1880 Share of imports by supplier 1850-1880

Data from Ellison (1886).

Two important points regarding the timing of the shock are visible in these figures.

First, the war caused large changes during the 1861-1865 period. Second, following

the end of the war, conditions began returning to their original equilibrium. The

overall level of imports and production rebounded almost immediately, but the re-

adjustment of relative input supplies took time. Imports of American cotton remained

low through 1870, while imports of Indian, Brazilian, and Egyptian cotton remained

high through the mid 1870’s.

Another feature of this shock is that it was largely transmitted through the cotton

textile industry, rather than being a broad-based economic shock. Once raw cotton

imports are removed, total British imports do not appear to be affected during the

shock period.13 Similarly, once textile exports are excluded, British manufacturing

exports also fail to show any large effect from the shock. Other main textile industries,

based on wool, linen/flax, or silk inputs, showed no negative effects of the shock.14 If

anything, these sectors benefited from the reduced competition from cotton textiles.

13See Figure 16 in Appendix A.6.
14Graphs showing exports in these other sectors are available in Appendix A.6.
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2.3 Differences between U.S. and Indian cotton

Understanding the differences between U.S. and Indian cotton is necessary in order

to identify technologies which were needed specifically for using low-quality Indian

cotton. The raw cotton supplied by the U.S. and India at the time of this study came

from biologically distinct varieties. The cotton available from India in the 1860s

was widely considered to be inferior to U.S. cotton in several important ways, a fact

which was reflected in the lower price per pound paid for Indian cotton throughout

the period I study (see Figure 7 in Section 6).

One difference between these varieties was that Indian cotton was more difficult to

prepare for spinning. In particular, it was difficult to remove the seeds from the Indian

cotton using the cotton gins which were available. This was a result of the unusually

small size of the Indian cotton seeds, as well as their strong bond to the cotton plant

(see, e.g., Wheeler (1862)). The primary machine used to remove seeds in India

was the Churka, a very simple and inexpensive but inefficient and often ineffective

hand-operated machine. The main alternative, prior to 1860, was the saw gin, which

had been developed for processing American cotton.15 However, American saw gins

tended to cut up the Indian cotton fibers, reducing their length, and therefore their

usefulness.16 In addition, the saw gins were much more complicated and expensive.

For these reasons the saw gin proved ill suited for India. In addition to the difficulty

in removing seeds, Indian cotton fibers were also more difficult to open, a process

which was done using openers.

The U.S. also had a better developed cotton growing and processing industry than

India, which influenced the cleanliness of the cotton. Indian cotton had a difficult

journey from the interior to the ports, and passed through the hands of multiple

middle-men, who habitually added dirt, salt water, or other substances in order to

increase the weight of the cotton.17 As a result, the Indian cotton required more

cleaning than American cotton, a process that was done using gins, scutchers, and

carding machines.

Indian and U.S. cotton also differed in their fiber length. Most of the raw cotton

coming from the U.S. was of a medium-length-fiber variety, which was easier to spin

15Illustrations of both machines are available in Appendix A.3.
16See example in Appendix A.5.
17See, e.g., the description in Wheeler (1862) (p. 125-129) and Mackay (1853).
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than the short-fiber cotton supplied by India.18 The fact that Indian cotton was

shorter likely compounded the difficulties involved in ginning, since using a gin could

significantly shorten the fiber length.19

The difficulty that British producers faced in using Indian cotton is reflected in

the share of cotton wasted in the production process, plotted in Figure 3. This graph

shows that there was a sharp increase in cotton waste corresponding to the switch to

Indian cotton in 1862. This is particularly striking given that price of raw cotton was

very high by 1862, which must have induced producers to take measures to limit such

waste. The slow reduction in the waste level after 1862 may indicate improvements

in the ability of textile manufacturers to use Indian cotton efficiently.

Figure 3: Share of waste in total raw cotton input 1860-1868

Data from Forwood (1870). These values are calculated by taking the weight of cotton consumed

and subtracting the weight of yarn produced, to obtain the weight wasted in the production process.

Another indicator of the differences between U.S. and Indian cotton can be found

in the patent descriptions themselves. Though most patents provide only a simple

description of the mechanisms involved, a few also mention the motivation behind

the new technology. One example is Patent No. 2162 from 1862, which describes

a patent filed in Britain in 1862 which was specifically designed to open the more

tightly-compressed East Indian cotton.20

Qualitative evidence from historians and contemporary observers suggests that

the differences between Indian and U.S. cotton was an influential factor during the

18Appendix A.4 shows a comparison of fiber lengths from several of the varieties of cotton available
to British producers. The Indian varieties are shorter than all other varieties.

19This is illustrated in Appendix A.5, which shows the difference between the length of fiber
obtained after hand-cleaning and mechanically ginning using a sample of Brazilian cotton.

20This patent was classified in the spinning technology category and the “Openers & Scutchers,
etc.” subcategory, and also has “cotton” in the patent title, leading it to be identified as a cotton-
related patent. A description of this patent is available in Appendix A.8.
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1861-1865 period. For example, the historian D.A. Farnie, in his authoritative history

of the British cotton textile industry in the 19th century, emphasized the technological

changes that using Indian cotton required British producers to undertake.21 Contem-

porary observers, such as Ellison (1886) also remarked on the improvements in the

quality and usefulness of Indian cotton that took place during this period.22

2.4 How long to invent new technologies?

Because this studies relies on the timing of the Civil War for identification, it is

important to consider the lag that we should expect between an increase in the

incentives for innovation and the production of patentable new technology designs.

It is very difficult to address this concern rigorously, since the lag is likely to vary

across technology types and individual inventors and the moment at which an inventor

begins work on a problem is generally unobserved. However, historical evidence can

provide some guide.

One piece of evidence that is particularly relevant for this study is provided by

Lakwete (2003) in her authoritative history, Inventing the Cotton Gin. This account

details numerous instances in which inventors produced new innovations or patentable

improvements on existing inventions within a 1-3 year period. Among these inventors

is Eli Whitney, who had invented, patented, and introduced commercially, his famous

cotton gin, within two years of first setting foot on a Southern cotton plantation. Two

other good examples are McCarthy’s roller gin and Whipple’s cylinder gin, which were

both invented in response to the panic of 1837 and patented in the U.S. in 1840. These

examples suggest that, at least in the case of gins, it is reasonable to expect innovation

to respond to changing conditions within a two to three year time-frame.

21Farnie (1979) (p. 152-153) writes, “The shortage of American cotton compelled employers to
re-equip their mills in order to spin Surat [Indian cotton], and especially to improve their preparatory
processes...The process of opening the tightly packed raw material become wholly automated through
the use of the Crighton Opener, invented in 1861, as was the subsequent process of scutching through
the application of the ingenious piano-feed regulator developed in 1862...The reorganization of the
preparatory processes entailed such an extensive investment of capital that it amounted almost to
the creation of a new industry...Those innovations gave a great stimulus to the textile engineering
industry and consolidated the technical supremacy of the Lancashire cotton industry in the world.”

22In his book, The Cotton Trade in Great Britain, Ellison writes, “The high prices caused by
the cotton famine, however, gave an impetus to the culture [of cotton] in India which it would not
otherwise have obtained, and thereby secured to Europe a permanent increase in supply. Moreover,
the quality of the cotton has been so materially improved by the introduction of better methods of
handling the crop, that “Surats” are no longer despised as they were up to within a few years ago.”
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3 Theory

This section adapts the theory of Acemoglu (2002) to the empirical setting that I

investigate. The main challenge in doing so is that the cotton textile industry uses

multiple types of raw cotton inputs and the elasticity of substitution may vary across

different input pairs. In order to accommodate this feature, I divide the cotton

textile industry into high and low quality market segments and focus on the four

main types of raw cotton inputs: Indian cotton, Brazilian cotton, lower-quality U.S.

cotton, and higher-quality U.S. cotton. I index these input types, respectively, by

i ∈ {I, B, USL, USH}. Products in the high-quality market segment are produced

using higher-quality U.S. cotton or Brazilian cotton, while low-quality products are

produced using lower-quality U.S. cotton or Indian cotton. Thus, within each market

segment there are two inputs and the model is identical to that presented in Acemoglu

(2002). However, the elasticities of substitution between inputs can vary across the

different market segments, and there is also some substitutability in demand between

low and high quality products.

3.1 Model setup

The model can be thought of as representing a small textile sector which is embedded

in a larger economy, i.e., it is a partial equilibrium model. It is also dynamic, with

continuous time. The textile sector produces low-quality and high-quality goods and

consumption is over an index Y of these goods which takes a CES form,

Y =
[
Y

ε−1
ε

L + Y
ε−1
ε

H

] ε
ε−1

,

where YL is an index over low-quality textiles, YH is an index of high-quality textiles,

and ε ∈ (0,+∞) is the elasticity of substitution between them. The corresponding

price index P takes the standard form, where the price indices over low and high-

quality goods are, respectively, PL and PH . The price index P is the numeraire. The

YL and YH indices are given by,

YL =

[
y
ρl−1

ρl
I + y

ρl−1

ρl
USL

] ρl
ρl−1

and YH =

[
y
ρh−1

ρh
B + y

ρh−1

ρh
USH

] ρh
ρh−1

,
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where yI is the quantity of goods produced using Indian cotton, yB is the quantity of

goods produced using Brazilian cotton, and yUSL and yUSH are the quantities of goods

produced using lower and higher-quality U.S. cotton, respectively. The elasticity of

substitution between products made with Indian cotton and those made with lower-

quality U.S. cotton is ρl ∈ (0,+∞), while the elasticity of substitution between

products made with Brazilian and higher-quality U.S. cotton is ρh ∈ (0,+∞). The

corresponding price indices are,

PL =
[
p1−ρl
I + p1−ρl

USL

] 1
1−ρl , and PH =

[
p1−ρh
B + p1−ρh

USH

] 1
1−ρh .

The production function for each of these goods is,

yi =

(
1

1− β

)(∫ Ni

0
xi(k)1−βdk

)
Zβ
i , (1)

where Ni is the number of machine types available for producing good i, xi(k) is the

quantity of each machine of type k specialized for the production of good i, Zi is the

input used to produce good i, and β ∈ (0, 1). Inputs correspond to the varieties of

raw cotton in the empirical setting, and each input is specific to the good it produces.

The price of input i paid by input users, denoted ci, corresponds to the price of raw

cotton variety i on the British market.

Note that the level of technology related to each input type is represented by Ni

and that these technologies are different for each i. This includes an assumption that

different technologies are used for lower-quality U.S. cotton and higher-quality U.S.

cotton.23

3.2 Short-run equilibrium (with technology fixed)

For each input type i ∈ {I, B, USL, USH}, textiles are produced by perfectly com-

petitive firms which take output prices, input prices, and machine prices as given.

It is straightforward to solve the final goods firms’ optimization problem in order to

23We may be concerned that, in practice, many technologies which are developed for one input
type can also be used for others. This is less of a concern because all of the main results generated
by the model are in terms of relative technology levels (Ni/Nj). Thus, even if a technology can be
used with both input i and input j, if it is relatively more useful for input i then it will result in an
increase in Ni/Nj , i.e., directed technical change towards input i.
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obtain expressions for the demand for machines and inputs. The resulting first-order

conditions are,

xi(k) =

(
pi

χi(k)

)1/β

Zi, (2)

ci =

(
1

1− β

)
pi

(∫ Ni

0
xi(k)1−βdk

)
Zβ−1
i , (3)

where χi(k) is the price for a unit of machines of type k used for producing good i.

New machines are produced by technology monopolists who face a constant marginal

cost ψ. The profit for a monopolist producing a machine type k used for good i is

πi(k) = (χi(k) − ψ)xi(k). Because the demand curve for machines is isoelastic, the

optimal price charged by these monopolists is χi(k) = ψ/(1 − β), and to simplify

things, I apply the normalization ψ = (1 − β), which implies that equilibrium ma-

chine prices are χi(k) = 1 for all i and k.24 It is now possible to use the machine

price and machine demand expressions to rewrite production as a function of only

the goods price, the level of technology and the input quantity:

yi =

(
1

1− β

)
p

1−β
β

i NiZi. (4)

One implication of having perfectly competitive final-goods producing firms and

a constant elasticity of substitution between goods in each market segment is that

we can obtain expressions for the relationship between relative prices and relative

outputs within each segment. For example, within the low-quality textile segment I

have,

pI
pUSL

=

(
yI
yUSL

)− 1
ρl

. (5)

Using Equations 2-5 I obtain the following expression for the relationship between

relative input prices, relative technology, and relative input quantities within the

low-quality textile segment:

24Note that, because machine producers are small, the pricing and production decisions of individ-
ual producers will not affect Zi, so machine producers will not consider the impact of their collective
pricing choices on the quantity of input i.
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cI
cUSL

=
(

NI

NUSL

)σl−1

σl
(

ZI
ZUSL

)− 1
σl

. (6)

In this equation, σl = 1−β+βρl is the derived elasticity of substitution between inputs

in the low-quality textile market segment. A similar expression can be obtained for

the high-quality market segment, where the elasticity of substitution between high-

quality inputs is σh = 1 − β + βρh. This useful equation describes the short-run

relationship between relative input supplies and relative prices.

Short-run result 1: Holding technologies fixed, an increase in the relative input

quantities within a market segment (Zi/Zj) will have a negative impact on the

relative input prices within that segment (ci/cj).

Next, begin considering the long-run setting in which technology varies endoge-

nously. I begin by looking at the incentives for producing new machine designs and

the costs of these innovations.

3.3 Incentives and costs of innovation

Given that machine prices equal one, and using the machine demands from the final-

goods producer’s first-order condition, instantaneous profits for a technology monop-

olist firm making machines for industry i are, πi = β p
1/β
i Zi. Machines depreciate

fully after use, but machine designs remain available indefinitely. Thus, technology

monopolists care about their discounted value of future profits, rather than instan-

taneous profits, when deciding whether to develop new machines. The net present

discounted value can be written using a standard dynamic programming equation as,

rVi− V̇i = πi, where r is the interest rate, V is the present discounted value of future

profits, and π is the flow of profits. Focusing on the steady state, where V̇ = 0 and

the interest rate is constant, the discounted value of developing a machine of type i

is,

Vi =
βp

1/β
i Zi
r

. (7)

This expression reveals the two key forces that determine the impact of an increase

in Zi on innovation. An increase in Zi in Equation 7 has a direct positive influence

15



on the incentives for innovating in technologies that augment input i. Acemoglu calls

this the market size effect. However, an increase in Zi will also increase output yi

which will reduce the price pi. Thus, an increase in Zi will act to reduce the incentives

for innovation in technologies that augment input i through this indirect price effect.

The relative strength of these two effects will depend on how strongly pi depends is

affected by an increase in Zi, which depends on the elasticity of substitution between

final goods, or equivalently, on the derived elasticity of substitution between inputs.

Using Equation 7, I obtain the relative value of producing each machine type

within the low and high quality segments. For example, within the low-quality market

segment I obtain,

VI
VUSL

=
(

NI

NUSL

)− 1
σl
(

ZI
ZUSL

)σl−1

σl

. (8)

This equation shows that, when the elasticity of substitution between factors is high

(σl > 1), an increase in the quantity of input i will increase the incentive for new

inventions that augment input i. The opposite will occur when σl < 1. Similar results

hold in the high-quality market segment.

I now turn to the cost of innovation which is modeled in a very simple way. The

production of a new machine design costs a fixed amount η of final output according

to the function Ṅi = ηRi where Ri represents expenditure on innovation in these

machines. For simplicity, I assume that η does not vary across different machine

types, though allowing for this does not affect the main predictions of the theory.

3.4 Long-run results (with technology varying)

I focus on the balanced growth path in which each technology type progresses at the

same rate. Within each market segment, balanced growth implies that Ṅi = Ṅj for

all i and j. It follows that V̇i = 0 and Vi = Vj. Using this together with 8, I can show

that in the low-quality market segment it must be the case that,

NI

NUSL

=
(

ZI
ZUSL

)σl−1

. (9)

This equation delivers the first long-run result generated by the theory.
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Long-run result 1: Directed technical change. Within a market segment,

an increase in the relative quantity of one input induces an increase in the relative

technology that augments that input when the elasticity of substitution between the

inputs is greater than one. When the elasticity of substitution is less than one, an

increase the relative quantity of one input leads to a reduction in the relative level

of the technology that augments that input.

Next, derive the long-run relationship between relative quantities and relative

prices. Using Equations 9 and 6, I obtain,

cI
cUSL

=
(

ZI
ZUSL

)σl−2

. (10)

The second main long-run result of the theory is clearly visible in this equation.

Long-run result 2: Strong induced bias. Within a market segment, an increase

in the relative quantity of one input induces an increase in the relative price of that

technology when the elasticity of substitution between the inputs is greater than

two. When the elasticity of substitution is less than two, and increase in the relative

quantity of one input leads to a reduction in the relative price of that input.

These two results are familiar from Acemoglu (2002). Thus, within a market

segment the theory reproduces the key results of Acemoglu’s theory. In addition, we

can also look at how changes in input availability affects relative technology levels

across the two market segments. To start, perfect competition in final goods implies

that,

PL
PH

=
(
YL
YH

)− 1
ε

. (11)

On the balanced growth path with diversified technologies, I must have Vi/Vj = 1

for any i, j ∈ {I, B, USL, USH}. Using this, together with the results generated

above, it is possible to derive the following expression (details available in the Ap-

pendix):

ZI
ZB

=
(
NI

NB

) 1
β(ε−1) [1 +NUSL/NI ]

σl−1+β(1−ε)
β(1−σl)(1−ε)

[1 +NUSH/NB]
σh−1+β(1−ε)
β(1−σh)(1−ε)

. (12)
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This equation describes the relationship between input quantities and technology

levels across market segments, delivering the following result.

Long-run result 3: DTC across market segments. Holding the relative input

quantities in each market segment (ZI/ZUSL and ZB/ZUSH) constant, so that rel-

ative technology levels within each segment remain constant, an increase in ZI/ZB

will increase NI/NB when ε > 1.

4 Data

4.1 Patent data

The primary data used to measure innovation in this study come from British patent

records. While imperfect, patent data is the best available quantifiable measure

of technological advance during this period. Modern patent data has been widely

used in recent studies of innovation, building on seminal work by Schmookler (1966),

Scherer (1982), Griliches (1984), and Jaffe et al. (1993). Hall et al. (2001) provide

a helpful review of the advantages of using patent data, including that (1) patents

contain highly detailed information, (2) there are a large number of patents available

to study, and (3) patents are provided on a voluntary basis under a clearly defined set

of incentives. This study is able to take advantage of thousands of patents and will

draw heavily on the detailed information available in the patent descriptions. While

British patent laws changed in 1852 and 1883, they were stable during the period of

this study.

One disadvantage of using patent data is that it will not capture all types of inno-

vation. Evidence from Moser (2010) shows that a significant fraction of new inventions

went unpatented during the period I study. However, her results also suggest that,

among all categories, inventions of manufacturing machinery – the primary focus of

this study – were the most likely to be patented. The incentive to patent appears

to have been particularly strong for textile machinery, which was relatively easy to

reverse-engineer.25 Thus, this concern appears to be less important in the context

studied here. A second concern is that patent counts may not reflect the underlying

quality of the new inventions, which can vary widely. This concern is addressed using

several measures of patent quality.

25See Moser (2010).
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Much of the data used in this study was collected for the purpose of this project

from around 1,500 pages of printed British patent records. To begin, I constructed a

database covering all of the patents granted in Britain between 1855 and 1883, 118,863

in all.26 The novel contribution of this data set is that each patent is classified into

one or more of 146 technology categories by the British Patent Office (BPO). These

classifications allow me to identify the type of technology underlying each patent. The

purpose of this categorization was to aid inventors in identifying previously patented

technologies in order to determine whether an invention was in fact new. My focus will

primarily be on two BPO categories which I will call “Preparation & Spinning” and

“Weaving & Finishing”.27 The Preparatory & Spinning category includes technologies

related to the preparation of raw cotton, such as cotton gins and carding machines,

machines used in the spinning process, such as mules, yarn types, and other related

technologies. The Weaving & Finishing category includes technologies such as looms,

types of fabrics, and fabric treatments.

These data are supplemented with information from the A Cradle of Invention

database, which has been used in previous research (e.g., Brunt et al. (2008)).28 This

database provides the titles of the patents, which are not available in the patent

data I collected. Patent titles can be used to generate more detailed classifications

of the technology represented by each patent. In particular, I undertake keyword

searches of these titles to identify patents related to the main textile inputs: cotton,

wool, linen/flax, and silk.29 Consistent patent titles are available from 1853-1870,

after which there was a clear structural change in the naming conventions, with much

less detail included in the patent titles available in the data.30 This database also

provides information on the month of the patent application, allowing analysis at the

sub-annual level.

26These data include both granted patents and those which received provisional protection but
where a patent was not ultimately granted.

27The British Patent Office calls these categories Spinning and Weaving, but I use these names to
make it clear that the preparatory machines are included in the spinning technology category.

28I thank Tom Nicholas for suggesting this data source. These data are available through MFIS
LTD (finpubs.demon.co.uk). These data match the primary database reasonably well, with over
98% of patents in the two databases matching, though this database is slightly less comprehensive
than the one I collected.

29More details are available in Appendix A.9. This technique has been used previously with these
data by Brunt et al. (2008).

30The average number of characters in the patent titles is over 70 for the years before 1871. This
drops to just under 28 characters on average starting in 1871.
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Conveniently, the dates given in the data represent the date of the patent appli-

cation, rather than the date at which the patent was ultimately granted.31 Thus, the

application dates allow me to identify patents at the earliest stage of the patenting

process.

Within each BPO technology category, patents may also be listed in various tech-

nology subcategories. For example, within the BPO Preparatory & Spinning technol-

ogy category, it is possible to identify patents falling into subcategories such as “Gins”,

“Mules and Twiners”, “Carding Machines”, etc. Data were gathered on patents fit-

ting into several of the larger technology subcategories, which are described in in

Table 1.32 These can be divided into those related to the preparatory, spinning, or

finishing stages of the spinning process. The data are available from 1855-1876. Of

the subcategories shown, the most important for adapting to the use of Indian cotton

were gins, openers/scutchers, and to a lesser extent, carding machines.33

Table 1: Preparatory & Spinning technology subcategories by production stage

Preparatory stage Patents Spinning stage Patents Finishing stage Patents
Gins 122 Mules and twiners 446 Finishing 332
Openers/scutchers 331 Rollers for spinning 462
Carding 696 Bearings for spinning 242
Combing 354

Patent counts for BPO Preparatory & Spinning technology subcategories, 1855-1876.

31In the British system at this time, patent applications cost £25, considered a substantial sum
at the time, and could be made using only basic information on the invention. A sum of £25
in 1860 was equal to £1,840 2009 pounds, when deflating by the retail price index, or £16,300,
when deflating by average earnings (calculator available at from the Measuring Worth project at
www.measuringworth.com). The application provided the applicant with provisional protection and
could aid them in establishing the seniority of their invention. The applicant was then responsible
for supplying full patent specifications within six months or the patent became void. Patents lasted
for 14 years but renewal fees had to be paid at years three and seven in order to keep the patent
in force. For more information on the British patenting system during this period see Van Dulken
(1999).

32Note that “finishing stages of the spinning process” denotes operations occurring as part of
the spinning stage of production, such as bleaching or dyeing yarn, as opposed to the finishing
stage of the textile production process as a whole, which involved bleaching, dyeing, etc. of woven
fabrics. Thus, it falls into the Preparatory & Spinning category rather than the Weaving & Finishing
category.

33See Section 2.
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4.2 Patent quality measures

Adjusting for quality is important when using patent data because raw patent counts

mask the quality of the new technology represented by each individual patent, which

may vary widely.34 I take advantage of three measures of patent quality in order to

evaluate whether the 1861-1865 period was also characterized by an increase in the

number of high-quality cotton-textile-related patents. The first measure is based on

the payment of patent renewal fees. These were expensive fees that British patent

holders were required to pay at the end of the third and seventh years of the patent

term in order to keep the patent in force.35 Since just under 18% of patents were

renewed at three years the payment of these renewal fees represents a substantial

investment which would only have been worth it for the most successful technologies.36

The second quality measure is the based on whether technologies patented in Britain

were also filed in India.37 Patents of innovations which proved to be particularly

useful are presumably more likely to be patented in multiple locations. The third

quality measure is based on mentions of the patent in a contemporary periodical,

Newton’s London Journal.38 This monthly journal, devoted to covering new patents

and other technology-related topics, was published by William Newton & Sons, one

of the preeminent London patent agents. While similar, each of these three measures

captures a distinct aspect of patent quality.39 Most of these quality measures are

based on new data sets collected for this purpose. A detailed description of the data

are available in Appendix A.11.

34Of particular concern is the possibility that a number of patents may represent inventions of
limited usefulness. This is unlikely to be the case given the relatively high patent fees charged in
Britain at this time (Khan (2005)), but it is still important to adjust for patent quality.

35Renewal fee data have been used as an indicator of patent quality in previous studies (Schanker-
man & Pakes (1986), Lanjouw et al. (1998)), including some using historical British patent data
(Sullivan (1994), Brunt et al. (2008)).

36Because so few observations of patents renewed at year seven are available, the following results
use only the renewals filed at year three.

37This approach has been used previously by Lanjouw et al. (1998).
38A similar approach has previously been used to value historical British patents by Nuvolari &

Tartari (2011).
39While these aspects of quality are likely to be correlated, it is also possible to think of situations

in which they may differ, which is why multiple measures of patent quality are considered.
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4.3 Price and quantity data

To evaluate the strong induced-bias hypothesis, new price data was gathered from

market reports printed in The Economist magazine. The data cover 1852-1880 and

were gathered from original sources. While the data were collected on a monthly basis,

I aggregate the data to quarters to reduce short-term volatility and measurement

error. The Economist price data are available for the following benchmark cotton

varieties: Upland Middling from the U.S., Upland Ordinary from the U.S., Surat

Fair from India, Pernambuco Fair from Brazil, and Egyptian Fair. Of the two U.S.

varieties, the Upland Middling was a higher quality variety that was more comparable

to the high quality cotton from Brazil and Egypt, while the Upland Ordinary was a

lower quality variety that was more comparable to Indian cotton. Thus, in relating

the data to the theory, Upland Ordinary will represent lower-quality U.S. cotton and

Upland Middling will represent higher-quality U.S. cotton. When longer series are

needed I will supplement these data with less detailed annual data from Mann (1860)

covering 1820-1859 and Ellison (1886) covering 1820-1884.

To estimate the elasticity of substitution between inputs I will also need data on

the quantity of cotton imported by Britain from each of these suppliers. For this

purpose I primarily use annual data from Ellison (1886) which is available from 1820-

1884. Additional data is also available from Mann (1860) annually for 1820-1859. One

drawback of both of these datasets is that they aggregate all U.S. cotton together, so

it is not possible to identify separately imports of higher and lower-quality varieties.

In Section 7 I discuss the potential bias that this feature introduces.

5 Directed technical change

This section explores the impact of the Civil War shock on innovation patterns. I

proceed in two steps. First, I look at patent data on the broad technology categories

related to textile production in order to establish that there was a significant increase

in textile-related innovation in response to the shock. Further, I show that this

increase was concentrated in technologies related to cotton textiles and that no similar

increase occurred for technologies related to wool, linen, or silk textiles. These results

show that the shock generated a significant response by textile innovators, and that

this response was concentrated in cotton textile technologies. However, they do not
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reveal shifts in the direction of technological progress.

Second, I use data on patents related to specific types of textile machinery in

order to assess the influence of the shock on the direction of technological progress.

Three types of textile machinery – gins, openers/scutcher, and carding machines –

were particularly important for using Indian cotton. A shift in innovation towards

these machine types can thought of as an increase in NI relative to other technology

types. Thus, these results reveal the impact of the change in relative input supplies

(ZI/ZUSL) on relative technology levels (NI/NUSL). Together with the elasticity of

substitution estimates generated in Section 7, these results can be used to evaluate

the theoretical prediction shown in Equation 9. This is the first main result of the

paper, so I explore both the timing and robustness of the observed effects.

5.1 Overall impact of the shock on textile technologies

I begin by looking at patenting patterns in the 146 technology categories identified

by the British Patent Office. Two of these, spinning and weaving, include the tech-

nologies used by the textile industry. The spinning category includes all technologies

used in the early stage of the production process, including those technologies specifi-

cally related to the use of Indian cotton. The weaving category contains technologies

used in the later stages of the production process. These broad categories include, in

addition to technologies related to cotton textiles, those related to wool, linen, silk,

and other textile industries.

Our first glimpse of the patent data is presented in Figure 4. The left-hand panel

graphs patent counts for the BPO spinning and weaving technology categories. The

right-hand panel shows similar data for all BPO technology categories except spinning

and weaving. Even in the broad spinning technology category it is clear that the shock

to cotton textiles generated a response by innovators. Two main patters are visible in

these graphs. First, patenting of spinning technologies shot up in the second quarter

of 1861, corresponding with the start of the war. Second, there was a sustained high

level of patenting of spinning technologies throughout most of the Civil War period,

with patents only dropping as the war wound down in 1865. My focus will be on the

second of these features, which I will argue represented the introduction of previously

unknown technologies to the cotton textile production process. In contrast, the initial

spike in patents was almost certainly due to the patenting of existing (but not yet
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widely implemented) ideas which suddenly became valuable as a result of the onset

of the war. No similar increases appear for weaving technologies, nor do non-textile

technology categories display any sustained high level of patents similar to that shown

by the spinning technology category.

Figure 4: Patent counts from BPO technology categories

Spinning & Weaving Patents All Other Technologies

Next, I look within the spinning technology category at whether these new patents

were related to cotton textiles. I do so by comparing the pattern of cotton textile

patents to those related to the three other major textile industries in Britain at this

time, wool, linen, and silk. This is done in Figure 5.

We can see that there was a substantial increase in cotton textile technology

patents at the onset of the war. More importantly, there was a sustained high level

of cotton textile technology patents throughout the Civil War period, with the level

dropping only in early 1865 as the war wound down.

These patterns can be established econometrically, though, because these results

are not as important as those to come I merely outline them here and confine the

details and full regression results to Appendix A.10. First, using a panel data regres-

sion approach I show that there was a statistically significant increase in the level of

cotton textile patents during the shock period, relative to wool, linen, and silk-related

patents. Then, using wool, linen, and silk to control for time-varying factors, I focus

on the timing of the impact on the cotton textile industry. I find that the increase
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in cotton textile patents started in 1861 and persisted through 1865, with the peak

level occurring in 1864 in all specifications. These results establish that the Civil

War caused a significant increase in innovation in cotton textile technologies. Next,

I investigate the direction of this innovation.

Figure 5: Count of patents with titles mentioning main textile inputs, 1853-1870

Cotton-related patents Wool, linen and silk-related patents
Cotton patents Wool patents

Linen patents Silk patents

5.2 Impact on the direction of technological progress

To investigate the direction of the technical change that occurred during the Civil

War, I use the data on patents in technology subcategories within the BPO Prepara-

tory & Spinning technology category, shown in Table 1. Two of these subcategories,
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gins, and openers/scutchers (and to a lesser extent, carding machines) can be di-

rectly linked to the use of Indian cotton because they address the main technological

bottlenecks in the use of that variety. Thus, changes in the relative importance of

these categories can be used to identify a shift of innovation activity towards or away

from technologies which augment Indian cotton. In terms of the model, an relative

increase in innovation in the technologies most closely related to Indian cotton can

be interpreted as an increase in NI/NUSL.

I begin the analysis by graphing the count of patents, by year, for each technology

subcategory, in Figure 6. These graphs show an increase in patents in technology

subcategories related to the preparation of raw cotton, particularly gins and open-

ers/scutchers, during the 1861-1865 period. In contrast, technologies related to later

stages of the spinning process do not show similar effects. It is particularly interest-

ing that there does not appear to be an increase in combing machine patents. These

machines were not used in producing every type of yarn, but when they were used

they were the largest source of cotton waste.40 The next most wasteful stage was

carding, which shows only modest evidence of an increase. If innovation had been

focused primarily on economizing on waste cotton, I would expect to see an increase

in patents of combing and carding technologies. The fact that we do not suggests

that innovation was not directed towards economizing on cotton in general.

Next, I analyze these patterns using a regression approach. First, I want to test

whether the gins and openers/scutchers subcategories are exhibiting different behavior

during the shock period relative to the other technology subcategories within the set

of textile technologies. To do this, I pool data from all of the subcategories, which I

index by j ∈ J , and consider,

Pjt = f

 ∑
j=1∈J

γi × St × Ij + φj + ξt + TTjt + ejt

 , (13)

where Pjt is the count of patents in subcategory j, St is an indicator variable for the

shock period (1861-1865), Ij is an indicator variable for subcategory j, φj is a full set

40See Thornley (1912). Combing machines act somewhat like a standard comb. Their purpose
was to remove short fibers and arrange the remaining longer fibers so that they are all pointing the
same direction. Combing was generally done when producing higher quality fabrics. While combing
machines were used to produce cotton, they were more common in the preparation of wool (worsted)
textiles.

26



of subcategory fixed effects, TTjt is a subcategory-specific time-trend, ξt is a full set of

year indicator variables, and ejt is an error term. I use the general function f() here

because I will be taking two regression approaches. First, I will calculate standard

linear panel-data regressions using Feasible Generalized Least Squares (FGLS) where

I allow for heteroskedasticity within panels, correlation across panels, and AR1 serial

correlation within panels with panel-specific serial correlation parameters. Second,

I may be concerned about the presence of zeros in the data, even though these are

not common in the main subcategory data.41 In order to deal with any potential

bias that these may create, I will calculate additional results using Negative Binomial

regressions.42

Regression results based on Equation 13 are shown in Table 2. Columns 1-3

contain results generated using a linear FGLS model, while columns 4-6 contain results

generated using Negative Binomial regressions. All regressions include subcategory

fixed effects. In addition, columns (2) and (5) include year indicator variables and

columns (3) and (5) add in subcategory-specific time-trends.

Table 2 shows that the shock period was characterized by a significant increase

in patents in gins. There is also evidence of an increase in patents in the open-

ers/scutchers subcategory, though this increase is not statistically significant in all

specifications. None of the other categories show consistent evidence of an increase

during the Civil War years. Thus, it appears that the increase in innovation generated

by the Civil War was heavily concentrated in the two categories most important for

the use of Indian cotton.

41Four out of 176 subcategory-year bins include zero patents.
42Negative Binomial regressions are preferred to Poisson regressions because most of the data

series are characterized by overdispersion.
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Figure 6: Patent counts in subcategories of the BPO Spinning technology category

Gins Openers, scutchers, etc.

Carding machines Combing machines

Mules Rollers, etc.

Bearings, etc. Finishing
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Table 2: Panel regressions across textile technology subcategories

DV: Number of patents
FGLS regressions Negative Binomial regressions

(1) (2) (3) (4) (5) (6)
Bearings x Shock period -6.255** -6.136** 1.046 -0.530** -0.729*** -0.203

(2.991) (2.850) (2.434) (0.252) (0.264) (0.263)
Carding x Shock period 3.368 1.466 5.152 0.0658 -0.123 0.375**

(5.877) (5.622) (4.794) (0.158) (0.179) (0.187)
Combing x Shock period -0.690 -1.477 3.950 -0.0830 -0.278 0.182

(1.868) (2.208) (2.477) (0.192) (0.209) (0.214)
Finishing x Shock period -2.949 -4.210 0.508 -0.323 -0.515** -0.0977

(2.390) (3.358) (3.086) (0.215) (0.228) (0.233)
Gins x Shock period 13.77*** 13.57*** 18.23*** 1.550*** 1.364*** 1.773***

(1.817) (2.123) (2.370) (0.198) (0.219) (0.240)
Mules x Shock period 0.795 0.00802 5.578* 0.0385 -0.153 0.257

(3.225) (3.163) (3.073) (0.175) (0.193) (0.203)
Openers x Shock period 7.434** 5.870* 10.35*** 0.344** 0.158 0.606***

(3.224) (3.119) (2.359) (0.172) (0.192) (0.204)
Rollers x Shock period -8.953*** -6.417** -0.0829 -0.265 -0.463** -0.0185

(2.906) (2.992) (3.168) (0.192) (0.207) (0.209)
Subcategory TT (p value) [0.000] [0.000]
Year effects No Yes Yes No Yes Yes
Observations 176 176 176 176 176 176
Number of subcategories 8 8 8 8 8 8

Regressions run on annual panel data from 1855-1876. All regressions include subcategory-specific
fixed effects. Standard errors are shown in parenthesis. In the FGLS specifications, standard
errors are robust to heteroskedasticity, correlation across panels, and AR1 serial correlation with
panel-specific serial correlation parameters. All regressions include subcategory fixed effects.

Next, I want to explore the timing of these impacts by focusing on the gins and

openers/scutchers technologies. I use the following specification,

log(Pjt) = f

[
1868∑

k=1858

(
γGk × Yk ×GINS + γOk × ξk ×OPENERS

)
+ φj + ξt + TTjt +Qt + εjt

]

whereGINS andOPENERS are indicator variables for the gins and openers/scutchers

subcategories, respectively. The results are shown in Table 3 which presents linear

regression results generated using FGLS in columns (1)-(3) and additional Negative

Binomial regression results in columns (4)-(6). These results consistently show that

patents of gins increased at the start of the Civil War in 1861, reached the highest

level 2-3 years into the war (1863-1864), and then tapered off towards the end of the
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war. The openers/scutchers category shows consistent evidence of an unusually high

level of patents in 1862-1863.

The results shown in Tables 2 and 3 suggest that the Civil War period was char-

acterized by an increase in innovation in those technologies related to Indian cotton.

This is the main result of the paper related to directed technical change. The re-

mainder of this section investigates the strength of these observed effects in more

detail.

By combining the data on the various textile industry with the data on the technol-

ogy subcategories, it is possible to verify that the increase in gins and openers/scutcher

innovations was concentrated in the cotton textile industry. To do this, I use negative

binomial regressions according to,

log(Pijt) = f

 I∑
i=1

∑
j=1∈J

γij × St × Ij × Jj + φj + θi + ξt + eijt

 ,
where as before i indexes industries (cotton, wool, linen, and silk), j indexes technol-

ogy subcategories, St is an indicator variable for the shock period (1861-1865), Ii is

an indicator variable for industry i, and Jj is an indicator variable for technology j.

The model includes a full set of industry fixed effects φi, subcategory fixed effects θj

and year effects ξt.

Table 4 presents the results, which are generated from a single regression but are

displayed by industry and subcategory. It is clear from this graph that the increase in

gin patents was concentrated in the cotton textile industry and in fact gin technologies

were simply not used in the Linen and Silk industries. For openers/scutchers, I observe

negative coefficients for all of the industries other than cotton. Note that the results

for openers were weaker than those for gins, so it is not surprising that with this very

fine cut of the data the cotton x openers coefficient is not statistically significant,

though it remains positive.
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Table 3: Timing of effects on gins and openers/scutchers technologies

FGLS regressions Negative Binomial regressions
(1) (2) (3) (4) (5) (6)

Gins x 1858 1.819 5.911*** 4.478** 0.637 0.894 0.974
(1.551) (2.155) (2.182) (0.558) (0.565) (0.642)

Gins x 1859 -0.243 -0.0358 -1.918 0.353 0.371 0.435
(1.726) (2.216) (2.250) (0.630) (0.633) (0.689)

Gins x 1860 0.276 2.392 0.982 -0.0452 0.0358 0.0939
(1.772) (2.223) (2.235) (0.752) (0.755) (0.792)

Gins x 1861 6.753*** 3.918* 2.636 1.324*** 1.201*** 1.247***
(1.787) (2.224) (2.211) (0.424) (0.431) (0.483)

Gins x 1862 4.649*** 4.427** 2.889 1.324*** 1.285*** 1.315***
(1.792) (2.225) (2.190) (0.424) (0.433) (0.470)

Gins x 1863 21.21*** 20.70*** 19.59*** 2.419*** 2.369*** 2.395***
(1.794) (2.224) (2.171) (0.301) (0.317) (0.354)

Gins x 1864 18.60*** 23.27*** 22.44*** 2.286*** 2.455*** 2.486***
(1.792) (2.223) (2.156) (0.312) (0.330) (0.353)

Gins x 1865 7.271*** 17.14*** 16.36*** 1.546*** 2.132*** 2.149***
(1.787) (2.221) (2.144) (0.392) (0.414) (0.420)

Gins x 1866 6.663*** 5.685** 4.936** 1.441*** 1.391*** 1.397***
(1.772) (2.214) (2.133) (0.406) (0.415) (0.416)

Gins x 1867 5.740*** 7.802*** 7.569*** 1.192*** 1.356*** 1.343***
(1.725) (2.194) (2.123) (0.446) (0.456) (0.452)

Gins x 1868 1.474 -1.426 -1.784 -0.0452 -0.165 -0.186
(1.550) (2.111) (1.966) (0.752) (0.753) (0.747)

Openers x 1858 -10.18*** -6.205*** -6.837*** -0.910* -0.672 -0.885*
(1.442) (2.043) (1.543) (0.539) (0.520) (0.517)

Openers x 1859 -3.994** -3.660 -6.471*** -0.150 -0.137 -0.332
(1.738) (2.323) (1.496) (0.381) (0.371) (0.372)

Openers x 1860 -7.044*** -5.261** -6.911*** -0.460 -0.384 -0.555
(1.862) (2.416) (1.513) (0.439) (0.424) (0.419)

Openers x 1861 4.406** 3.150 1.209 0.386 0.258 0.102
(1.920) (2.453) (1.494) (0.300) (0.297) (0.296)

Openers x 1862 15.75*** 16.57*** 13.62*** 0.837*** 0.796*** 0.655***
(1.945) (2.467) (1.486) (0.248) (0.255) (0.253)

Openers x 1863 13.58*** 13.23*** 11.44*** 0.769*** 0.715*** 0.597**
(1.953) (2.471) (1.475) (0.255) (0.261) (0.256)

Openers x 1864 -3.225* 1.799 1.022 -0.150 0.00822 -0.0785
(1.945) (2.466) (1.468) (0.381) (0.373) (0.362)

Openers x 1865 -1.655 8.608*** 6.740*** -0.0654 0.512 0.442
(1.919) (2.448) (1.461) (0.367) (0.371) (0.357)

Openers x 1866 7.384*** 6.916*** 4.877*** 0.436 0.382 0.331
(1.862) (2.404) (1.456) (0.294) (0.293) (0.281)

Openers x 1867 1.818 3.670 2.899** 0.153 0.312 0.271
(1.737) (2.293) (1.439) (0.333) (0.331) (0.318)

Openers x 1868 12.02*** 9.364*** 8.817*** 0.657** 0.543** 0.528**
(1.441) (1.982) (1.326) (0.268) (0.269) (0.258)

Subcategory TT (p value) [0.000] [0.006]
Subcategory FEs Yes Yes Yes Yes Yes Yes
Year effects No Yes Yes No Yes Yes
Observations 176 176 176 176 176 176
Number of subcategories 8 8 8 8 8 8

Regressions run on annual panel data from 1855-1876. Standard errors are shown in parenthesis. In the FGLS
specifications, standard errors are robust to heteroskedasticity, correlation across panels, and AR1 serial correlation
with panel-specific serial correlation parameters. All regressions include subcategory fixed effects. The indicator
variable for the first year is omitted.
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Table 4: Subcategory x industry x shock period coefficient estimates

Bearings Carding Combing Finishing Gins Mules Openers Rollers
Cotton -0.564 0.00453 -1.668*** -0.512 1.686*** 0.254 0.360 -0.475

(0.414) (0.304) (0.422) (0.446) (0.326) (0.334) (0.314) (0.338)
Wool -0.731 -0.341 0.157 -0.479 -1.242 -0.628 -0.588 -0.693*

(0.500) (0.339) (0.320) (0.506) (0.770) (0.455) (0.404) (0.388)
Linen -0.829 -0.807 -0.334 -0.171 NA -1.014 -0.973 -0.134

(0.766) (0.497) (0.439) (0.653) (0.766) (0.646) (0.439)
Silk -1.515 NA -0.0388 1.222*** NA -1.700 -0.119 -1.225*

(1.043) (0.407) (0.420) (1.042) (0.477) (0.645)

Coefficient estimates are all from a single Negative Binomial regression run on panel data with
two cross sectional dimensions (industries and subcategories). Regression run on annual data from
1855-1876. The shock period is defines as 1861-1865. Regression includes a full set of industry
fixed effects, subcategory fixed effects, and year indicator variables. Negative Binomial regressions
are warranted because the data are sparse, with 263 out of 704 subcategory x industry x year bins
having zero patents.

When using patent data, it is always important to account for the quality of inven-

tions, which will be obscured when only raw patent counts are used. Using a Negative

Binomial version of the specification described in Equation 13, I generate results for

two of the patent quality measures discussed in section 4. Negative Binomial results

are preferred here because these data are more sparse and therefor contain more zero

observations. Table 5 summarizes the results. Full regression results and additional

details are available in the Appendix. All of these quality measures suggest a sta-

tistically significant increase in patent applications of high-quality patents of cotton

gins filed during the Civil War period. In contrast, none of the other categories show

consistent evidence of an increase or decrease during the same period.

In addition, there is evidence that this period saw an increase in patents of cotton

textile related technologies, and gins in particular, in India. Using the Indian patent

data, I run some simple regressions to look at whether there was an increase in the

share of these technologies in Indian patents, relative to all other technology types,

during the Civil War period. Because I do not observe patents related to other textile

industries or to technology subcategories other than Gins, these results, presented in

Table 6, are based on simple time-series regressions with Newey-West standard errors

to help control for serial correlation.
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Table 5: Coefficient estimates for high-quality patents in textile subcategories

Patents with Patents with
renewal fees abstracts
paid at year in Newton’s

three London Journal
Bearings x Shock period -2.649*** 0.369

(1.026) (0.577)
Carding x Shock period -0.445* 0.410

(0.246) (0.418)
Combing x Shock period 0.0804 0.543

(0.287) (0.640)
Finishing x Shock period -0.741** -0.401

(0.362) (0.567)
Gins x Shock period 1.640*** 1.978***

(0.470) (0.715)
Mules x Shock period -0.0398 0.592

(0.283) (0.511)
Openers x Shock period -0.141 0.628

(0.313) (0.566)
Rollers x Shock period -0.368 0.561

(0.329) (0.531)
Subcategory FEs Yes Yes
Year effects Yes Yes
Observations 112 80
Number of panels 8 8

Column 1 contains results from a Negative Binomial regression run on annual
data from 1856-1869. Column 2 contains results from a Negative Binomial
regression run on annual data from 1855-1864. All regressions include a full set
of subcategory fixed effects and year indicator variables.

Table 6: Cotton textile technology patents in India during the Civil War

Share of all Indian patents Share of patents by British inventors
Cotton Gins Cotton Gins

Shock Indicator 0.0442** 0.0249** 0.126** 0.0720**
(1861-1865) (0.0173) (0.0103) (0.0515) (0.0319)
Observations 23 23 23 23

Table contains results from time-series regressions using annual data from 1856-1879. Stan-
dard errors are Newey-West with a lag length of 2. This approach assumes heteroskedastic
standard errors while allowing for serial correlation up to a lag length of two.

Together, the results presented in this section suggest that there was an substantial

increase in cotton textile patents during the Civil War period and that this increase
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was driven by patents of cotton gins, a technology which was particularly important

for the use of Indian cotton. Patenting of gins reached its peak two to four years into

the war. Moreover, patents of high-quality gin technologies also increased during the

war. Thus the Civil War was characterized by directed technical change focused on

technologies which augmented Indian cotton.

6 Strong-induced bias

This section explores the impact of a change in relative input supplies on relative

input prices in the presence of directed technical change. My main focus will be on

the relative price of Indian to lower quality U.S. cotton. I consider four hypothesis.

Hypothesis 1: The increase in the relative supply of Indian to U.S. cotton caused

by the Civil War reduced the relative price of Indian cotton in the short run.

This hypothesis corresponds to the main short-run prediction of the theory. I

will test this hypothesis by looking at the time path of the relative price of Indian

cotton during the first two years of the war. The remaining three results are long-run

results motivated by the evidence of directed technical change towards Indian cotton

described in the previous section.

Hypothesis 2: Directed technical change towards Indian cotton had a positive

effect on the relative price of Indian cotton.

This is a relatively weak hypothesis derived from Equation 6 in the model with

NI/NUSL allowed to vary. It can be tested by comparing the relative price of Indian

cotton to that of Brazilian cotton or other varieties for which I did not find evidence

of directed technical change. A stronger hypothesis is:

Hypothesis 3: Directed technical change toward Indian cotton offset the effect

of the increase in relative supply such that the relative price of Indian cotton did not

decrease even though it became relatively more abundant.

Finally, we have the strongest hypothesis:

Hypothesis 4: Directed technical change towards Indian cotton more than offset

the effect of the increase in relative supply such that the relative price of Indian cotton

increased even though it was relatively more abundant.

Hypothesis 3 corresponds to the prediction of the theory when σl = 2, while
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Hypothesis 4 corresponds to the prediction when σl > 2. Both of these can be

evaluated by observing the time-path of the relative price of Indian cotton.

I begin my investigation by plotting, in Figure 7, the prices of Indian, Brazilian,

higher-quality U.S., and lower-quality U.S. cotton in levels.43 In all periods, these

prices are roughly ordered according to quality, with Brazilian (Pernambuco) fetching

the highest price, and Indian cotton the lowest. The onset of the Civil War was

followed, with some lag, by a sharp increase in the price of all cotton varieties. Prices

remained high through 1865 and the began to decline in 1866, though they did not

attain their pre-war levels until well into the 1870s.

Figure 7: Raw cotton prices on the Liverpool market for key varieties 1852-1875

Quarterly price data from The Economist. Upland Middling is the benchmark higher-quality U.S.
cotton variety, Upland Ordinary is a benchmark lower-quality U.S. variety, Surat is the benchmark
Indian cotton variety, and Pernambuco is the benchmark Brazilian cotton.

What we cannot see in the previous graph is the behavior of relative prices, which

is our primary interest. These relative prices are presented in Figure 8, together

with the import quantities for each variety, where Indian and Brazilian cotton are

each shown relative to the price of the most comparable U.S. variety. The graphs

look almost identical if I compare all of the alternatives to the same variety of U.S.

cotton (see Appendix). The price of Indian relative to lower-quality U.S. cotton was

43In keeping with the model, I will focus only on these four varieties. In the Appendix I show that
the behavior of Egyptian cotton prices is similar to that of Brazilian.
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unusually low in 1861-1862, the first two years of the war, and a period in which

Indian cotton had become relatively more abundant. However, starting in 1863,

there was an increase in the relative price of Indian cotton. This upward trend lasted

through the early 1870s, despite the fact that the relative quantity of Indian cotton

remained higher than prior to 1861. In contrast, the relative price of Brazilian to U.S.

cotton fell in 1861-1862 and remained low through 1876, a period during which the

relative abundance of Brazilian cotton was high. The patterns observed in Brazilian

cotton prices is consistent with what the model would predict in the absence of

significant biased technological progress, given the increase in the relative abundance

of these varieties after 1861. In contrast, the initial decrease in the relative price of

Indian cotton, followed by the increase after 1863, when a significant number of new

technologies tailored to the use of Indian cotton were becoming available, is consistent

with the strong induced-bias hypothesis.

One potential concern with these figures is that there is evidence of an increase

in the relative price of Indian cotton in 1858, prior to the Civil War. This increase

was due to the short-term effect of the Indian Mutiny (May 1857-1859) which caused

a sharp short-term reduction in the availability of Indian cotton (from 680,500 bales

in 1857 to 361,000 in 1858). This reduction in supply had the expected short term

positive effect on relative prices. It is interesting that the relative price of Indian

cotton during this period of shortage is similar to that reached in the late Civil War

period even though the quantity of Indian cotton on the market was much higher,

reaching 1,866,610 bales in 1866 compared to 361,000 in 1858. Given the shortage of

U.S. cotton the increase in the relative quantity of Indian cotton was even greater.
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Figure 8: Cotton prices relative to the benchmark U.S. variety and import quantities

Relative price of Indian cotton to lower quality U.S. cotton (Upland Ordinary)

Relative price of Brazilian cotton to higher quality U.S. cotton (Upland Fair)

Price data gathered from The Economist magazine.

Figure 9 facilitates comparison between movements in the relative price of Indian

and Brazilian cotton by plotting the log relative prices of Indian cotton and Brazilian

cotton, with the mean value in 1852 set to one. We can see that the relative prices

move within a similar range prior to 1861 (though they do not move together), and

that they fall together in 1861, but these relative prices diverge after 1862, with

Indian gaining relative to the others. I argue that this divergence is due to the upward

pressure on the relative price of Indian cotton exerted by increasing demand caused by
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the availability of better machines for processing Indian cotton. It is also interesting

that this difference fades in the mid-1870’s, which suggests that the influence of the

inventions generated during 1861-1865 had faded a decade later.

Figure 9: Comparing movement of relative Indian and Brazilian cotton prices

Price data gathered from The Economist magazine.

Constructing a statistical test of these hypothesis is made difficult by the non-

linear nature of the predictions as well as uncertainty about the time-frame in which

new technologies begin influencing the market. The main econometric approach I

take to this problem involves pooling the relative price data from Indian and Brazilian

cotton and using,

log(RPit) = α+
1875∑

k=1861

βIik×INi+
1∑

k=1861

875βBik×BRi+INi+BRi+γMUTINYit+εit

where i designates either Indian or Brazilian cotton, RPit is the price of the variety

relative to the comparable U.S. variety, INi and BRi are indicator variables for India

and Brazil, respectively, and MUTINYit is an indicator variable for India in 1858-

1859 that is used to control for the impact of the Indian Mutiny on the relative price of

Indian cotton. This equation is estimated using FGLS while allowing for correlation

across panels, heteroskedasticity within panels, and AR1 serial correlation with serial

correlation parameters specific to each panel.
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The resulting coefficient estimates are shown graphically in Figure 10, while full

regression results are available in the Appendix. The top panel shows the coefficient

estimates and 95% confidence intervals for Indian cotton, while the bottom panel does

the same for Brazilian cotton. The sharp drop in relative prices for both varieties in

1861-1862 appears to confirm Hypothesis 1. Hypothesis 2 is confirmed by Table 7,

which shows results for a series of Wald tests of the difference between the estimated

coefficients for Indian and Brazilian cotton. Figure 10 also appears to confirm Hy-

pothesis 3, since there is no evidence of a fall in the relative price of Indian cotton in

the years after 1862, at least until 1874. Finally, Figure 10 also offers some support

for Hypothesis 4, since we observe positive coefficients for Indian cotton in all but

one year from 1863-1873 with statistically significant increases in five of those years.
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Figure 10: Estimated impact on the relative price of Indian and Brazilian cotton by
year

Estimated coefficients and 95% confidence intervals for Indian cotton

Estimated coefficients and 95% confidence intervals for Brazilian cotton

Estimated coefficients and 95% confidence intervals generated using FGLS regressions on quarterly
data from 1852-1875. Standard errors are heteroskadasticity robust, allow for correlation across
panels and AR1 serial correlation within panels with panel-specific serial correlation parameters.

Table 7: Wald tests for difference between Indian and Brazilian coefficients

1861 1862 1863 1864 1865 1866 1867 1868
Chi-sq 0.53 1.59 16.9 15.6 21.5 19.1 26.73 28.1
p-value 0.47 0.21 0.00 0.00 0.00 0.00 0.00 0.00

1869 1870 1871 1872 1873 1874 1875
Chi-sq 37.2 35.1 40.0 36.3 18.9 0.08 2.86
p-value 0.00 0.00 0.00 0.00 0.00 0.37 0.09
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The results above provide evidence in favor of the strong induced-bias hypothesis

operating for Indian cotton. There is no evidence that a similar effect occurred for

Brazilian cotton. This makes sense given that I have observed technical change which

was focused primarily on using Indian cotton.

One potential caveat to this analysis is that the prices used are those on the

Liverpool market, rather than farm-gate prices. Thus, they may reflect quality im-

provements in Indian cotton resulting from the new technologies which took place

before the cotton reached the Liverpool market.44 However, there are two reasons to

think that this is not an important concern. First, the prices I use are for bench-

mark cotton varieties which are supposed to be for a constant quality level, so quality

improvements should not be reflected in these prices. Second, using additional data

described in Appendix A.12, I show that the London price of Indian cotton closely

tracks the price in Bombay, the major Indian export market, suggesting that there

was no change in the gap between these prices induced by quality differences.

7 Evaluating the theory

Thus far we have seen that the U.S. Civil War decreased the relative supply of U.S.

cotton to Britain and that there was a corresponding increase in innovative activity

related to alternative cotton supplied from India. Despite the increase in the relative

supply of Indian cotton on the market during and after the war, there was no ap-

preciable decrease in the long-run relative price of Indian cotton, and there is some

evidence that the relative price may have actually increased. In contrast, I found

little evidence of technical change directed towards Brazilian cotton and I observe a

clear decrease in the relative price of Brazilian cotton in both the short and long-run,

corresponding to the increase in the relative quantity of that variety.

Can these patterns be explained by the theory? In order to answer this question

I need estimates of the elasticity of substitution between the various cotton varieties.

Given these elasticities, the predictions of the theory are known and can be com-

pared to the results described in the two preceding sections. In this section I begin

by estimating the relevant elasticities using an approach based on the Almost Ideal

44The cotton could have benefited from processing by improved machines on its way from India,
particularly since most ginning was done in the exporting country.
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Demand System (AIDS), which has been used by previous studies. I then discuss

some potential drawbacks of that approach. Finally, I generate additional estimates,

based on the model offered in this paper, which addresses some of the concerns with

the estimates generated using the AIDS approach.

One approach to estimating the elasticity of substitution between inputs is to

use a linear approximation to the Almost Ideal Demand System (AIDS) introduced

by Deaton & Muellbauer (1980). This approach has previously been applied to the

cotton textile industry in the 19th century by Irwin (2003), and readers are referred

to that paper for additional details on this approach. The main advantage of the

AIDS approach is that it involves a flexible and general demand system which nests

a variety of other demand systems. In particular, it is more general than the nested

CES demand system used in my theory.

The estimating equation for the AIDS approach is,

wit = αi +
n∑
j=1

γij ln(cjt) + βi ln(Dt/Ct) + ut

where wit is the expenditure share of input type i, cjt is the price of input j, Dt is total

expenditure on all inputs, Ct is a price index over all inputs, and ut is a disturbance

term. For empirical applications, the input price index is generally approximated by,

ln(Ct) =
n∑
k=1

wkt ln(ckt) .

Given the estimated coefficients from these equations, the elasticity of substitution

between any two input types can be calculated according to σij = 1+γij/(wiwj), where

the corresponding standard error is the estimated standard error for γij divided by

wiwj.

Estimating these equations requires the prices and import quantities for each

input variety on the British market. Separate import quantity data are not available

for higher and lower-quality U.S. cotton, so I am able to calculate only an overall

elasticity of substitution between each alternative variety and all U.S. cotton. Later,

I will discuss the direction of bias introduced by combining different types of U.S.

cotton. Following Irwin (2003), I estimate these equations using seemingly unrelated
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regressions while imposing symmetry (γij = γji). In estimating these equations it

is necessary to drop one and so I drop the equation for Egyptian cotton, the fourth

largest variety.

Table 8 presents elasticity of substitution estimates generated using the AIDS

approach for a variety of data sources and time periods. The full results from the

regressions used to generate these values are available in the Appendix. The first

column of Table 8 reproduces results found in Irwin (2003) using data from Mann

(1860). The remaining columns present new estimates generated using data from

Ellison (1886) for a variety of time periods. The most relevant are in Columns 2

and 3, which present results for the twenty-year periods just before and just after the

war. Both of these suggest that the elasticity of substitution between U.S. and Indian

cotton was above 1 and likely also above 2. The elasticity of substitution between

U.S. and Brazilian cotton also appears to be above 1, and some specifications generate

point estimates that are above 2. There is little evidence of substitution between

Indian and Brazilian cotton.

Table 8: Elasticity of substitution estimates generated using the AIDS approach

Irwin (2001) Additional estimates
Data source: Mann Ellison Ellison Ellison Ellison
Years: 1820-1859 1840-1859 1865-1884 1820-1859 1820-1884
U.S.-India 1.96 2.19 2.38 1.58 1.32

(0.80) (1.26) (0.97) (1.28) (1.14)
U.S.-Brazil 3.88 2.95 1.66 4.16 5.39

(0.70) (0.73) (3.06) (0.70) (1.27)
India-Brazil -0.97 0.24 -0.01 -0.79

(4.02) (4.83) (3.85) (4.50)

The results shown in Table 8 are likely to suffer from three sources of bias. First,

the AIDS approach assumes that export supplies are perfectly elastic. In fact, the

supply curves for these varieties are clearly upward sloping. Ignoring this will bias

the elasticity estimates downwards. Second, the estimates in Table 8 were generated

while pooling higher and lower-quality U.S. cotton. Yet the relevant elasticity of

substitution for evaluating the theory is between Indian and lower-quality U.S. cotton

(or Brazilian and higher-quality U.S. cotton). Since these are more similar varieties,

the elasticities of substitution that are relevant for the theory must be higher than
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those shown in Table 8. Finally, these estimates ignore the possibility of directed

technical change. From Acemoglu (2002), we know that regardless of the elasticity of

substitution, an increase in the relative supply of one input generates technical change

that is biased towards that input. Thus, if directed technical change is taking place,

this will bias the estimated elasticities of substitution shown in Table 8 upwards. Of

the sources of bias present in the AIDS estimates, the most troubling is the potential

bias due to directed technical change, which may cause the estimates in Table 8 to

overstate the true short-run elasticities of substitution.

One way to address the shortcomings of the AIDS elasticity estimates is to use

an exogenous shock that generate large short-run changes in the relative quantities of

available cotton varieties and observe how these shifts are reflected in relative prices.

Specifically, I will exploit two large shocks to the quantity of cotton produced in India.

The first was the Indian Rebellion, a large revolt by Indian soldiers from May 1857 to

1859. While the revolt was eventually crushed by the British administration, it caused

a massive disruption to economic activity which is reflected by a sharp drop in exports

of Indian cotton in 1858. The left-hand panel of Figure 11 describes the impact of

this event on relative quantities and relative prices. The second event I exploit is the

Great Indian Famine of 1876-1878. This drought-driven famine cost millions of lives

and sharply disrupted cotton supplies from India during the famine years. The right-

hand panel of Figure 11 describes the impact of the famine on relative quantities.

The distinguishing features of both of these events are that they were unexpected,

they were of short duration, and they significantly reduced the availability of Indian

cotton. In addition, I will also show results in which I consider the impact of the

change in relative quantities on relative prices during the first two years of the Civil

War, though given the longer-run nature of this shock I consider these estimates to

be less relevant.
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Figure 11: Impact of shocks on Indian cotton exports to Britain

Indian Rebellion Great Indian Famine

Data from Ellison (1886)

Because this approach exploits short-run variations, it will avoid bias due to di-

rected technical change. Moreover, if the shock to relative quantities is large and

rapid, any bias generated by quantities responding to price changes should be small

in relation. This is because the ability of relative quantities to respond to price

changes will be constrained in the short run and small relative to the changes gener-

ated by the shock. The main constraint in implementing this approach is that large

shocks of the type I need are relatively rare so few data points are available. As a

result, I view this approach as complementary to the estimates presented in Table 8.

For all of these events I will use a simple time-series instrumental-variables estima-

tion strategy. For both events, I will use data from the year in which the disruption

occurred as well as a number of years before. I will not include data from the period

after the event, since these years may be affected by ongoing effects of the event.

So when looking at the Indian Mutiny, I use data from 1852-1858. For the Great

Indian Famine, I use data from 1867-1877. For the Civil War shock I use data from

1852-1862. In each case, the instrument will be an indicator variable for the year(s)

in which the event affected economic activity (1858 for the Mutiny, 1876-77 for the

Great Famine, and 1861-1862 for the Civil War). Thus, the estimating equation will

be,

log(cI,t/cUSL,t) = β0 + β1 log(ZI,t/ZUS,t) + β3TTt + εt ,
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and the first-stage regression is,

log(ZI,t/ZUS,t) = γ0 + γ1EV ENTt + γ3TTt + et

where EV ENTt is an indicator variable for the year in which the disruption occurred

and TTt is a time-trend. Given estimates of β1, I can back out the elasticity of

substitution between Indian and U.S. cotton using β1 = −1/σl from Equation 6. The

final potential source of bias in these estimates is that I cannot separately identify the

level of low-quality and high-quality U.S. cotton imports and I use total U.S. imports

as the denominator in calculating relative quantities. This will impart an upward

bias in my estimate of β1 and therefore a downward bias in the estimated elasticity

of substitution.

The results are presented in Table 9. In all cases, the point estimate of the elas-

ticity of substitution is above two, and the 95% confidence interval for the estimates

is also generally above 2 and always above 1. The Durbin-Watson statistics suggest

that serial correlation is not a major concern. However, we may be somewhat worried

that the instruments are weak. The first stage regression results show that while the

coefficient estimates in the key event instruements are large, they are generally only

statistically signficant at around the 85% confidence level. This is not surprising given

the rough nature of the instruments.

This section has presented two very different approaches to estimating the elas-

ticity of substitution between Indian and U.S. cotton. While the AIDS approach has

the advantage of a very flexible demand system and uses a much larger set of data, it

may also be susceptible to several sources of bias. In contrast, using short-term shock

to identify the elasticity of substitution avoids these sources of bias, but these results

are based on a much more restricted set of observations. Despite these differences,

both approaches consistently suggest that the elasticity of substitution between In-

dian and U.S. cotton is above 1 and in most cases I find evidence that the elasticity

was also above 2.

Given these findings, the model predicts that the during the Civil War we should

observe (1) technical change directed towards technologies which augmented Indian

cotton and (2) no decrease, and perhaps an increase, in the relative price of Indian

to U.S. cotton. Thus, the model appears to correctly predict the results described in
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Sections 5.2 and 6.

Table 9: Elasticity of substitution estimates generated using exogenous shocks

DV: Relative price of Indian to low-quality U.S. cotton
Rebellion Famine Civil War

log(ZIt/ZUS,t) -0.151*** -0.313** -0.168**
(0.0578) (0.129) (0.0675)

TT 0.0164* -0.0486*** 0.0185***
(0.00852) (0.0170) (0.00618)

Constant -0.465*** 0.745** -0.496***
(0.108) (0.312) (0.121)

Observations 7 8 10
R-squared 0.381 0.262 0.599
Data years: 1852-1858 1870-1877 1852-1862
Shock period: 1858 1876-1877 1861-1862
Durbin-Watson: 2.52 2.24 2.69

First-stage regression results
EV ENTt -0.861 -0.51 0.638

(0.457) (0.275) (0.463)
TTt 0.179* -0.043 0.369

(0.08) (0.051) 0.048
Constant -2.04** 0.44 -1.63**

(0.311) 1.12 (0.272)
F-stat 2.72 7.51 2.46

Implied elasticity of substitution between Indian/U.S. cotton
Estimate 6.62 3.19 5.95
95% CI (3.8,26.4) (1.76,16.72) (3.32,27.93)

8 Conclusions

This study shows that a large exogenous change in the cost of providing inputs for

the 19th century British cotton textile industry led to (1) directed technical change in

favor of one input – Indian cotton – which had become relatively more abundant and

(2) input price movements consistent with the strong induced-bias hypothesis for this

input. Given my elasticity estimates, these results are consistent with the predictions

of the directed technical change model of Acemoglu (2002). This provides us with

some confidence in the ability of this model to explain the process of technical change

and how it is influenced by the the cost of providing inputs to production. The results

of this study lend support to the wide set of theories applying the idea of directed

technical change. While my results cannot tell us whether directed technical change is
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operating in any particular setting, they lend plausibility to arguments based on these

mechanisms, by providing clearer evidence than was previous available that directed

technical change does occur and can meaningfully influence market conditions.
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A Appendix

A.1 Most innovative technology categories by patent count

Table 10: Top ten British Patent Office (BPO) tech. categories 1855-1883

Rank Technology Category No. Patents Rank Technology Category No. Patents
1 Metals, Cutting, etc 7,017 6 Railway etc. vehicles 4,184
2 Furnaces 6,157 7 Steam generators 4,065
3 Spinning 6,009 8 Furniture 3,216
4 Steam engines 4,809 9 Mechanisms 3,120
5 Weaving 4,807 10 Ships, Div. I (fittings, etc.) 3,051

Top ten technology categories, by patent count, out of the 146 total British Patent Office technology

categories. “Spinning” includes machinery used in the preparatory and spinning stages of production.

“Weaving” includes machinery used in the weaving and finishing stages.

A.2 Definitions of important textile terms

The following definitions were constructed with the aid of The “Mercury” Dictionary
of Textile Terms. 1950. Textile Mercury Limited: Manchester, England.

Bolls- The seed pod of cotton and has from three to five cells, each of which contains
from six to twelve seeds, the seeds being covered with cotton fibers.

Carding- A very thorough opening-out and separating of the fibers of cotton, to-
gether with an effective cleaning. This machine is the last where cleaning the cotton
takes place (unless the cotton has to be combed).

Combing- This term is used literally and denotes the combing of fibrous materials in
sliver form by mechanically actuated combs or by hand-operated combs. In general,
the objects in combing are two, namely (1) to obtain the maximum parallelization of
the fibers and (2) to remove impurities and undesired short fibers.

Gin- A cotton cleaning machine with the primary purpose of separating the cotton
seeds from the cotton fibers.

Opening cotton- This is done on machines (openers) which beat the cotton into
a more fleecy condition and also remove a good proportion of the dirt and heavier
impurities.

Scutching- An operation in preparing cotton for spinning that has three objects,
to reduce the cotton to a loose open condition by beating it, removal of impurities
remaining in the cotton after opening, and the formation of a continuous lap or web
of cotton wound on to a rod–which laps go forward to the carding engine.
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A.3 Machines for ginning cotton

Figure 12: Indian Churka for removing cotton seeds

Reproduced from Wheeler (1862).

Figure 13: Cottage Saw Gin

Reproduced from Wheeler (1862).
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A.4 Details on the differences between cotton types

Figure 14: Length of cotton staples for various cotton types

Reproduced from Wheeler (1862).
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A.5 Impact of ginning on cotton fiber length

Figure 15: A comparison of ginned (left) and hand-cleaned cotton (right) fiber length

Reproduced from Pearse (1921).

A.6 Background graphs

Figure 16: British imports and exports 1851-1869

British imports British exports of finished manufactures

Data from Mitchell & Deane (1962).
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Figure 17: British wool and linen textile exports 1815-1910

Wool textile exports Linen textile exports

Data from Mitchell & Deane (1962)

A.7 Theory appendix

This appendix presents additional details related to the theoretical model.

Derivation of Equation 12

To derive Equation 12 I begin by noting that the CES demand structure implies
the following relationship between the price and quantity indices in the low and high-
quality market segments:

PL
PH

=
(
YL
YH

)−1
ε

. (14)

I will substitute in for YL, YH , PL, and PH using the definitions for each of these
terms given in the text. But first I want to write each of these price and quantity
indices in terms of technologies and input quantities. Beginning with the price index
for the low-quality market segment, I use Vi = βp

1/β
i Zi/r to write,

PL =

(
r

β

)β
V β
I Z

−β
I

[
1 +

(
ZUSL
ZI

)−β(1−ρl) (VUSL
VI

)β(1−ρl)
] 1

1−ρl

.

A similar equation holds for the high-quality market segment. Taking the ratio of
these, I have,
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PL
PH

=
(
VI
VB

)β ( ZI
ZB

)−β [1 +
(
ZUSL
ZI

)−β(1−ρl) (VUSL
VI

)β(1−ρl)
] 1

1−ρl

[
1 +

(
ZUSH
ZB

)−β(1−ρl) (VUSL
VI

)β(1−ρl)
] 1

1−ρl

.

In the long-run balanced growth path it must be that Vi/Vj = 1 for all i and j
and Equation 9 must hold. Using these, I have,

PL
PH

=
(
ZI
ZB

)−β N
−1

1−ρl
I

N
−1

1−ρh
B

[NI +NUSL]
1

1−ρl

[NB +NUSH ]
1

1−ρl

. (15)

To solve for the relative quantity indices, I use, Equation 4 and Vi = βp
1/β
i Zi/r to

write,

yi =
1

1− β

(
r

β

)1−β

V 1−β
i Zβ

i Ni .

Plugging this into the low-quality market segment output index I obtain,

YL =
1

1− β

(
r

β

)1−β

V 1−β
I Zβ

I

N ρl−1

ρl
I +N

ρl−1

ρl
USL

(
VUSL
VI

) (1−β)(ρl−1)

ρl
(
ZUSL
ZI

)β(ρl−1)

ρl


ρl
ρl−1

A similar expression holds for the high-quality market segment. Taking the ratio
of these, I obtain,

YL
YH

=
(
VI
VB

)1−β ( ZI
ZB

)β
[
N

ρl−1

ρl
I +N

ρl−1

ρl
USL

(
VUSL
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) (1−β)(ρl−1)

ρl

(
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ZI

)β(ρl−1)

ρl

] ρl
ρl−1
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N

ρh−1

ρh
B +N

ρh−1

ρh
USH

(
VUSH
VB

) (1−β)(ρh−1)

ρh

(
ZUSH
ZB

)β(ρh−1)

ρh

] ρh
ρh−1

In the long-run balanced growth path, Vi/Vj = 1 for all i and j and Equation 9
holds. Using these, I have,

YL
YH

=
(
ZI
ZB

)β N
−1
ρl−1

I

N
ρh−1

ρh
B

[NI +NUSL]
ρl
ρl−1

[NB +NUSH ]
ρh
ρh−1

(16)

Finally, I plug Equations 15 and 16 into Equation 14 and reorganize in order to
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obtain Equation 12.

A.8 Example patent specifically mentioning Indian cotton

Figure 18: An Example: Patent No. 2162 from 1862

From British Patent Abstracts, Class 120, 1855-1866. Available from the British Library.

A.9 Details of patent title search results

Summary statistics for these patent title search results are provided in Table 11.
We can see that the majority of those patents listing one of the main textile inputs
(cotton, wool, linen, silk) are classified into the BPO spinning technology category,
while a few are listed in the weaving category, and some others fall into categories
other than spinning and weaving. As a quality check, keyword searches were also
used to identify those patents with “spinning” or “weaving’ in the title. Most patents
with spinning in the title are listed in the BPO spinning category, while most of
those mentioning weaving are classified in the BPO weaving category. This suggests
that the keyword search approach is reliable, though more restrictive, than the BPO
categories.

58



Table 11: Summary statistics from patent title keyword searches, 1855-1870

Title Total Number Share Share Number Share Share
search patents in BPO in BPO of BPO in BPO in BPO of BPO
term: Spinning Spinning Spinning Weaving Weaving Weaving
Cotton 1,230 892 73% 29% 61 5% 2%
Wool 998 651 65% 21% 57 6% 2%
Linen 518 397 77% 13% 21 4% 1%
Silk 392 279 71% 9% 36 9% 1%
Spinning 976 935 96% 30% 25 3% 1%
Weaving 1,245 42 3% 1% 1,200 96% 46%

Patents are identified by searching for each title search term, e.g., “cotton”, in
the patent titles.

A.10 Regression results for the impact of the shock on overall
cotton textile innovation

This section establishes the patterns described in Section 5.1 more rigorously. I will
take two approaches. First, I want to establish that there is something unusual
happening in the cotton textile industry during the shock period relative to the other
textile industries. To do so, I pool the data four all four textile industries (i ∈
{Cotton, Wool, Linen, Silk}) and run a panel regression using,

log(Pit) =
∑
i=1∈I

γi × St × Ii + φi + ξt + TTit +Qt + εit,

where Pit is the log count of patents in industry i and period t, St is an indicator
variable for the shock period (Q2 1861 - Q1 1865), Ii is an indicator variable for
industry i, φi is a full set of industry-specific fixed effects, TTit is a full set of industry-
specific time trends, ξt is a set of indicator variables for each year outside of the shock
period, and Qt is a set of quarter indicator variables (to control for seasonal effects).
This regression is run on quarterly data from 1853-1870. To avoid colinearity, the
indicator variables for the first year and the first quarter are omitted. Regression
results are generated using feasible generalized least squares (FGLS) approach while
allowing for heteroskedasticity at the panel level, correlated errors across panels, and
AR1 serial correlation with serial correlation parameters specific to each panel.45

Results are shown in Table 12. We can see that in all of these specifications the
level of patents related to cotton textiles is high during the shock period relative to

45Note that I observe no industry-year bins with zero patents in these data, so there is not a
clear need to apply a count data model to this analysis. Nevertheless, I undertake robustness tests
with Poisson and Negative Binomial models in the Appendix and show that these approaches yield
similar results.
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the the three comparator textile industries. In all cases this difference is statistically
significant, as highlighted by the F-tests shown in at the bottom of the table.

Table 12: Panel-data regressions across textile industries

(1) (2) (3) (4)
Cotton x Shock period 0.376*** 0.145 0.294** 0.245**

(0.0858) (0.103) (0.118) (0.113)
Linen x Shock period -0.128 -0.391** -0.212 -0.267*

(0.177) (0.156) (0.150) (0.143)
Silk x Shock period -0.168 -0.390** -0.138 -0.185

(0.184) (0.166) (0.142) (0.138)
Wool x Shock period -0.0622 -0.294** -0.154 -0.204*

(0.107) (0.129) (0.120) (0.120)
Log total non-textile patents 1.282***

(0.440)
Input TT (p value) [0.000] [0.000]
Year effects No Yes Yes Yes
Quarter effects No Yes Yes Yes
Observations 288 288 288 288
Number of industries 4 4 4 4

Wald test Cotton x Shock period coefficient equal to:
Linen x Shock period 9.16 12.55 13.56 14.24
(p value) (0.003) (0.000) (0.000) (0.000)
Silk x Shock period 9.62 11.06 10.92 11.23
(p value) (0.002) (0.001) (0.001) (0.001)
Wool x Shock period 21.33 19.01 23.02 23.04
(p value) (0.000) (0.000) (0.000) (0.000)

FGLS regressions run on quarterly panel data from 1853-1870. Standard errors,
shown in parenthesis, are robust to heteroskedasticity, correlation across panels,
and AR1 serial correlation with panel-specific serial correlation parameters. All
regressions include industry fixed effects. Indicator variables for the first year
(1853) and the first quarter are omitted. Indicator variables for the years 1861-
1865 are omitted to avoid colinearity.

Next, I want to investigate more carefully the time path of the effect of the shock
on innovation in the cotton textile industry. The key question here is whether the
difference between what is happening in the cotton textile industry and other indus-
tries is driven entirely by patenting that occurred early in the Civil War period. If
that were true, we might be concerned that these patterns were driven only by the
patenting of existing ideas which became profitable as a result of the changes induced
by the war, rather than the development of new innovations. To investigate this I pool
data on cotton, wool, linen, and silk technologies and use the following specification,

log(Pit) =
1868∑
j=1858

γt × ξj × COTTON + φi + ξt + TTit +Qt + εit,
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where ξj is an indicator variable for year j and COTTON is an indicator variable
denoting the cotton textile industry. In this specification, ξt is a full set of year
indicator variables. I include ξj ×COTTON variables for j ∈ {1858, 1868} in order
to identify patenting patterns in the cotton textile industry up to three years before
and after the Civil War period. To avoid colinearity, the indicator variables for the
year 1853 and for the first quarter are omitted.

The results presented in Table 13 show that, while there was an immediate spike
in patenting in 1861, the largest increases in patenting of cotton textile technologies
occur later in the war, in 1863 and 1864.
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Table 13: Timing of the response within the cotton textile industry

(1) (2) (3) (4)
Cotton x 1858 -0.211** -0.142 -0.134 -0.136

(0.0845) (0.128) (0.116) (0.116)
Cotton x 1859 -0.183** -0.138 -0.132 -0.135

(0.0843) (0.128) (0.116) (0.116)
Cotton x 1860 0.0934 0.142 0.132 0.127

(0.0843) (0.128) (0.116) (0.116)
Cotton x 1861 0.517*** 0.505*** 0.510*** 0.508***

(0.0843) (0.128) (0.117) (0.116)
Cotton x 1862 0.400*** 0.391*** 0.371*** 0.369***

(0.0843) (0.128) (0.117) (0.117)
Cotton x 1863 0.462*** 0.589*** 0.500*** 0.499***

(0.0843) (0.128) (0.118) (0.118)
Cotton x 1864 0.482*** 0.786*** 0.705*** 0.706***

(0.0843) (0.128) (0.120) (0.120)
Cotton x 1865 0.244*** 0.458*** 0.392*** 0.391***

(0.0843) (0.128) (0.121) (0.121)
Cotton x 1866 -0.0509 -0.0216 -0.115 -0.116

(0.0843) (0.128) (0.123) (0.123)
Cotton x 1867 0.133 0.454*** 0.341*** 0.342***

(0.0843) (0.128) (0.126) (0.125)
Cotton x 1868 -0.0306 0.0169 -0.142 -0.146

(0.0845) (0.128) (0.129) (0.129)
Log total non-textile patents 1.275***

(0.402)
Input TT (p value) [0.000] [0.000]
Year effects No Yes Yes Yes
Quarter effects No Yes Yes Yes
Observations 288 288 288 288
Number of industries 4 4 4 4

FGLS regressions run on quarterly panel data from 1853-1870. Standard errors,
shown in parenthesis, are robust to heteroskedasticity, correlation across panels,
and AR1 serial correlation with panel-specific serial correlation parameters. All
regressions include industry fixed effects. Dummy variables for the first year
(1853) and the first quarter are omitted.

A.11 Indicators of patent quality

This section describes the three measures of patent quality used to evaluate whether
the 1861-1865 period was also characterized by an increase in the number of high-
quality cotton-textile-related patents. These measures attempt to account for three
aspects of patent quality: (1) long-term viability, (2) wider applicability, and (3) ini-
tial novelty. By long-term viability, I mean the extent to which the patented invention
remains economically important years after its initial introduction. This aspect will
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be measured using data on the payment of patent renewal fees. Wider applicability
means the breadth of different locations and economic environments in which the
invention is used. To measure this aspect, I consider patents by British inventors in
India and the U.S. The third aspect, initial novelty, is the extent to which the in-
vention was recognized as a significantly new technological contribution. This aspect
will be measured by observing whether patents were described in a contemporary
periodical focused on new inventions. While it is reasonable to expect these quality
measures to be correlated, it is also possible to think of situations in which they may
diverge, which is why multiple measures of patent quality are considered.46

A.11.1 Valuing patents using renewal data

During the period covered by this study, British patents lasted for 14 years, but in
order to keep them in force patent holders were required to pay renewal fees of £50
before the end of three years and an additional £100 before the end of seven years.47

These were substantial sums at the time and the result was that the vast majority of
patents were allowed to expire before their full term. My data show that just under
18% of patents were renewed at three years, while just over 6% were renewed at seven
years. Thus, paying a renewal fee represents a substantial investment which would
only have been worth it for a small set of the most successful technologies.

Renewal fee data were gathered from listings in Mechanics’ Magazine, a weekly
periodical focusing on patents and related topics. The magazine is available from the
end of 1858 to the end of 1872, so that data on renewals at year three are available
for patents filed from 1856-1869 and data on renewals at year seven are available
from 1853-1865. By merging the renewal data with the primary patent data set, it is
possible to track renewal patterns for textile-related patents.

An important feature of these results is that there was a high level of patents filed
in years 1862-1864 which were renewed after three years, and in some cases after seven
years. For most of these, the renewal fees would have been paid after the end of the
Civil War, during a period in which the markets were returning toward their pre-war
equilibrium levels. This suggests that, had these patents been available prior to 1861,
they likely would have been worth patenting given that the initial patenting fee was
only one-half or one-quarter of the renewal fees. The point is that these technologies

46For example, an invention that fills a small technological niche may have long-term viability,
but may not be broadly applicable and may also fail to arouse the interest of inventors. In contrast,
an invention may be widely adopted upon introduction, but may also quickly become obsolete if
further technological improvements are relatively straightforward. Finally, a novel but imperfect
invention may arouse great interest among contemporary inventors and thereby generate follow-on
innovations which soon render the original idea obsolete.

47For comparison, £100 in 1860 is equivalent to £7,020 2010 pounds using a retail price index
deflator, or £65,2000 when deflating by average earnings (calculator available through the Measuring
Worth project at www.measureingworth.com).

63



were most likely not available prior to 1861, which suggests that there was an increase
in new and valuable innovation during the 1861-1865 period.

Figure 19: Cotton-related and gin/opener/scutcher technology patent renewals

Cotton patents renewed at year three Cotton patents renewed at year seven

Gin/opener/scutcher renewals at year three Gin/opener/scutcher renewals at year seven

“At year three” indicates patents for which the renewal fee was paid in to keep the patent in force

beyond year three. “At year seven” indicates that the renewal fee was paid to keep the patent in

force beyond year seven.

A.11.2 Valuing patents using foreign patent filings

This section uses patent data from India and the U.S. to assess whether the 1861-1865
period saw an increase in cotton and textile related patents which were widely applica-
ble. This approach has been used previously by Lanjouw et al. (1998). The motivation
behind this measure is that observing a British invention which was patented abroad
indicates that the invention was viable in a wider range of circumstances. The U.S.
and India are used both because data from these locations are available and because
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they represent significantly different environments in which the technologies must op-
erate.48 India was primarily a producer of low-quality raw cotton at this time. The
U.S. was both a major producer of mostly high-quality cotton as well as an important
cotton textile manufacturing center. However, patents filed during the Civil War were
valid only in the North, which excluded all of the main cotton growing districts, but
included most textile manufacturers.49

I begin by analyzing Indian patent data. These data, which I gathered from
original printed records, cover 1859-1879. During this period, 1,138 Indian patents
were granted, of which 429 went to inventors based in Britain. Each Indian patent
was manually reviewed in order to identify textile and cotton related technologies.50

Most of these patents are either for cotton gins, or for balers and packers, which were
used to prepare the cotton for shipping. Table 14 describes how the share of patents
made up of all cotton-related technologies, gins, and balers/packers, changed during
the 1861-1865 period. The three left columns consider the share of these technologies
in all Indian patents, while the right side looks at the share in only Indian patents by
inventors based in Britain. There is evidence of a significant increase in the share of
patents for gins and cotton-related technologies by British patent holders during the
shock period. This is consistent with an increase in inventions in Britain which were
also applicable in India.

Table 14: Share of Indian textile patents by British inventors

Share of all Indian patents Share of patents by British inventors
Balers, Balers,

Cotton Gins packers Cotton Gins packers
Shock Indicator 0.0442*** 0.0249** 0.0167 0.126** 0.0720** 0.0482
(1861-1865) (0.0145) (0.00993) (0.0117) (0.0446) (0.0295) (0.0350)
Observations 23 23 23 23 23 23

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Annual data
covering 1859-1879. All regressions include a constant.

The U.S. patent database covers 1857-1873 and includes 94,141 patents, of which

48The technologies used by U.S. textile manufacturers tended to differ somewhat from those used
by British producers. A classic example is that the British generally used mules for spinning, which
could spin finer thread counts and use lower quality cotton, but also required highly skilled operators,
while U.S. manufacturers tended to use ring spinning technology that required higher quality cotton
but could be operated by less skilled workers.

49There was a separate Confederate Patent Office operating in the South at this time, but given
the uncertainty of the war and the difficulty of communication caused by the Union blockade, it was
not successful at attracting patent filings by foreigners.

50Patents mentioning “cotton” in the title were coded as cotton patents, patents with “gin” in
the title were coded as gins, etc.
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1,160 were held by British inventors.51 Using the inventor name and patent title I
attempted to match each of these inventions to a patent filed in Britain, in order to
identify a patent family. A total of 974 U.S. patents (84% of 1,160) were matched to
British patents.

My interest is in whether there was an increase in cotton-textile-related patents
in the U.S., by British inventors, corresponding to the increase observed in British
patents.52 Because there was a reduction in the fees paid by foreign patent holders
in the U.S. in 1862, my analysis must focus on the share of textile and cotton-related
patents in total U.S. patents by British inventors, rather than the raw number of
patents. Table 15 presents results for textile-related technologies. These show evi-
dence that there was an increase in the share of cotton-related technologies in U.S.
patents by British inventors during the 1861-1865 period.

Table 15: Share of textile patents in total U.S. patents by British inventors

Spinning Weaving Cotton Wool Linen Silk
Shock 0.0317 -0.0313* 0.0338* 0.0191 -0.00484 0.00358
Indicator (0.0357) (0.0174) (0.0176) (0.0148) (0.0191) (0.00914)
Obs. 14 14 14 14 14 14

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Annual data
covering 1857-1873. All regressions include a constant.

Table 16 applies the same exercise to spinning technology subcategories. There
appears to have been an increase in the share of patents in the gins subcategory, as
well as in bearings. Overall, this provides some evidence of an increase in British
cotton-textile-related innovations flowing to the U.S. during the Civil War period.

Table 16: Spinning subcategory patents’ share of total U.S. patents by British inven-
tors

Openers/ Carding Combing Mules/ Rollers,
Gins scutchers machines machines twiners etc. Bearings Finishing

Shock 0.0151*** 0.00230 -0.000140 0.00690 -0.00525 -0.0171 0.0227*** -0.00813
Indicator (0.00408) (0.00460) (0.00984) (0.00497) (0.00805) (0.0169) (0.00441) (0.00792)
Obs. 14 14 14 14 14 14 14 14

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Annual data
covering 1857-1873. All regressions include a constant.

51These data were generously shared by Tom Nicholas.
52For a comparison of the U.S. and British patent systems, see Khan (2005).
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A.11.3 Valuing patents using contemporary publications

A contemporary periodical can be used to highlight the interest or excitement gener-
ated by a new patent upon its publication. This approach has previously been used to
value historical British patents by Nuvolari & Tartari (2011). This section takes ad-
vantage of data that I collected from Newton’s London Journal, a monthly publication
devoted to covering new patents and other technology-related topics. This journal
was published by William Newton & Sons, one of the preeminent patent agents in
London. Among the Journal’s stated goals was making more easily available the in-
formation contained in patent filings, and to this end, each issue included abstracts
from a selection of recently sealed (i.e., granted) patents, some of which were ac-
companied by detailed drawings.53 Though they provide little information about the
criteria used to select these patents, presumably they included those patents which
were deemed by the editors to be the most important inventions, or those which
would be of greatest interest to the readers. Thus, inclusion of a patent abstract in
the journal is treated as an indication of the initial novelty of each patent, based on
the judgment of a knowledgeable contemporary opinion.

The Journal is available from January 1855 - February 1866, meaning that any
patent applied for from 1855-1864 should have been a candidate for inclusion. Match-
ing these patents to the primary patent database allows me to identify patents of
textile and cotton related technologies. Because the total number of abstracts may
have been limited by space constraints, the analysis focuses on the share of published
abstracts made up of cotton-textile-related technologies. The analysis is based on the
date the patent was filed, rather than the publication date, so for example, I look
at all patents which were filed in 1861 and then subsequently published, and analyze
the share composed of textile-related patents.

Table 17 presents results for the main textile technology categories and input
types. These results show an increase in the share of abstracts for spinning and
cotton-related technologies during the 1861-1865 period, as well as a smaller increase
in patents related to wool. Table 18 shows similar results for spinning technology sub-
categories. The only significant result is an increase in the share of patents for gins
during the 1861-1865 period. Together these results indicate that the 1861-1865 pe-
riod was characterized by an increase in the number of cotton-textile-related patents,
and particularly patents of cotton gins, which contemporary observers considered to
be interesting or novel contributions.

53It is worth noting that patent abstracts were only included after the patent had been sealed, so
publication was often as long as a year after the initial patent application was filed. This means that
the editor would have had some perspective from which to judge the influence of a patent before
including it in the journal.
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Table 17: Share of published abstracts composed of textile-related patents

Spinning Weaving Cotton Wool Linen Silk
Shock 0.0501*** -0.00765 0.0307*** 0.0206*** 0.00795 -0.00187
Indicator (0.0112) (0.0133) (0.00732) (0.00337) (0.00654) (0.00565)
Obs. 10 10 10 10 10 10

Standard errors in parentheses. Annual data covering patents from 1855-1864.
*** p<0.01, ** p<0.05, * p<0.1.

Table 18: Share of published abstracts composed of patents in spinning subcategories

Openers/ Carding Combing Mules/ Rollers,
Gins scutchers machines machines twiners etc. Bearings Finishing

Shock 0.00866** 0.00339 0.00772 0.000586 0.00330 0.00304 0.00546 -0.00188
Indicator (0.00288) (0.00287) (0.00591) (0.00331) (0.00422) (0.00224) (0.00340) (0.00415)
Obs. 10 10 10 10 10 10 10 10

Standard errors in parentheses. Annual data covering patents from 1855-1864.
*** p<0.01, ** p<0.05, * p<0.1.

To summarize the results of this section, it appears that there was a significant
increase in British patents of high-quality cotton textile technologies, and particularly
early stage technologies such as gins and openers/scutchers, during the U.S. Civil War.
This holds whether patent quality means long-term viability, as measured by payment
of renewal fees, wider applicability, as measured by patents outside of Britain, or
initial novelty, as measured by being mentioned in a contemporary periodical.
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A.12 Comparison of Bombay and London prices of Indian
cotton

In this appendix, I look directly at cotton prices in Bombay in order to check if there
appeared to be an increase in the gap between the Bombay and London prices of
Indian cotton which would suggest that the prices were being influenced by quality
improvements. While there is not a wealth of price data available, Atkinson (1897)
does provide price indexes for three varieties of Indian cotton on the Bombay market.
Figure 20 graphs these Bombay market prices together with the Liverpool market
price, where all prices are presented in logs and normalized so that 1861=1. This is
done to eliminate the need to compare in level terms, which is difficult given exchange
rate fluctuations. We can see that these prices are moving together, which suggests
that there were no quality improvements in the benchmark cotton varieties between
the Bombay and London markets that could be affecting the price data used in Section
6.

Figure 20: Comparison of cotton prices on the Bombay and Liverpool markets

Liverpool price data gathered from The Economist magazine.
Bombay price indices were constructed by Atkinson (1897).
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