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Abstract

We leverage variation in robot adoption across U.S. metropolitan areas to doc-

ument that automation reduces the sensitivity of inflation to unemployment.

A New Keynesian model with search frictions and automation rationalizes our

empirical findings through two mechanisms. First, automation shrinks workers’

bargaining power, dampening the sensitivity of wages to unemployment. Sec-

ond, automation reduces the labor share, muting the pass-through from wages

into prices. Both channels flatten the price Phillips curve. However, when boost-

ing automation is costly, the threat of robot adoption is no longer effective in

curtailing workers’ bargaining power amidst large expansionary shocks, leading

to a steep Phillips curve.
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1 Introduction
Over the past few decades, advanced economies have witnessed a substantial

increase in the use of robots and other forms of automation in production pro-

cesses. This phenomenon has generated comprehensive implications for the labor

market, contributing to the polarization of employment opportunities and the de-

cline of middle-skilled jobs, as well as compressing wages at the lower end of the

earnings distribution (Acemoglu and Restrepo, 2018, 2020a, 2020b, 2022; Graetz

and Michaels, 2018; Acemoglu et al., 2020). However, notwithstanding the key

role that labor market conditions have on wage and price setting, little is known

about how robot adoption may influence inflation dynamics. In this paper, we

show empirically, theoretically, and quantitatively that the surge in automation

could explain the muted sensitivity of inflation to unemployment observed in

advanced economies until the Covid pandemic.

We start by providing novel empirical evidence showing that robot adoption

alters both price and wage inflation. To do so, we build a panel of non-tradable

goods inflation, wage inflation, unemployment rate and robot adoption at the

U.S. metropolitan area (MSA) level. To measure automation, we follow Ace-

moglu and Restrepo (2020a) and combine the robot installation for each indus-

try at the U.S. national level with the employment share of each industry at

the MSA level. In this way, we measure the robot installed per employee for

each metropolitan area. We end up with a panel across 384 MSAs at the an-

nual frequency from 2008 and 2018. While 2008 is the first year for which the

U.S. Bureau of Economic Analysis provides price information across MSAs, our

sample period tracks the years in which the surge of automation took place.

Our empirical approach closely follows that of Hazell et al. (2022), which we

extend to incorporate the role of automation on inflation dynamics. Specifically,

we regress both non-tradable goods inflation and wage inflation on the lagged

values of the unemployment rate and its interaction with robot adoption, while

controlling in isolation for the role of robot adoption and the non-tradable goods

relative price. Hazell et al. (2022) show that the estimated sensitivity of inflation

to unemployment maps into the slope of the aggregate price Phillips curve im-

plied by a multi-region model. This setting allows us to saturate the regression

with year fixed effects, which not only control for supply shocks and inflation

expectations that are common across areas, but most importantly absorb the en-

dogenous response of monetary policy to common demand shocks (Beraja et al.,

2019; McLeay and Tenreyro, 2020; Fitzgerald et al., 2023).
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However, this cross-sectional analysis of inflation dynamics would not suffice

to uncover the Phillips curve if local idiosyncratic supply shocks are correlated

with changes in local labor markets. To purge the variation of unemployment

from idiosyncratic supply shocks, we follow Hazell et al. (2022) and instrument

the unemployment rate with local tradable demand spillovers. In particular, we

build a shift-share instrument that weights the log difference of value added of

tradable industries at the national level with the value-added share of each trad-

able industry in each metropolitan area. Then, to uncover the causal effect of

automation, we instrument robot adoption with a variable that replaces the robot

installation across industries observed in the U.S. with those of the five largest

European economy, as in Acemoglu and Restrepo (2020a). Under the identify-

ing restriction that robot demand shocks are weakly correlated across advanced

countries, our instrumenting strategy isolates the supply-side component which

caused the surge in the efficiency and widespread usage of robots.

In our baseline results, the interaction of unemployment and robot adoption is

positive and highly statistically significant, indicating a significant role of automa-

tion in decoupling inflation and unemployment. This effect is also economically

relevant: an increase in robot adoption by one standard deviation reduces the

sensitivity of prince inflation and wage inflation to unemployment by 17% and

9%, respectively. This differential magnitude suggests that that robot adoption

also diminishes the influence of wage changes onto price changes. Overall, our

empirical analysis uncovers three novel findings relating automation to inflation

dynamics: robot adoption reduces (i) the sensitivity of price inflation to unem-

ployment, (ii) the sensitivity of wage inflation to unemployment, and (iii) the

pass-through from wages into prices.

Our empirical findings keep holding in a comprehensive battery of robustness

checks that validate the role of automation in decoupling the movements of in-

flation and unemployment above and beyond potential alternative explanations

and confounding factors. For instance, the role of robot adoption in dampen-

ing the sensitivity of non-tradable goods inflation to the unemployment rate is

highly statistically significant even when controlling the role of the time-varying

differences across MSAs in the age structure of the population (Aksoy et al.,

2019; Basso and Jimeno, 2021; Acemoglu and Restrepo, 2022), the labor market

participation of workers with different gender, race, and education, differences

in the average marginal propensity to consume (Herreño and Pedemonte, 2022),

the relevance of abstract, routine, manual, and offshorable occupations (Autor
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et al., 2013; Siena and Zago, 2022), as well as the exposure of metropolitan areas

to foreign import competition (Forbes, 2019; Heise et al., 2022, 2023).

To rationalize our empirical evidence on how automation alters inflation dy-

namics, we extend an otherwise standard New Keynesian model with two key

features: the possibility of robot adoption, in the spirit of Acemoglu and Re-

strepo (2020a), and search frictions in the labor market. The economy features a

representative household consisting of a continuum of workers with perfect con-

sumption insurance, who directly search for a job. The production sector has

three layers: (i) a varying measure of producers that operate using either robots

or workers, and post vacancies in the labor market, (ii) a continuum of monop-

olistically competitive wholesalers that purchase the goods of the producers and

transform them into different varieties, subject to a price setting friction in the

form of Rotemberg costs, and (iii) a representative retailer that aggregates the

different varieties into the final good. In addition, machine manufacturers trans-

form final goods into machines with a linear technology featuring robot-specific

technological change. Accordingly, the relative price of robots declines with the

level of technological change. The economy is closed by a standard Taylor rule

that sets the nominal interest rate.

Automation is modulated by producers’ decision to use either workers or ma-

chines. Producers trade off the certainty of installing and operating with a robot

with the uncertainty of possibly hiring a worker but — conditional on that —

operating at a relatively higher efficiency. Specifically, upon entry — and after

paying a fixed operating cost — producers draw an idiosyncratic efficiency in em-

ploying workers, and then decide to use either a labor technology (i.e., labor firms)

or a machine technology (i.e., robot firms). Labor firms open vacancies at given

posted wage, such that high-efficient firms offer relatively higher wages. Machine

firms purchase a robot from machine manufacturers, and produce with certainty.

This setting defines an automation threshold, that is, a level of the efficiency

in operating the labor technology that determines whether firms opt to either

post a vacancy and look for workers or install a machine. Low-efficiency firms

install machines, leading to the replacement of low-wage jobs with robots, in

line with the evidence of Acemoglu and Restrepo (2018, 2020b). The automa-

tion threshold crucially depends on the job filling probability and the levels of

both wages and the price of robots. When wages increase relative to the price of

robots, firms may replace workers with machines. In the model, the automation

cut-off varies across steady states, as a function of the exogenous level of robot-
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specific technological change, and around the steady state upon the occurrence

of a shock, as a function of the endogenous response of prices.

When characterizing the price Phillips curve, we show that automation — in-

terpreted as a rise in robot-specific technological change — reduces its slope. The

flattening effect of automation is due to two main mechanisms. First, automation

raises the fraction of firms operating with machines, lowering the labor share in

value added. As a result, it mutes the pass-through from wages into prices. Sec-

ond, the outside option of automating production negatively affects workers’ bar-

gaining power, dampening the responsiveness of wages to the unemployment gap.

In the quantitative analysis, we consider two steady states that differ uniquely

in the level of robot-specific technological change. We calibrate the first economy

to target the 0.2% robot-per-employee ratio of the U.S. in the 2000s, whereas the

second economy features a degree of automation three times as large, which repli-

cates the standard deviation of robot penetration across MSAs in the data. We

find that positive demand shocks — lowering the unemployment gap by the same

amount in the two steady states — reduce the responsiveness of price inflation

and wage inflation in the high-automation economy by 14% and 13%, respec-

tively. Thus, the model accounts for 82% of the drop in the slope of the price

Phillips curve estimated in the data, while overestimating the flattening of the

wage Phillips curve (13% vs. 9% in the data). As such, our economy understates

the drop in the wage-to-price pass-through. However, we show how to extend the

model so that to generate an empirically relevant reduction in the pass-through.

Our model can rationalize not only the muted inflation sensitivity to unem-

ployment in the pre-Covid period, but also the sudden resurgence of a steep

Phillips curve. When ramping up automation is costly and machine manufac-

turers face adjustment costs, the threat that robots pose to workers’ bargaining

power crucially depend on the size of the shock realizations. When facing a small

expansionary shock, firms can purchase additional machines without facing a

sharp increase in robot prices, and thus gain an upper hand on wage negotia-

tions. In this case, both the wage and price Phillips curves are flat. However,

when the size of an expansionary shock is substantial, installing all the required

robots to meet demand would be increasingly costly, forcing producers to con-

tinue to operate using labor. Consequently, the threat of robot adoption is no

longer effective in curtailing workers’ bargaining power, and wages strongly react

to changes in the unemployment gap. In other words, robot adoption alters the

price Phillips curve such that it flattens when the size of shocks is small, but can
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quickly steepen up amidst large shock realizations.

Our work relates to the literature on inflation dynamics in the post 1980s,

suggestive of a flat Phillips curve (Blanchard, 2016; Stock and Watson, 2020;

Del Negro et al., 2020). This evidence may be due to policy improvements and

better anchoring of expectations (Ball and Mazumder, 2011; McLeay and Ten-

reyro, 2020; Hazell et al., 2022; Bergholt et al., 2023), labor market changes mut-

ing the responsiveness of wages (Stansbury and Summers, 2020; Siena and Zago,

2022; Faccini and Melosi, 2023), globalization (Forbes, 2019; Heise et al., 2022),

changes in the shocks composition (Gordon, 2013; Coibion and Gorodnichenko,

2015), changes in firm inter-linkages (Galesi and Rachedi, 2019; Höynck, 2020;

Rubbo, 2023), financial frictions (Gilchrist et al., 2017), and a non-linear Phillips

curve (Harding et al., 2022a). We emphasize that automation can account for

the muted inflation sensitivity to the unemployment rate in the pre-Covid period,

while also rationalizing a steep Phillips curve amidst large expansionary shocks.

The two closest papers to ours are Fornaro and Wolf (2021) and Leduc and

Liu (2023). Fornaro and Wolf (2021) build a model with sticky prices and robot

adoption to show that monetary policy accommodations can reconcile a spike of

automation with limited effect on employment and inflation in medium and long

run. We take a complementary approach by emphasizing that robot adoption

decouples inflation and labor market dynamics in the short run, taking as given

the stance of monetary policy. Leduc and Liu (2023) build a real model with robot

adoption and search frictions to account for unemployment fluctuations. While

our work share their focus on the threat that robots pose to workers’ bargaining

power, we look at how automation alters the slope of the Phillips curve.

2 Empirical Evidence
This section provides novel empirical evidence on how robot adoption leads to a

decoupling between inflation and unemployment. Specifically, we study a panel

of price inflation, wage inflation, unemployment, and robot adoption across U.S.

metropolitan areas. To estimate the effect of automation on the relationship be-

tween inflation and unemployment, we use the variation across U.S. metropolitan

areas in both tradable demand spillovers and robot adoption.

2.1 Data

We build a data set of non-tradable goods inflation, wage inflation, the unem-

ployment rate, and robot adoption across 384 U.S. metropolitan areas at the

annual frequency from 2008 to 2018. The frequency and the time period of our
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panel differ from those of Hazell et al. (2022) and Fitzgerald et al. (2023), as we

start much later in time, from the early 2000s on, to capture the period in which

automation became more significant.1

We use the information on the regional price parities of the U.S. Bureau of

Economic Analysis (BEA), which gives a breakdown of prices at the MSA level by

providing data on total prices, the price of goods, as well as distinct series for the

price of rents, utilities, and other services. We complement it with information on

wages, defined as the average compensation per job from the BEA, the unemploy-

ment rate from the Local Area Unemployment Statistics of the U.S. Bureau of La-

bor Statistics (BLS), robot installed at the industry level for the U.S. and the five

largest European countries from the International Federation of Robotics, em-

ployment at the industry-MSA level from the Quarterly Census of Employment

and Wages of the BLS. To derive a measure of robot adoption at the MSA-year

level, we follow the two-step procedure of Acemoglu and Restrepo (2020a): we

compute the robot per employee for each industry at the U.S. national level, and

combine it with the employment share of each industry at the MSA level. In this

way, we derive the ratio of installed robots per employee for each MSA-year pair.

Finally, we also consider value added at the industry-MSA level from the

BEA, and employment at the industry-country level for the five largest Euro-

pean countries from EUKLEMS.

2.2 Econometric Specification

We estimate the causal effect of robot adoption on the sensitivity of price inflation

to unemployment using the following panel regression:

πN,i,t = β ui,t−1 + γ ui,t−1 (mi,t−1 − m̄) + ζ mi,t−1 + χ pN,i,t + αi + δt + ϵi,t, (1)

where πN,i,t is the inflation rate of non-tradable goods of MSA i at year t, de-

fined as the log-difference of the price of services excluding rents and utilities,

ui,t is the unemployment rate, mi,t denotes robot adoption, m̄ =
∑

i

∑
n
mi,t

nint
is

its average value across all MSA-year observations, where ni is the number of

MSA in the sample and nt is the number of years, and pN,i,t is the relative price

of non-tradable goods. As in Ball and Mazumder (2011), Hazell et al. (2022)

and Fitzgerald et al. (2023), we consider the unemployment rate as lagged by

1The data on prices at the annual frequency across 384 MSAs start in 2008. Although prices at the
metropolitan areas are available also at the quarterly and semi-annual frequency well before than 2008, they
only track around 20 MSAs. Consequently, we opt for a panel at the annual frequency from 2008 onwards
to focus on the period of more substantial robot adoption while maximizing the cross-sectional dimension of
our data.
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one year. Similarly, we also lag by one year the robot adoption variable. The

regression also includes MSA fixed effects, αi, and year fixed effects, δt.

In this setting, the coefficient β denotes the local sensitivity of non-tradable

goods inflation to the unemployment rate for a MSA with an average robot adop-

tion. The parameter γ – associated to our regressor of interest, the interaction

between the unemployment rate and the (demeaned) robot-per-employee ratio –

captures how the inflation sensitivity to unemployment varies with automation.2

We estimate the coefficients β and γ by leveraging cross-sectional differences

in unemployment rate, inflation, and robot adoption across metropolitan areas.

For instance, the average value of the unemployment rate at the MSA level in our

sample equals 6.8%, but it is highly heterogeneously distributed, as it ranges from

a value of 3% in Bismarck, ND to 23.1% in Barnstable Town, MA. Metropoli-

tan areas also differ substantially in the time variation of unemployment over

time: the area with the smallest fluctuations is Anchorage, AK, in which the

unemployment rate ranged between 5.4% and 7.4%, whereas Elkhart-Goshen,

IN experienced swings between 2.5% and 18.1%. If anything, the variation in

robot adoption across MSAs is even larger, since the metropolitan-level standard

deviation of robot per employee is twice as large as its average value.3

Importantly, our specification of regression (1) extends the approach of Hazell

et al. (2022), that leverages cross-sectional information for identifying the slope

of the Phillips curve, to incorporate the role of automation. In a setting which

abstracts from robot adoption (i.e., imposing γ = ζ = 0), Hazell et al. (2022)

show that the estimate of the coefficient β in regression (1) can be mapped into

the aggregate slope of the Phillips curve implied by a multi-region model. This

result hinges on the following conditions. First, the cross-sectional setting allows

us to saturate the regression with year fixed effects, which absorb the endoge-

nous response of monetary policy to common demand shocks, and capture the

time-variation in common inflation expectations and supply shock realizations

across metropolitan areas. Second, MSA fixed effects control for fixed unob-

served heterogeneity across areas, such as time-invariant differences in inflation

expectations.

2As shown in Basso and Rachedi (2021), considering the interaction term of the unemployment rate with
the demeaned robot-per-employee ratio, mi,t−1 − m̄, does not alter the estimation of how robot adoption
affects the relationship between inflation and unemployment. Rather, this normalization allows us to directly
interpret the parameter β as the sensitivity of non-tradable goods inflation to the unemployment rate for a
MSA with the average degree of robot adoption, that is, when mi,t = m̄.

3There is also substantial heterogeneity in robot penetration between 2008 and 2018 across areas, going
from barely any change in Lewiston, ID-WA up to a 30-fold increase in Hinesville, GA.
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Notwithstanding, this setting would not suffice to identify the slope of the

Phillips curve because the presence of local idiosyncratic supply shocks, which

may be correlated with local unemployment rates, could bias the estimate of β,

as discussed by McLeay and Tenreyro (2020). To purge the variation in local un-

employment rate from idiosyncratic supply shocks, we follow Hazell et al. (2022)

and instrument the unemployment rate with local tradable demand spillovers.

Specifically, the local tradable demand spillovers in area i at year t equals

Tradable Demandi,t =
∑
x

s̄x,i ×∆ log s−i,x,t, (2)

where sx,i denotes the average value-added share of industry x in the metropoli-

tan area i, and ∆ log s−i,x,t is the log change in the national real value added of

sector x excluding the contribution of the MSA i at year t. In other words, local

tradable demand spillovers are defined as a shift-share variable in the spirit of

Bartik (1991). As long as supply disturbances that may drive the time varia-

tion in national industry value added are not correlated with the heterogeneous

relevance of industry value added across areas, the tradable demand spillovers

provide a valid instrument.4 As in Mian and Sufi (2014), the tradable industries

are agriculture, mining, and manufacturing.

Since automation could be driven by local demand factors related to the dy-

namics of wages, prices, and the conditions of the labor market in each metropoli-

tan area, we sharpen our identification of the effect of robot adoption on the rela-

tionship between inflation and unemployment following Acemoglu and Restrepo

(2020a). In particular, we instrument the robot-to-employee ratio at the MSA-

year pair with an alternative measure which replaces the robot installations for

each industry at the U.S. national level with the average robot installation per

industry in the largest five European economies. Under the identifying restric-

tion that robot demand shocks are weakly correlated across advanced countries,

our instrumenting strategy isolates the supply-side component which caused the

surge in efficiency of robots, and thus boosted their widespread usage.

We also study the effect of robots on the sensitivity of wage inflation to un-

employment by considering a setting identical to regression (1), with the only

difference that the dependent variable is πW,i,t, defined as the log-difference in

the average compensation per job of MSA i at year t. This case allows us to

4Although the tradable demand spillovers are defined as a shift-share variable as for the case of automa-
tion, we use industry value-added shares for the former and industry employment shares for the latter. In
this way, we make sure that the two variables do not strongly co-move. In our sample, the correlation
between the tradable demand instrument and the robot adoption variable is 0.2.
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study whether automation alter the relationship between wage changes and un-

employment, and to what extent robot adoption implies a differential sensitivity

of unemployment for wage and price inflation.

2.3 Results

Panel A of Table 1 reports the results on how automation alters the sensitivity

of non-tradable goods inflation to unemployment. Columns (1) and (2) focus

on a case of regression (1) which abstracts from the interaction between robot

adoption and the unemployment rate, with the only difference that Column (1)

uses OLS methods whereas Column (2) instruments unemployment with tradable

demand spillovers. The OLS estimate of the sensitivity of price inflation to un-

employment equals -0.1884, is highly statistically significant, and its magnitude

is in line with previous estimates of Hazell et al. (2022), while being substan-

tially lower than those of McLeay and Tenreyro (2020). However, the results of

Column (2) provide a much steeper relationship between unemployment and in-

flation, with an estimate of β that equals −0.7031, slightly above the IV estimate

of McLeay and Tenreyro (2020) that leverages variation in government spending

across metropolitan areas. Our results are consistent also with the evidence of

Hazell et al. (2022) and Fitzgerald et al. (2023), that point out how using varia-

tion across regional areas leads to a much steeper relationship between inflation

and unemployment than when focusing on aggregate data at the national level.

Columns (3) and (4) report the results of the baseline regression that includes

the interaction of robot adoption and unemployment, estimated with OLS and

IV methods, respectively. In either case, the role of automation is statistically

significant at the 5% confidence level, and the magnitude of the coefficient rises

substantially when instrumenting both unemployment with tradable spillovers

and robot adoption with that implied by the automation patterns of European

countries. The estimated coefficient displays a negative sign, implying that price

inflation is less reactive to changes in the local labor market in metropolitan areas

with relatively more robots. In other words, automation decouples inflation from

unemployment. Importantly, the estimate of the role of automation is also highly

economically significant: a one standard deviation in robot adoption reduces the

sensitivity of inflation to unemployment by 17% with respect to the sensitivity

of the metropolitan area featuring the average value of robots per employee.

Similarly to the different cases presented by Panel A of Table 1, Panel B

reports the results on how automation alters the relationship between unemploy-

ment and wage inflation. Also in this case the coefficients associated to the inter-
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Table 1: Robot Adoption and Inflation across MSAs

No Interaction Term Baseline

OLS IV OLS IV
(1) (2) (3) (4)

Panel A — Dependent Variable: πN,i,t

ui,t−1 -0.1884⋆⋆⋆ -0.7031⋆⋆⋆ -0.1884⋆⋆⋆ -0.5069⋆⋆⋆

(0.0226) (0.1364) (0.0221) (0.1381)

ui,t−1 × (mi,t−1 − m̄) 0.0010⋆⋆ 0.0066⋆⋆

(0.0004) (0.0030)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 3,205 3,205 3,205 3,205

Panel B — Dependent Variable: πW,i,t

ui,t−1 -0.3848⋆⋆⋆ -1.0341⋆⋆⋆ -0.3855⋆⋆⋆ -0.9580⋆⋆⋆

(0.0330) (0.1503) (0.0330) (0.2450)

ui,t−1 × (mi,t−1 − m̄) 0.0016⋆⋆ 0.0049⋆⋆

(0.0007) (0.0024)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 3,205 3,205 3,205 3,205

Note: The table reports the estimates of panel regressions across U.S. MSAs on annual data from 2008
to 2018. In Panel A, the dependent variable is the inflation rate of non-tradable goods, πN,i,t. In Panel
B, the dependent variable is wage inflation, πW,i,t. In all regressions, the key independent variables
are the lagged value of the unemployment rate, ui,t−1, the interaction between the lagged value of the
unemployment rate and the lag value of the demeaned robot-adoption variable, ui,t−1 × (mi,t−1 − m̄).
In the IV regressions, the unemployment rate is instrumented with a shift-share variable that captures
tradeable demand spillovers, and the robot-adoption variable is instrumented with the industry-level
robot penetration in a pool of European countries. All regressions also include the lagged value of
the robot-adoption variable, mi,t−1, the relative price of non-tradable goods, pN,i,t−1, as well as year
and MSA fixed effects. Columns (1) and (2) report the results of a regression which abstracts from
the interaction between the lagged value of the unemployment rate and the lag value of the demeaned
robot-adoption variable, while Columns (3) and (4) report the results of the baseline regression which
explicitly incorporates the role of the interaction term. Columns (1) and (3) are estimated using
OLS methods, and Columns (2) and (4) are estimated using instrumental variables. Double-clustered
standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance at the 1% and 5%,
respectively.
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action term between unemployment and automation are statistically significant

at the 5% confidence level. Interestingly, while the effect of automation on the im-

plied wage Phillips curve at the MSA level is economically relevant, its magnitude

falls short of the magnitude of the effects of robot adoption on the price Phillips

curve: a one standard deviation in robot adoption reduces the sensitivity of wage

inflation to unemployment by 9% with respect to the sensitivity of the metropoli-

tan area featuring the average value of robots per employee. The smaller effect

on the wage Phillips curve relative to the price Phillips curve suggests that robot

adoption diminishes the influence of wage inflation onto price inflation.

Overall, this analysis has established three main results: automation reduces

(i) the sensitivity of price inflation to unemployment, (ii) the sensitivity of wage

inflation to unemployment, and (iii) the pass-through from wages to prices.

2.4 Robustness Check

Our results on the relationship between robot adoption and inflation dynam-

ics are validated in an extensive set of robustness checks. We use this analysis

to evaluate the extent to which the effect of automation in decoupling inflation

and unemployment holds above and beyond alternative explanations. In particu-

lar, we consider three groups of potential confounding factors: differences across

metropolitan areas in demographic characteristics, occupational structure, and

exposure to international trade. We report these exercises in Appendix A.

First, we show that robot adoption dampens the sensitivity of inflation to

unemployment even when including the interaction of the unemployment rate

with differences in the age structure of the population across MSA, proxied with

either the share of individuals below 30 years old, or the share of individuals above

60 years old. This indicates that the effect of automation on price changes is not

related to its relationship with an aging labor force (Basso and Jimeno, 2021;

Acemoglu and Restrepo, 2022), and the way in which population aging affects

the long-run dynamics of inflation (Aksoy et al., 2019). Our evidence holds

even when interacting unemployment with measures capturing differences across

MSAs in total labor market participation, and in that of women, black people,

and asians, as well as in differences in educational attainments. The role of robot

adoption keeps being statistically significant even when including differences in

the marginal propensity to consume across areas (Herreño and Pedemonte, 2022).

Second, our results hold above and beyond the interaction of unemployment

with differences across MSAs in occupations. In particular, we consider variations

in the presence of abstract, routine, manual, as well as offshorable occupations.
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These characteristics are relevant as Siena and Zago (2022) document that the

flattening of the price Phillips curve is related to the phenomenon of job polariza-

tion away from routine occupations, which is also directly related to the offshoring

of routine activities toward low labor-cost countries (Autor et al., 2013).

Third, the dampening of the inflation sensitivity to unemployment due to

automation is also robust to the introduction of controls for the role of import

competition, measured in terms of MSA exposure to Chinese and Mexican im-

ports. Thus, our findings holds above and beyond the way in which variations in

import competition alter wage and price inflation dynamics (Forbes, 2019; Heise

et al., 2022, 2023).

3 Model
The model extends a standard New Keynesian economy to incorporate robot

adoption, in the spirit of Acemoglu and Restrepo (2020a), and search frictions in

the labor market.5 The production side has three layers: (i) a varying measure of

producers that can post vacancies in the labor market and opt to operate using

either labor or machines, (ii) a continuum of monopolistically competitive whole-

salers, that purchase the goods of producers, convert them into different varieties,

and face price setting frictions, and (iii) a representative retailer, that purchases

the different varieties and assemble them into the final good. Final goods are sold

to the household and machine manufacturers, that transform them into machines

using a technology subject to robot-specific technological change. The household

consists of a continuum of workers, who directly look for a job. Income is pooled

at the household level, who collectively decides consumption and asset holdings.

The monetary authority sets the nominal interest rate according to a Taylor rule.6

3.1 Labor Market

The labor market consists of a set of sub-markets with unit measure, indexed by

ω ∈ [0, 1]. At each point in time, there is a time-varying measure ΞL,t of produc-

ers posting vacancies at a given wage, which we refer to as labor firms. We denote

with vω,t the number of vacancies in each sub-market, such that
∫ 1

0
vω,t dω = ΞL,t,

and Wω,t is the associated nominal wage posted.

On the other side, a time-varying measure Nt of individuals decide in which

sub-market to search for a job. We denote by sω,t the measure of individuals

5The combination of these two features allows us to study how automation influences inflation dynamics
by altering workers’ bargaining power.

6Appendix B provides a graphical description of the structure of the model.
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searching in each sub-market, such that
∫ 1

0
sω,t dω = Nt. If individuals match

with a producer, they earn the posted nominal wage, and otherwise they re-

ceive no income.7 Given the number of vacancies and searching workers in each

sub-market, the flow of matches, xω,t(vω,t, sω,t), is pinned down by the matching

function

xω,t(vω,t, sω,t) = ξvηω,ts
1−η
ω,t , (3)

where η is the elasticity of the matching function with respect to vacancies, and

ξ denotes the matching efficiency. Matches last for one period.

Given the matching function (D.1) and the tightness in sub-market ω, θω,t =

vω,t/sω,t, which describes the ratio between number of vacancies and number of

searching workers, the probability that a worker finds a job equals

pω,t (θω,t) =
xω,t(vω,t, sω,t)

sω,t
= ξθηω,t (4)

and the probability that a firm fills a vacancy is

qω,t (θω,t) =
xω,t(vω,t, sω,t)

vω,t
= ξθη−1

ω,t . (5)

The payoff of workers searching in sub-market ω equals the product between

the nominal wage rate in case of a match and the probability of finding a job:

Jω,t = pω,t(θω,t)Wω,t. (6)

Workers decide in which sub-market to search for a job trading off the wage rate

and the probability to find a job. In a symmetric equilibrium, workers’ payoff

should be equalized across all active sub-markets, such that Jω,t = Jt for all ω.

Consequently, sub-markets offering higher wage rates feature lower probabilities

to find a job (and higher vacancy filling probabilities from the firms’ perspective).

The equilibrium in the labor market implies that the sum of individuals search-

ing in all sub-markets equals the measure of individuals actively looking for a job,

Nt =

∫ 1

0

sω,t dω. (7)

At the end of the period, the unemployment rate depends on the measure of indi-

viduals actively looking for a job and those that have matched with a producer,

ut =
Nt −

∫ 1

0
pω,t(θω,t)sω,t dω

Nt

. (8)

3.2 Producers

At each point of time, there is a measure Ξt of producers that decide to pay a

per-period fixed nominal operating cost κ to enter the market. We index each

7We abstract from unemployment benefits as we assume perfect consumption insurance within households.
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producer with j ∈ [0,Ξt]. Upon entry, producers draw an idiosyncratic efficiency

in operating with a labor technology, γj, from a distribution f(γ) with support

[γM , γH ], where γM and γH are the minimum and maximum labor efficiency levels.

After drawing the labor efficiency, producers decide to operate employing ei-

ther machines (i.e., robot firms) or workers (i.e., labor firms). In case a producer

decides to operate using machines, it purchases a robot from machine manufac-

turers at price PM,t. Robot firms produce with certainty using a linear technology

with efficiency γM – at the lower bound of producers’ labor efficiency8 – and sell

their output to wholesalers at price PP,t. The nominal value of robot firms equals

the value of sales net of the cost of purchasing a machine and the entry cost,

VM,j,t = PP,tγM − PM,t − κ. (9)

Since all robot firms operate at the same efficiency, they all share the same value,

such that VM,j,t = VM,t, for all j.

In case a producer decides to operate using labor, it opens a vacancy in a

given sub-market at the nominal wage rate Wω,t. Upon filling the vacancy, the

labor firm produces using a linear technology at the labor efficiency rate γj, and

sells its output to wholesalers at price PP,t. Consequently, the nominal value of

a labor firm equals the value of sales net of the wage rate, multiplied by the

probability of filling the vacancy, minus the entry cost,

VL,t (γj) = qω,t(θω,t) [PP,tγj −Wω,t]− κ. (10)

Labor firms decide the nominal wage rate associated to their vacancies to

maximize their value given the labor market tightness and subject to preserving

a positive payoff for workers in each sub-market. Optimality – incorporating

how the vacancy filling probability, qω,t, depends on Wω,t – implies the following

nominal wage9

Wω,t = PP,tγj(1− η). (11)

In other words, the variation in wages across labor firms is uniquely pinned by

the dispersion in the labor efficiency values. This result implies that in equi-

librium firms with different efficiency levels, γj, sort themselves into different

sub-markets, ω. Since the labor efficiency is assigned randomly, hereafter we use

firms’ labor efficiency levels to denote the sub-markets. As such, we refer to wage

8In the model, given the entire set of parameters, automation is pinned down by the level of robot-specific
technological change. Assuming that robot efficiency is at the lower end of the labor efficiency levels or higher
up does not alter the model implications on how automation affects inflation dynamics.

9See the Appendix B.1 for the derivation of the nominal wage.
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Wγj ,t as the rate offered by firms posting a vacancy in the sub-market populated

by labor firms with efficiency level γj.

How do producers sort into labor firms and robot firms? A producer j opts to

open a vacancy and operate the labor technology if and only if the value of being a

labor firms is greater than the value of being a robot firm, that is, VL,t (γj) > VM,t.

Since the value of being a labor firm increases with the labor efficiency level γj,
10

there exists a cut-off point for the labor efficiency level, γ⋆t , such that

VL,t (γ
⋆
t ) = VM,t, (12)

and firms are indifferent between operating the labor technology or the machine

technology. The cut-off point crucially defines the automation choices: producers

with a labor efficiency level above γ⋆t become labor firms, whereas the rest become

robot firms. Consequently, machines displace low-wage jobs associated with low-

efficient firms, in line with the evidence of Acemoglu and Restrepo (2018, 2020b).

Given the cut-off point, we can characterize the measure of labor firms and

robot firms in the economy. The measure of labor firms integrates across all the

producers with an efficiency above γ⋆t ,

ΞL,t = Ξt

∫ γH

γ⋆t

f (γ) dγ, (13)

and the measure of robot firms captures all producers with sufficiently low labor

efficiency:

ΞM,t = Ξt

∫ γ⋆t

γM

f (γ) dγ. (14)

In equilibrium, the sum of the measures of labor firms and robot firms equals the

total amount of producers that have entered the market, that is, ΞL,t+ΞM,t = Ξt.

Given the measure of labor firms and robot firms, we can define the total

amount of goods produced by producers, Zt, as

Zt = Ξt

∫ γH

γ⋆t

qγj ,t(θγj ,t)γj dj + ΞM,tγM . (15)

Next, we characterize the measure of producers entering the market. In equi-

librium, the expected value of any firm entering the market, VE,t, must equal zero:

VE,t =

∫ γ∗t

γM

VM,tf(γ)dγ +

∫ γH

γ∗t

VL,t(γj)f(γ)dγ = 0. (16)

Finally, as a single statistics that allows us to track the overall variation in

10See Appendix B.1 for a proof of this property.
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wages, we define the average wage as

Wt =
(1− η)PP,tΞt

ΞL,t

∫ γH

γ∗t

γjf(γ)dγ. (17)

3.3 Wholesalers

There is a unit measure of monopolistically competitive wholesalers, indexed by

i ∈ [0, 1]. Each wholesaler purchases goods Zi,t from the producers at price PP,t,

and transforms them into a different variety Yi,t with the linear technology:

Yi,t = Zi,t. (18)

The varieties are sold to retailers at price Pi,t. Then, wholesalers’ profits equal

to Pi,tYi,t − PP,tZi,t.

Wholesalers face price-setting friction in the form of a Rotemberg adjustment

cost, denoted by the parameter ϕ. Wholesalers optimally set their price Pi,t by

maximizing expected profits net of the Rotemberg costs

max
Pi,t

Et

{
∞∑
k=t

Qk,t

(
Pi,kYi,k − PP,kZi,k −

ϕ

2

[
Pi,k
Pi,k−1

− 1

]2
Yi,k

)}
, (19)

where Qk,t is households’ stochastic discount factor. In a symmetric equilibrium,

all wholesalers set the same price, such that Pi,t = Pt for all i. We denote by

πt =
Pt

Pt−1
the inflation rate.

The market clearing condition implies that the total amount of goods pro-

duced by the wholesalers — net of the Rotemberg adjustment cost — equals

those produced by both labor firms and machine firms,∫ 1

0

[
1− ϕ

2

(
Pi,t
Pi,t−1

− 1

)2
]
Yi,t di =

∫ 1

0

Zi,t di = Zt. (20)

3.4 Retailers

There is a perfectly competitive representative retailer that purchases all the va-

rieties from the wholesalers, Yi,t, and assembles them into the final good of the

economy, Yt, with a CES technology:

Yt =

[∫ 1

0

Y
ϵ−1
ϵ

i,t di

] ϵ
ϵ−1

, (21)

where ϵ is the elasticity of substitution across varieties. The retailer sells the final

goods at price Pt to households and machine manufacturers. Retailers’ optimal

demand of each variety is

Yi,t =

(
Pi,t
Pt

)−ϵ

Yt, (22)
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where the price of final goods is given by

Pt =

[∫ 1

0

P 1−ϵ
i,t di

] 1
1−ϵ

. (23)

Final goods are sold to household, in form of consumption goods Ct, and to

machine manufacturers, in form of investment goods It, such that

Yt = Ct + It. (24)

3.5 Machine Manufacturers

There is a perfectly competitive representative machine manufacturer that pur-

chases final goods from the retailer It at price Pt, and transform them into ma-

chines Mt with the linear technology

Mt = ζIt, (25)

where ζ is the level of robot-specific technological change. The manufacturer sells

the machines to robot firms at price PM,t. This price inversely relates to the level

of technological change:

PM,t =
1

ζ
Pt. (26)

A higher value of robot-specific technological change implies that the produc-

tion of machines is becoming relatively more efficient. Consequently, the price of

machines goes down.

In equilibrium, the total amount of machines sold by the manufacturer equals

the machines demanded by the robot firms (i.e., the measure of robot firms):

Mt = ΞM,t. (27)

3.6 Households

The household consists of a unit measure of individuals with perfect consumption

insurance. Individuals are denoted by x ∈ [0, 1]. Given total nominal labor

earnings Xt, which we describe below, the household decides the optimal levels of

consumption, Ct, to purchase from retailers at price Pt, and savings in one-period

nominal bonds, Bt. Specifically, the household maximizes its lifetime utility

max
Ct,Bt+1

Et
∞∑
t=0

βtΩt
C1−σ
t

1− σ
(28)

s.t. PtCt +Bt = Bt−1Rt−1 +Xt (29)

where Rt denotes the nominal interest rate, and Ωt is an exogenous preference

shifter that follows the autoregressive process

log Ωt = ρΩ log Ωt−1 + εΩ,t, (30)
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in which ρΩ is the auto-regressive parameter, and εΩ,t is a preference shock.11

To account for endogenous labor market participation, we allow individuals

to decide whether to actively look for a job. To do so, we assume that each

individual draws a searching cost, λx, from a uniform distribution, U (λ), with

support [0, λH ]. Consequently, individuals decide to search for jobs only when

their expected discounted value of searching exceeds the searching cost, that is

Jt/UC,t ≥ λ, (31)

where UC,t is the marginal utility of consumption. After the individuals have

decided whether or not to search and the matches are realized, all the nominal

labor earnings Xt are pooled together within the household, such that

Xt = Ξt

∫ γH

γ⋆t

qγj ,t
(
θγj ,t

)
Wγj ,tf (γ) dγ. (32)

In other words, taking the nominal wage rate of all the sub-markets/efficiency

levels which are not automated and multiplying them with the associated prob-

ability to find a job yields the aggregate labor earnings of the household.

3.7 Monetary Authority

The monetary authority sets the nominal interest rate Rt following a Taylor rule

that reacts to the inflation rate, πt, and the unemployment gap, ut/u
F
t , where

uFt is the unemployment rate in the flexible-price economy, such that

Rt/R̄ =
[
Rt−1/R̄

]ψR

[
(1 + πt)

ψπ
(
ut/u

F
t

)ψu
]1−ψR

, (33)

where R̄ is the steady-state nominal interest rate,12 ψR captures the degree of

interest-rate smoothing, and ψπ and ψu denote the responsiveness of interest rates

to the inflation rate and the unemployment gap, respectively.

4 Quantitative Analysis
This section evaluates how and to what extent automation alters inflation dynam-

ics in the model. To perform this analysis, we start by describing the calibration

of the model in Section 4.1. Section 4.2 characterizes the effect of automation on

the slope of the price Phillips curve, and Section 4.3 performs a similar analysis

looking at the wage-to-price pass-through. In Section 4.4, we quantify to what

extent automation can account for the flattening of the Phillips curve estimated

in our empirical evidence. Section 4.5 isolates — and measures the relevance of

— the different mechanisms of the model through which robot adoption affects

11Our analysis focuses on the dynamics of inflation amidst the realization of preference shocks. However,
we also evaluate the robustness of the results to the case of monetary policy and productivity shocks.

12Throughout the paper, we denote by Ā the steady-state value of variable At.
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inflation dynamics. Finally, Section 4.6 shows that our model can also account

for the resurgence of a steep Phillips curve insofar ramping-up automation is

costly, and the economy is hit by large expansionary shocks.

4.1 Calibration

We calibrate the model to the U.S. economy by considering that one period cor-

responds to a quarter. We consider a zero net inflation rate in the steady state.

We start by setting households’ risk aversion parameter to the standard value of

σ = 2, while the time discount factor is β = 0.995 to imply a 2% annual real

interest rate at the steady state.

Regarding producers’ efficiency in using the labor technology, we assume that

the labor efficiency γj is drawn from a Truncated Pareto Distribution with loca-

tion parameters, γM and γH , and shape parameter, α, so that f(γ) =
αγM

αγ−α−1
j

1−γMαγH−α .

We normalize the lower bound of the labor efficiency – and thus robots’ produc-

tivity – to γM = 1. We set the highest value in the support to imply that the most

productive firms in the economies have a 10% higher efficiency in using the labor

technology that the least productive ones. This implies that γH = 1.1. Then, to

ensure that both the vacancy filling probability and the job finding probability

are within zero and one, we set the scale parameter, α = 5, and the matching effi-

ciency, ξ = 0.92. The elasticity of labor matches with respect to vacancies equals

η = 0.5 following the evidence of Petrongolo and Pissarides (2001). To close the

labor market block, we set the fixed cost of entry, κ = 0.42, and the searching

cost, λ = 1.8, such that the unemployment rate is 5.7%, and the participation

rate is 63%, in line with the average rates observed in the 2010’s in the U.S.

For any given parametrization of the labor efficiency distribution, the level of

the robot-specific technological change pins down the amount of automation. We

discipline it such that our model is consistent with the 0.2% robot to employee

ratio documented for the U.S. in the early 2000s by Acemoglu and Restrepo

(2020a), after taking care the conversion of the full-time employees of our model to

the mix of full-time and part-time in the data. To match this target, we set ζ = 2.

On the production side, the elasticity of substitution across varieties is ϵ = 9,

so that the markup is 12.5%, in the ball park of the values used in New Keyne-

sian models (see Christiano et al., 2005). We set the Rotemberg adjustment cost

parameter to ϕ = 94.6 to target a 12 month duration of prices on average.

Regarding the monetary authority, we discipline the parametrization of the

Taylor rule following the estimates of Clarida et al. (2000). Accordingly, the

inertia parameter equals ψR = 0.8, the degree of response to the inflation rate
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is ψπ = 1.5, and the degree of response to the unemployment gap is ψu = −0.2.

Finally, we set the auto-regressive coefficient of the demand shock to ρΩ = 0.9,

in line with the evidence of Justiniano and Primiceri (2008).

Table 2: Calibration Values

Parameter Description Value Source/Target

σ Risk Aversion 2 Standard

β Time Discount Factor 0.995 2% Steady-State Annual Real Rate

γM Robot Efficiency 1 Normalization

γH Upper Bound Labor Efficiency 1.1 10% Efficiency Wedge

α Scale Labor Efficiency Distribution 5 0 ≤ pγj ,t
(
θγj ,t

)
≤ 1

ξ Efficiency Matching Function 0.92 0 ≤ qγj ,t
(
θγj ,t

)
≤ 1

κ Entry Cost 0.42 ū = 5.7%

λ Searching Cost 1.8 N̄ = 63%

η Elasticity Labor Matches to Vacancies 0.5 Petrongolo and Pissarides (2001)

ϵ Elasticity of Substitution 9 12.5% Markup
Wholesalers’ Varieties

ϕ Rotemberg Cost 94.6 Average 12 Month Price Duration

ζ Robot-Specific Technological Change 2 0.2% Steady-State Robot per Employee

ψR Taylor Rule Inertia 0.8 Clarida et al. (2000)

ψπ Taylor Rule Responsiveness to Inflation 1.5 Clarida et al. (2000)

ψu Taylor Rule Responsiveness -0.2 Clarida et al. (2000)
to Unemployment Gap

ρΩ Persistence Demand Shock 0.9 Justiniano and Primiceri (2008)

Note: The table reports and briefly explains the calibration values of all the model parameters.

4.2 Characterization of the Slope of the Phillips Curve

How does automation alter inflation dynamics in the model? To address this

question, we first characterize the slope of price Phillips curve. To derive it, we

log-linearize the model around the steady state, and incorporate the labor market

and wholesalers’ equilibrium conditions into the pricing equation. In this way, we

determine the relationship between price inflation and unemployment. In what

follows, we denote by Ât the log deviations of variable At from its steady state Ā.

Let Θ ≡ {η, γM , γH , α, ϵ} represent a set of key structural parameters, that

is, the elasticity of matches with respect to vacancies, the efficiency in employ-

ing machines, the upper bound of the efficiency in employing workers, the scale

parameter of the labor efficiency distribution, and the elasticity of substitution
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across wholesalers’ varieties, and γ̄⋆ the cut-off point that determines the share

of production that is automated at the steady state. The Phillips Curve is then

given by13

π̂t = −ϵ− 1

ϕ
Ψ(γ̄⋆; Θ)(ût − ûFt ) + β

ϵ− 1

ϕ
Etπ̂t+1, (34)

where the slope of the Phillips curve depends on Ψ(γ̄⋆; Θ), which is a function of

structural parameters and steady-state values, such that

Ψ(γ̄⋆; Θ) =
ū

1− ū

1− η

η + [η(ϵ− 1)/ (γMϵϖ1)] [ϖ2 −ϖ3 (1− η) (1 +ϖ2)]
, (35)

and the auxiliary variables ϖ1, ϖ2, and ϖ3 equal:

ϖ1 = ξ

[
η
ϵ− 1

ϵ

]η
γ̄⋆/

{
(1− ū)γ̄⋆

[
1− (γH/γ̄

⋆)
1
η
−α

1− (γH/γ̄⋆)
(1−η)

η
−α

](
1 +

η

αη − 1

)}1−η

,

ϖ2 =

[
1−

(
γM
γ̄⋆

)α]
/

{
αη

αη − 1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α(
γH
γ̄⋆

)1/η
]}

,

ϖ3 =

(
α− 1− η

η

)[
1−

(
γH
γ̄⋆

) (1−η)
η

−α
]−1

−
(
α− 1

η

)[
1−

(
γH
γ̄⋆

) 1
η
−α
]−1

.

Unlike standard New Keynesian models, in our econonomy the slope of the

Phillips curve is not only a function of firms’ markups, captured by the elasticity

of substitution across wholesalers’ varieties ϵ, and the degree of nominal rigidity,

captured by the Rotemberg cost ϕ, but also depends on the degree of automation

through the automation threshold γ̄⋆. Consequently, changes in robot adoption

do alter inflation dynamics in the model.

How can we evaluate how and to what extent automation affects the price

Phillips curve? As we have mentioned in the calibration in Section 4.1, the de-

gree of automation in the model crucially depends on the level of robot-specific

technological change, ζ, that pins down the relative price of machines in terms

of final goods, PM,t/Pt. A higher value of ζ implies that manufacturers are rel-

atively more efficient in producing machines, which curtails the relative price of

machines and leads to a larger degree of robot adoption by producers (i.e., γ̄⋆

rises). Consequently, the relative measure of robot firms increases. This is consis-

tent with the evidence of Graetz and Michaels (2018), showing that the price of

robots felt during the last decades while automation has been increasing. On the

grounds of these premises, we evaluate how a surge in robot-specific technological

change – pushing the economy towards a new steady state with relatively lower

13We report the details of the derivation of the Phillips curve in Appendix B.3.
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prices for machines and higher robot adoption – alters the price Phillips curve.

Figure 1: Degree of automation and the slope of the Phillips curve
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Note: The figures show how the slope of the Phillips curve of the model varies with the degree of
robot automation, that crucially depends on the level of robot-specific technological change ζ.

Since we cannot unequivocally sign the derivative of the slope of the price

Phillips curve with respect to changes in robot-specific technological change, we

use the closed-form specification of Equation (34) to numerically characterize how

inflation dynamics varies with changes in the relative measure of robot firms. To

do so, we compute the slope by varying both the level of the robot-specific tech-

nological change, ζ, as well as each of the other key structural parameters that

influence the inflation sensitivity to unemployment, one at a time. Figure 1

shows the results of this exercise, in which we study how the slope varies with

the interaction of automation with the shape of the labor efficiency distribution,

α, in Panel (a), the elasticity of labor matches to vacancies, η, in Panel (b), the

upper bound on the value of the efficiency of employing the labor technology, γH ,

in Panel (c), and the steady-state unemployment rate, ū, in Panel (d). In each
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panel, the degree of automation is defined as the relative measure of robot firms

implied by different levels of robot-specific technological change.14

The results of Figure 1 highlight four main findings. First, automation un-

ambiguously decreases the slope of the price Phillips curve, independently on the

values of all the other key parameters of the model. Thus, robot adoption reduces

the sensitivity of inflation to the unemployment gap. Second, the flattening effect

of automation is pronounced at lower values of the elasticity of labor matches

to vacancies, η. Third, robot adoption leads to larger changes in the slope when

there is a relatively larger fraction of producers with low labor efficiency levels,

which is captured by the slope parameter α. In this case, robot-specific tech-

nological change triggers a more pronounced adoption of machines, leading to a

significant flattening of the Phillips curve. Fourth, automation alters the way in

which the steady-state level of unemployment influences the slope of the Phillips

curve. At low automation levels, the slope raises with the unemployment level.

Instead, when robot adoption is large enough, steady-state unemployment has

no effect whatsoever on the slope.

4.3 Characterization of the Wage-to-Price Passthrough

To what extent the flattening effect on automation on the price Phillips curve

hinges on the way in which robot adoption alters the pass-through from wages

into prices? On the one hand, automation provides an option to producers to re-

place workers with machines. Consequently, it shrinks workers’ bargaining power.

On the other hand, a larger measure of robot firms reduces the labor share of

the economy, as output can be produced with fewer workers. As a result, price

inflation decouples from wage inflation.

This section characterizes the way in which the degree of automation alters

the wage-to-price pass-through in a similar spirit to the previous analysis on the

slope of the Phillips curve. Specifically, we use the condition that determines the

average wage in Equation (17) and characterize the way in which it relates to

the changes in producers’ price, PP,t. Since producers’ price defines the marginal

cost for wholesalers, this analysis allows us to isolate the relationship between

14These exercises are performed with the parameter values implied by our calibration in Section 4.1. In
all exercise and unless mentioned otherwise, all parameters — but robot adoption and one additional key
parameter in each panel — are set at their calibrated values. The blue continuous line indicates how the
slope varies solely with changes in automation, assuming all other parameters are set at their baseline values.
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Figure 2: Degree of automation and the wage to price pass-through
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(d) Effect of ū - Unemployment at steady state

0
0.08

0.2

1

0.4
W

a
g
e

 t
o

 P
ri
c
e

 P
a
s
s
-T

h
ro

u
g
h

0.06

0.6

Degree of Automation

0.5

0.04
0

Benchmark

Note: The figures replicates the analysis of Figure 1 with the difference that the outcome of interest
is not the slope of the price Phillips curve but rather the wage-to-price pass-through.

marginal costs and wages. The model implies the following condition:15

P̂P,t = Υ(γ̄⋆; Θ)Ŵt, (36)

where the loading factor Υ(γ̄⋆; Θ) is a convolution of parameters and steady-state

values, such that

Υ(γ̄⋆; Θ) =
1

1 +
[
ηγM P̄Pϖpw (1 +ϖ2) /ϖ1

] , (37)

and the auxiliary variable ϖpw equals

ϖpw =
γ̄⋆−α

(
γ̄⋆−α − γ−αH

)
+ α(γ̄⋆γH)

−α(γ̄⋆ − γH)(
γ̄⋆−α − γ−αH

) (
γ̄⋆ 1−α − γ1−αH

) .

The loading factor Υ(γ̄⋆; Θ) provides a measures of the wage to price pass-

through. We then verify how Υ(γ̄⋆; Θ) changes with the degree of automation

and the structural parameters, as we have done for the analysis on the slope

15See Appendix B.4 for the derivation of the wage-to-price pass-through.

25



of the Phillips Curve, and report the results in Figure 2. We find that robot

adoption leads to a drop of the wage-to-price pass-through, which is particularly

pronounced at high levels of automation.

4.4 Quantification of the Flattening due to Automation

This section quantifies the effect of automation on the flattening of the price

and wage Phillips curves. To perform this exercise, we compare the slope of

the Phillips curve of two economies with two distinct steady states that uniquely

differ in the level of robot-specific technological change, and thus on the degree of

automation. As for the first economy, we consider the steady state defined by the

calibration of Section 4.1, in which the robot-to-employee ratio targets the 0.2%

documented by Acemoglu and Restrepo (2020a) for the early 2000s in the U.S.

We refer to this case as the low automation economy. As for the second economy,

we consider a steady state with a relatively higher amount of automation. To

discipline robot adoption across the two steady states, we refer to our data on the

dispersion of the robot-to-employee ratio across metropolitan areas. In the panel,

a one standard deviation increase in robot penetration across MSAs raises the

ratio of robots to employees by 200%. Accordingly, we calibrate the level of robot-

specific technological change in the second economy such that it features a robot-

to-employee ratio of 0.6%. We refer to this case as the high automation economy.

We simulate the two economies by considering 10,000 realizations of the pref-

erence shock, and use the implied values of inflation and the unemployment rate

to graphically characterize the price and wage Phillips curves in both the low au-

tomation and high automation model.16 We report the simulated values in Figure

3, together with the implied regression lines of price inflation and unemployment

in Panel (a), and wage inflation and unemployment in Panel (b).

We find that automation reduces the slope of the regression line of price infla-

tion across the two steady states by 14%, whereas the flattening of the wage infla-

tion curve amounts to 13%. The drop in the slope of the price Phillips curve ac-

counts for 82% of the one estimated in the data, in which a one standard deviation

increase in automation implies a flattening by 17%. However, the model generates

an excessive degree of flattening in the wage Phillips curve compared to our em-

pirical evidence (13% vs. 9%), and thus a relatively more muted reduction in the

wage-to-price pass-through. From this perspective, the model is consistent with

the body of work that emphasizes the key role of the flattening of the wage Phillips

16Since we consider demand shocks, the variation in unemployment coincides with that of the unemploy-
ment gap. We use the two terms interchangeably throughout the body of the paper.
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Figure 3: Simulated Phillips Curves
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Note: The figures reports 10,000 simulations of the low and high automation economies
on price inflation and unemployment, in Panel (a), and wage inflation and unemploy-
ment, in Panel (b). The inflation rates are annualized and all variables are represented
in percentage points.

curve in reducing the slope of the price Phillips curve (Stansbury and Summers,

2020; Siena and Zago, 2022; Faccini and Melosi, 2023). However, our economy

does not give a quantitatively relevant role to the reduction in the wage-to-price

pass-through emphasized by Del Negro et al. (2020) and Heise et al. (2022).

The limited reduction in the wage-to-price pass-through is due to the fact that

the effect of automation on the pass-through from wages into prices is pronounced

only at later stages of robot adoption, as discussed in Section 4.3. To mitigate

this issue, in Appendix we provide an extension of our economy that generates an

empirically relevant reduction in the wage-to-price-through due to automation.

Specifically, we consider two sectors, one in which wholesalers and retailers pro-

duce the consumption goods demanded by the household, and one in which they

produce the investment goods demanded by machine manufacturers. The two

sectors differ only in the use of physical capital in the technology of wholesalers.

As in the data, the investment sector features a much higher capital share. In

this model specification, automation raises the relevance of capital return rates

into firms’ marginal costs, and thus decouples price inflation from wage inflation.

4.5 Inspecting the Mechanism

To inspect the mechanism leading robot adoption to flatten the price Phillips

curve, we perform an exercise similar to that of Del Negro et al. (2020) and look

at how the responses of price inflation, average wage, the wage-to-price pass-

through, the number of firms, and the automation cut-off point to an expan-

sionary demand shock vary across the low automation and the high automation

27



economies.17 Figure 4 reports the results of this exercise, in which we normalize

the response of the unemployment rate to be the same in the two economies.

Figure 4: Impulse Responses - Expansionary Demand Shock
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Note: Impulse responses of the unemployment rate (in percentage points), price
inflation (in percentage points, annualized), average wage, the wage-to-price pass-
through, number of firms and the automation cut-off point (γ∗) to an expansionary
demand shock designed to generate similar responses in unemployment in economies
with high and low degrees of automation.

When consumer demand exogenously increases, firms’ value surges leading to

a boost in entry. The number of posted vacancies hikes up, leading to lower un-

employment and higher wages. However, a given change in unemployment leads

to a relatively more muted response of wages and prices in the high automation

economy. The same 1 percentage point drop in unemployment raises inflation on

impact by 5.35 percentage points in the low automation economy, and by 4.66 per-

centage points. This implies a reduction in the inflation responsiveness by 13%.

What drives the decoupling of unemployment and inflation? Automation al-

ters inflation dynamics through three channels. First, higher wages push some

firms to replace workers with machines, suppressing labor demand, and exerting

17We report the results of a similar exercise looking at the effects of either monetary policy shocks or
productivity shocks in the Appendix C.

28



a downward pressure on the increase in wages. We refer to this channel as the

Cyclical Effect of automation. Second, since robots are always a choice firms

can fall back on, robot adoption reduces workers’ bargaining power, dampening

the elasticity of wages to unemployment. We refer to this channel as the Wage

Setting Effect of automation. Third, the high automation economy features a

relatively larger share of robot firms. Therefore, part of the adjustment process

as a response to the shock occurs independently of the changes in the labor mar-

ket, decoupling the variation in wages from inflation. We refer to this channel as

the Steady State Effect of automation.

To isolate each of these channels, we consider four alternative model specifica-

tions to our baseline economy. In the first, we fix automation to its steady-state

level, such that producers cannot replace workers after a shock. We refer to

this case as the Baseline - Fixed Automation economy. We then alter the type

of search frictions in the labor market, and replace directed search with ran-

dom search.18 Specifically, we assume firms and workers are randomly matched

and wages are set as a result of Nash bargaining where τ denotes the weight of

the workers surplus from the match and thus measures the degree of bargaining

power of the worker (see Pissarides, 2000). We consider two cases, one economy in

which we set τ = η = 0.5, thus labor markets are efficient (Hosios condition) and

wages are set to maximize equally weighted measures of the surplus of workers

and firms; we refer this case as the Random Search - τ = 0.5 economy. The third

economy employs random search but sets τ = 0.01, thus almost all the bargaining

power resides in the hand of the firms. Finally, for completeness we also consider

the model under random search in which automation is fixed its steady-state

level, denoting it as the Random Search - Fixed Automation economy.19

We then report the difference in the inflation response to an expansionary

shock for each of these five economies between their low automation and high

automation steady states in Figure 5. When automation cannot change upon a

shock, neither the Cyclical Effect nor the Wage Setting Effect are operational,

and therefore the only difference between the low automation and high automa-

18The model with random search incorporates an additional parameter that describes the degree of bargain-
ing power of workers allowing us to isolate the Wage Setting effect. However, despite the firm heterogeneity
present in our model, all firms post vacancies on a homogenous labor market, and wage bargaining is done
based on the expected level of productivity of the firms posting vacancies. Details of this model extension
are available in Appendix D.

19The inflation differentials are the same for τ = η = 0.5 and τ = 0.01 when automation is fixed. This result
further illustrates the importance of the interaction between bargaining power and endogenous automation
decisions.
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tion economies is the degree of robot adoption at the steady state. The lower

labor share in the high automation case implies that wages and prices are less

responsive to variation in unemployment. Consequently, the Phillips curve is flat-

ter, independently of the search protocol and the bargaining power. Importantly,

the differential response with fixed automation is substantially below the one of

the baseline economy, implying that the two missing channels are quantitatively

the key drivers of the flattening of the price Phillips curve in our model.

Figure 5: Difference of Inflation Responses under Alternative Models
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Random Search model assumes random search instead of directed search,
the Directed Search - Fixed is the baseline model assuming automation is
fixed in the short-term and Random Search - Fixed is the random search
model assuming automation is fixed in the short-term. The Inflation dif-
ference is defined as |Impulse Response of Low Automation Economy -
Impulse Response of High Automation Economy|.

To disentangle the role of the Cyclical Effect from the Wage Setting Effect,

we look at the differential response implied by the baseline model with that of

the Random Search economies. In the first, Random Search - τ = 0.5, as in

the baseline economy under directed search, labor markets are efficient. In both

economies, wages are such that the firm’s and worker’s gains from the match are

equally weighted. As a result, in both economies robot adoption reduces workers’

bargaining power, dampening the elasticity of wages to unemployment. In the

second, Random Search - τ = 0.01 we set the worker’s bargaining power to be
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very low. As such, robot adoption no longer has a significant effect on the elastic-

ity of wages to unemployment since there is no room for the treat of automation

to further reduce workers’ bargaining power.

On the grounds of this premise, comparing the differential response of the

Random Search - τ = 0.01 economy with its counterpart with no variation in

robot adoption isolates the role of the Cyclical Effect, whereas comparing the

differential response of the Random Search - τ = 0.01 economy with the Base-

line and Random Search - τ = 0.5 economies highlights the significance of the

Wage Setting Effect. The results of Figure 5 indicate that the bulk of the flatten-

ing effect in our model comes from the Wage Setting Effect of automation: the

threat of robot adoption reduces workers’ bargaining power, curtailing the wage

responsiveness to unemployment, leading to flat price and wage Phillips curves.

4.6 Automation and the Steepening of the Phillips Curve

The analysis so far has shown that our model can account for the subdued in-

flation dynamics that has been characterizing advanced economies in the recent

decades. However, the Covid recovery has been accompanied by a substantial

drop in unemployment and a 30-year record high inflation rates. We show that the

fact that in our economy a surge of automation flattens the price Phillips curve

is still consistent with the possibility of observing a resurgence in the steepening

of the relationship between inflation and unemployment.20

While our previous analysis hinged on the assumption that the production of

robots is a costless procedure of transforming final goods into machines subject

to robot-specific technological change, we relax this condition by considering the

empirically relevant case in which ramping-up automation in the short term is

costly. Specifically, we extend the production function of machine manufacturers

in Equation (25) as follows

Mt =
[
ζ −∆

(
It/Ī

)]
It, (38)

where ∆
(
It/Ī

)
denotes an asymmetric investment adjustment cost function as

in Varian (1975), such that

∆
(
It/Ī

)
=

δ

ϱ2

{
exp

[
ϱ

(
It
Ī
− 1.05

)]
+ ϱ

(
It
Ī
− 1.05

)
− ϑ

}
, (39)

in which δ controls the magnitude of the cost, ϱ defines the degree of asymmetry

(i.e., the adjustment costs become quadratic when ϱ → 0), and ϑ is defined as

20For alternative approaches to explain the resurgence of a high inflation, Harding et al. (2022b) proposes
a non-linear Phillips curve due to quasi-kinked demand schedules, and Heise et al. (2023) show that supply-
chains disruptions reduced the domestic price dampening pressures due to foreign import competition.
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a residual to ensure that the steady-state cost is zero. In this specification, the

adjustment costs kick in when the change of investment from its steady state is

above 5 percentage points.

The adjustment cost function implies that the price of machines rises substan-

tially when robot production ramps up. As the demand of investment surges,

the large increase in the magnitude of the adjustment cost hikes up the price

of machines. A higher price of machines implies that for a set of producers the

outside option of automation ceases to be profitable, leading to a drop in the

automation cut-off, and a surge in the relative measure of labor firms. Workers

exploit this situation by negotiation higher wages, which are passed into prices.

In this setting, large expansionary demand shocks that reduce substantially un-

employment are accompanied by a spike in wages and prices.21 In other words,

when boosting automation is costly, the threat of robot adoption is no longer ef-

fective in curtailing workers’ bargaining power amidst large expansionary shock,

leading to the resurgence of a steep Phillips curve.

The analysis of the implications of this model extension is challenged by the

uncertainty on how to discipline the cost function and the size of the shock hit-

ting the economy. Thus, although this analysis is quantitative in nature, we

interpret it as a proof-of-concept illustration of how costly robot adoption can

account for a steep Phillips curve amidst large expansionary shocks. To do so,

we start by setting the costs parameters to δ = 0.0015 and ϱ = 100 to capture

the idea that the adjustment costs are negligible when the change in investment

is limited, but then any variation in investment from its steady state which is

above 5% leads to a convexly increasing cost. This parametrization implies that

a 7 percentage point increase in investment above its steady state level implies

a cost which is three times as large as that associated to a 6 percentage point

increase. In this way, we can evaluate the implications of a costly ramping-up of

automation. We then consider the response of the low automation and high au-

tomation economies featuring costly robot adoption to two expansionary demand

shocks that only differ in their size: a small shock that makes unemployment to

decrease by 0.25 percentage points, and a large shock that makes unemployment

to decrease by 2 percentage points.

The results of the exercise are reported in Figure 6. The graphs at the top

show the response of unemployment and inflation under the small shock realiza-

21When the price of robots hikes up, also the low-efficiency firms that keep operating using robots after
the shock face an increase in marginal costs, putting further upward pressure on prices.
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Figure 6: Costly Automation
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price inflation (in annualized percentage points) to a small and large de-
mand shocks designed to generate similar responses in unemployment in
economies with high and low degrees of automation.

tion, whereas the two graphs at the bottom indicate the behavior of the same two

variables following the large shock realization. The responses of unemployment

are normalized to be the same in both the low and high automation scenarios.

When the economy is hit by a small positive expansionary shock, inflation surges

relatively less in the high automation economy, confirming our previous results

on the fact that robot adoption flattens the price Phillips curve. However, when

the size of the shock is large, there is no difference whatsoever in the response of

inflation in the low automation and high automation economies. Thus, while an

increase in automation flattens the price Phillips curve when the size of the shock

is small, automation does not influence at all the inflation sensitivity to unem-

ployment amidst large shock, leading to the resurgence of a steep Phillips curve.

From this perspective, our model can rationalize not only the muted respon-

siveness of inflation to unemployment observed in the post 1980’s, but also the

sudden spike in inflation that has characterized the post-Covid recovery. Inter-

estingly, the way in which our model accounts for the lack of effect of automation

on the slope of the Phillips curve is also consistent with some recent empirical ev-

idence of Autor et al. (2023), showing that the increases in wage post-Covid have
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been stronger for low educated and low income workers, whose wages have been

compressed during the past decades. That is consistent with the implications of

our analysis: when ramping up robot adoption is costly, there is a relatively lower

degree of worker replacement, such that we observe a relatively higher share of

low-efficiency firms producing employing low-wage workers.

5 Conclusion
How does robot adoption influence inflation dynamics? We show empirically,

theoretically, and quantitatively that economies characterized by a higher degree

of automation experience a lower sensitivity of inflation to movements in unem-

ployment. As such, the substantial increase in the use of robots and other forms

of automation in production processes experienced in most advanced economies

in the last decades may be associated with the missing inflation observed dur-

ing the same period, when inflationary pressures did not materialize despite the

fluctuations observed in unemployment rates.

We first leverage a panel of nontradable goods inflation, wage inflation, unem-

ployment rate and robot adoption at the U.S. MSA level to uncover the causal

effect of automation on the inflation sensitivity to automation. We find that

robot adoption decouples inflation from unemployment, and this effect is also

economically relevant: an increase in robot adoption by one standard deviation

reduces the sensitivity of prince inflation and wage inflation to unemployment by

17% and 9%, respectively. Overall, our empirical analysis uncovers three novel

findings relating automation to inflation dynamics: robot adoption reduces (i)

the sensitivity of price inflation to unemployment, (ii) the sensitivity of wage

inflation to unemployment, and (iii) the pass-through from wages to prices.

To rational these facts, we extend a standard New Keynesian model with two

key augmented features: search frictions in the labor market and the possibility

of robot adoption. In this economy, increasing automation to an amount that

replicates the variation in robot penetration across MSAs leads to a reduction

in the slope of the price and wage Phillips curve by 14% and 13%. Thus, the

model accounts for 82% of the flattening of the price Phillips curve estimated in

our data, while overstates the flattening in the wage Phillips curve. Finally, we

show that when ramping-up automation is costly, the threat that robots pose to

workers’ bargaining power crucially depend on the size of the shock realizations.

When facing a small expansionary shock, firms can purchase additional machines

without facing a sharp increase in robot prices, and thus gain an upper hand on
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wage negotiations. Instead, amidst large expansionary shocks, the adjustment

cost translates into higher machine prices, so that the threat of robot adoption

is no longer effective in curtailing workers’ bargaining power. Consequently, au-

tomation does not affect the slope of the Phillips curve amidst large expansionary

shocks, leading to the resurgence of a steep relationship.
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Harding, M., J. Lindé, and M. Trabandt (2022b). Understanding post-COVID
inflation dynamics. Mimeo.

Hazell, J., J. Herreño, E. Nakamura, and J. Steinsson (2022). The slope of
the Phillips curve: Evidence from US states. The Quarterly Journal of
Economics 137 (3), 1299–1344.
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A Empirical Evidence: Robustness

This section evaluates the robustness of our empirical findings as well as corrob-

orates the validity of our identification strategy by reporting a comprehensive

battery of checks. Specifically, we consider to what extent our findings keep

holding when accounting for the role of potential alternative explanations for the

decoupling of inflation and unemployment dynamics, and when including vari-

ables which could be highly correlated (across states and over time) with the

surge of automation. To do so, we estimate a sequence of additional regressions

in which we introduce each time a new key potential confounding factor and we

explicitly control for both its local lagged level and its interaction with the local

unemployment rate. In this way, we can evaluate whether the effect of automa-

tion on inflation dynamics keeps holding above and beyond the interaction that

unemployment may have with other MSA-level characteristics.

Our first set of potential alternative explanations relate to heterogeneity in

demographic characteristics across metropolitan areas. To address this set of

variables, we merge our data with information from the Current Population Sur-

vey (CPS) of the U.S. Census Bureau, and we compute for each metropolitan area

the following characteristics: (i) the share of young people in total population,

defined as the share of individuals whose age is below 30 years, (ii) the share of

old people in total population, defined as the share of individuals whose age is

above 60 years, (iii) the female labor market participation, (iv) the black people

labor market participation, (v) the asian people labor market participation, (vi)

the share of individuals with low educational attainments, defined as those people

who have attended at most until the tenth grade, (vii) the overall labor market

participation, and (viii) the average marginal propensity to consume (MPC). To

compute the latter, we follow Herreño and Pedemonte (2022) and combine the

estimate of the MPC by demographic characteristics derived by Patterson (2023)

with the share of each of this characteristic in each metropolitan area in each year

of our sample. Overall, merging our initial data with the CPS information slightly

reduces the total number of observations in our panel, from 3,205 to 2,270.

We then report the results of extending our baseline regression to include the

lagged value of each of the above demographic characteristics — one at a time

— both as its lagged values and its interaction with the unemployment rate in

Table A. Overall, we find that the role of automation is always highly statis-

tically significant and rather constant across the different specifications. These
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results also suggest our baseline setting does not capture the relationship that

automation has with the aging labor force (Basso and Jimeno, 2021; Acemoglu

and Restrepo, 2022), and in turn the effect of the aging population on long-run

inflation dynamics (Aksoy et al., 2019). The effect of automation holds also

above and beyond the way in which differences in the MPC across metropolitan

areas modulate the transmission of monetary policy, as documented by Herreño

and Pedemonte (2022).

The second set of confounding factors we consider is related to the heteroge-

neous variations in the content of occupations across metropolitan areas. Indeed,

robot adoption has lead to a decline in both routine and manual occupations

(Acemoglu and Restrepo, 2018, 2020a, 2020b), a phenomenon which is intrin-

sically related to the job polarization emphasized by Autor et al. (2013). We

evaluate the role of changes in the occupational structure as Siena and Zago

(2022) shows that the disappearance of routine and manual occupations is a

potential explanation for the flattening of the price Phillips curve in the early

2000s. To show that the effect of automation on inflation dynamics holds above

and beyond that of job polarization, we merge our data with the information on

occupations provided by the CPS, and the assignment of these occupations to

manual, routine, and abstract, as well as their offshorable content, all of which

come from Autor et al. (2013). We then report the results of extending our

baseline regression to include the lagged value of each of the above occupational

characteristics — one at a time — both as its lagged values and its interaction

with the unemployment rate in Table A. Again, we find that although the oc-

cupation offshorability also leads to a flattening of the price Phillips curve, the

effect of automation on inflation dynamics holds even when explicitly controlling

for the time-variation in the occupational structure across metropolitan areas.

Finally, the third set of potential alternative explanations relates to the key

role that foreign import competition has had on the changes in inflation dynam-

ics in the pre-Covid and the post-Covid periods (Forbes, 2019; Heise et al., 2022,

2023). Specifically, we consider to what extent the effect of automation on infla-

tion could hold when including in our regressions the role of imports from China

and Mexico, which are the two countries which have been providing the largest

competition threats to U.S. products. To do so, we closely follow the steps of

Autor et al. (2013): we get import data from the UN Comtrade on imports from

China and Mexico at the 6 digit Harmonized System product level, we convert

this information into 1987 four-digit SIC codes, and finally transform the infor-

A.3



Table A.2: Robot Adoption and Inflation across MSAs - The Role of Occupations

Dependent Variable: πN,i,t

Abstract Routine Manual Offshorable
Occupations Occupations Occupations Occupations

IV IV IV IV
(1) (2) (3) (4)

ui,t−1 -0.5888⋆⋆⋆ -0.5842⋆⋆⋆ -0.5921⋆⋆⋆ -0.5928⋆⋆⋆

(0.1364) (0.1358) (0.1372) (0.1365)

ui,t−1× 0.0114⋆⋆⋆ 0.0125⋆⋆⋆ 0.0127⋆⋆⋆ 0.0124⋆⋆⋆

(mi,t−1 − m̄) (0.0044) (0.0044) (0.0044) (0.0044)

ui,t−1× -0.0175 0.0170 0.0051 0.0429⋆(
V ARi,t−1 − ¯V AR

)
(0.0109) (0.0170) (0.0202) (0.0242)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 2,489 2,489 2,489 2,489

Note: The table reports the estimates of panel regressions similar to that of Table 1 with the
difference that we also include the interaction of the unemployment rate with a set of potential
confounding factors one at a time, a term we refer to as ui,t−1 ×

(
V ARi,t−1 − ¯V AR

)
, where

V ARi,t−1 is the value that each of this additional confounding factors take in metropolitan
area i at year t, and ¯V AR is the associated average value in the sample. In all columns, the
dependent variable is the non-tradables good inflation rate, πN,i,t, and all cases are estimated
with IV methods, in which the unemployment rate is instrumented with a shift-share variable
that captures tradeable demand spillovers, and the robot-adoption variable is instrumented
with the industry-level robot penetration in a pool of European countries. All regressions
also include the lagged value of the robot-adoption variable, mi,t−1, the lagged value of the
confounding variable used in the interaction term, V ARi,t−1, the relative price of non-tradable
goods, pN,i,t−1, as well as year and MSA fixed effects. Column (1) considers the share of abstract
occupations in total occupations, Column (2) considers the share of routine occupations in
total occupations, Column (3) considers the share of manual occupations in total occupations,
and Column (3) considers the share of offshorable occupations in total occupations. Double-
clustered standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance
at the 1% and 5%, respectively.
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mation at the 1997 six-digit NAICS codes. We use the employment structure

of each metropolitan area at the industry level to compute a time-varying mea-

sure of Chinese and Mexican import competition over the entire sample period,

and merge it with our original data. We then report the results of extending

our baseline regression to include the lagged value of each of the above imports

variable — either the imports from China, or the imports from Mexico, or the

sum imports from the two countries — both as its lagged values and its inter-

action with the unemployment rate in Table A. We find that although the total

imports did flatten the price Phillips curve, the effect of automation on inflation

dynamics hold above and beyond the time-variation in import competition across

metropolitan areas. In fact, the estimations in column (3) in Table A imply that

an increase in robot adoption by one standard deviation reduces the sensitivity

of prince inflation by 19% (a slight increase relative to the baseline estimation)

while an increase in import competition by one standard deviation reduces the

sensitivity of prince inflation by 13%.
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Table A.3: Robot Adoption and Inflation across MSAs - The Role of Import Competition

Dependent Variable: πN,i,t

Chinese Imports Mexican Imports Chinese & Mexican
Imports

IV IV IV
(1) (2) (3)

ui,t−1 -0.5687⋆⋆⋆ -0.7265⋆⋆⋆ -0.6056⋆⋆⋆

(0.1399) (0.2033) (0.1549)

ui,t−1× 0.0063⋆⋆ 0.0105⋆⋆⋆ 0.0077⋆⋆

(mi,t−1 − m̄) (0.0032) (0.0040) (0.0044)

ui,t−1× 0.0141 -0.8281 0.1812⋆(
V ARi,t−1 − ¯V AR

)
(0.0675) (0.5082) (0.1011)

Year Fixed Effects ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓
N. Observations 3,526 3,526 3,526

Note: The table reports the estimates of panel regressions similar to that of Table 1 with the
difference that we also include the interaction of the unemployment rate with a set of potential
confounding factors one at a time, a term we refer to as ui,t−1 ×

(
V ARi,t−1 − ¯V AR

)
, where

V ARi,t−1 is the value that each of this additional confounding factors take in metropolitan
area i at year t, and ¯V AR is the associated average value in the sample. In all columns, the
dependent variable is the non-tradables good inflation rate, πN,i,t, and all cases are estimated
with IV methods, in which the unemployment rate is instrumented with a shift-share variable
that captures tradeable demand spillovers, and the robot-adoption variable is instrumented
with the industry-level robot penetration in a pool of European countries. All regressions
also include the lagged value of the robot-adoption variable, mi,t−1, the lagged value of the
confounding variable used in the interaction term, V ARi,t−1, the relative price of non-tradable
goods, pN,i,t−1, as well as year and MSA fixed effects. Column (1) considers the share of abstract
occupations in total occupations, Column (2) considers the share of routine occupations in
total occupations, Column (3) considers the share of manual occupations in total occupations,
and Column (3) considers the share of offshorable occupations in total occupations. Double-
clustered standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance
at the 1% and 5%, respectively.
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B Further Details on the Model

This section provides additional details on the baseline model. We start by show-

ing a graphical representation of the structure of the economy and the interplay

between the different agents in Figure B.1. Then, Section B.1 reports the deriva-

tion of the wage setting of labor firms, as well as the value of labor firms, and

how it increases as a function of the efficiency in employing the labor technol-

ogy. Section B.2 describes the full set of equilibrium conditions, Section B.3

shows the characterization of the price Phillips curve, and Section B.4 details the

characterization of the wage-to-price pass-through.

Figure B.1: The Structure of the Model

Workers
Labor Firms (γj ≥ γ∗

t )

Nt Firms ⇐ Entry

Machine Firms

Retailers

Wholesalers

Household

Machine Producers (PM,t(ζ))

Central Bank (Rt(πt, ut))

γH

γH − ε

γ∗ + ε

γ∗

8

Note: This figure gives a graphical representation of the structure of the model
economy.

B.1 Wage Setting and The Value of Labor Firms

Equation (11) shows the wage posted by firms in sub-market ω increases with

both the level of labor efficiency and the price of producer goods, multiplied

by the inverse of the elasticity of matches to vacancies. In other words, PP,tγj

is the total value of production of a successful match, and this surplus is split

among workers and firms as a function of the matching elasticity with respect to
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vacancies. Hereafter, we describe the derivation of the wage setting problem.

Specifically, if we combine workers payoff from searching in any sub-market of

in Equation (6), with both the probability to find a job of Equation (4) and the

probability to fill a vacancy of Equation (5), we can determine the probability

of filling a vacancy as a function of the posted wage. In this way, we get the

following condition:

qω,t(θω,t) = ξ
1
η

(
Wω,t

Jt

) 1−η
η

. (B.1)

The wage setting problem can then be expressed as the value of the wage to be

posted in each sub-market ω such that it maximizes the value of the labor with

efficiency γj, VL,t (γj), subject to the way in which the level of the offered wage

and workers’ searching value influences the probability to fill a vacancy, that is

max
Wω,t

VL,t (γj) ≡ qω,t(θω,t) [PP,tγj −Wω,t]− κ (B.2)

s.t. qω,t(θω,t) = ξ
1
η

(
Wω,t

Jt

) 1−η
η

. (B.3)

Optimality then implies that the optimal wage offered in sub-market ω equals

Wω,t = PP,tγj(1− η). (B.4)

Finally, we can substitute the expression of the vacancy filling probability of

Equation (B.1) and the optimal condition of wages in Equation (B.4) within the

value of labor firms of Equation (B.2), to redefine the value of a labor firm with

efficiency γj as

VL,t(γj) = ξ
1
η η(1− η)

1−η
η J

η−1
η

t [PP,tγj]
1
η − κ. (B.5)

The latter condition clearly highlights that the value of labor firms increase in

the level of their efficiency γj in the empirically relevant case in which η < 1.

This property is then key in defining the automation threshold: since the value

of robot firms does not vary with their labor efficiency levels, while that of labor

firms does, there exist a cut-off point γ⋆t such that VL,t(γ
⋆
t ) = VM,t.

B.2 Equilibrium Conditions

To describe the entire set of equilibrium conditions of the model, let us first define

the auxiliary variable ϑ ≡ ξ
1
η (1− η)

1−η
η , as well as the real cost of entry (i.e., the

nominal cost divided by the price of the final good), κ̃ ≡ κ/Pt, and the relative
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price of machines, qM,t ≡ PM,t/Pt. Then, the equilibrium conditions are

UC,t = βEt [UC,t+1Rt/πt+1] , (B.6)

Yt = Ct + It +
ϕ

2
(πt − 1)2(Ct + It), (B.7)

(1− ϵ)(Ct + It) + ϵ

(
PP,t
Pt

)
(Ct + It)− ϕ(πt − 1)πt(Ct + It) + . . .

· · ·+ βE
[
UC,t+1

UC,t
ϕ(πt+1 − 1)πt+1(Ct+1 + It+1)

]
= 0, (B.8)

qM,tΞt

∫ γ⋆t

γM

f(γ)dγ = It, (B.9)

γM
PP,t
Pt

− qM,t = ϑ

(
Jt
Pt

) η−1
η
(
PP,t
Pt

γ⋆t

) 1
η

, (B.10)∫ γ⋆t

γM

(
PP,t
Pt

γM − qM,t − κ̃

)
f(γ)dγ + . . .

· · ·+
∫ γH

γ⋆t

[
ϑ

(
Jt
Pt

) η−1
η
(
PP,t
Pt

γ

) 1
η

− κ̃

]
f(γ)dγ = 0, (B.11)

Ξt

[∫ γ⋆t

γM

γMf(γ)dγ +

∫ ∞

γ∗t

ξ
1
η (1− η)

1−η
η

(
Jt
Pt

) η−1
η

× . . .

· · · ×
(
PP,t
Pt

γ

) 1−η
η

γf(γ)dγ

]
= Yt, (B.12)

Ξt

∫ γH

γ⋆t

ξ
1
η

(
Jt
Pt

)− 1
η
[
PP,t
Pt

γ(1− η)

]1/η
f(γ)dγ = Nt, (B.13)

Ntut = Nt − Ξt

{∫ γH

γ⋆t

ξ
1
η

(
Jt
Pt

) η−1
η
[
PP,t
Pt

γ(1− η)

] 1−η
η

f(γ)dγ

}
, (B.14)

Nt =
Jt
Pt

UC,t
λH

. (B.15)

If we define the real value of searching for an individual as J̃t ≡ Jt/Pt, the

relative price of producers’ goods as qP,t ≡ PP,t/Pt, and given the functional form

for the distribution of labor efficiency, f(γ) =
αγαMγ−α−1

1−γαMγ−α
H

, then the equilibrium
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conditions become

UC,t = βEt [UC,t+1Rt/πt+1] , (B.16)

Yt = Ct + It +
ϕ

2
(πt − 1)2(Ct + It), (B.17)

(1− ϵ)(Ct + It) + ϵqP,t(Ct + It)− ϕ(πt − 1)πt(Ct + It) + . . .

· · ·+ βEt
[
UC,t+1

UC,t
ϕ(πt+1 − 1)πt+1(Ct+1 + It+1)

]
= 0, (B.18)

qM,tΞt
1− γαMγ

⋆−α
t

1− γαMγ
−α
H

= It, (B.19)

γMqP,t − qM,t = ϑηJ̃
η−1
η

t (qP,tγ
⋆
t )

1/η , (B.20)

κ̃
(
1− γαMγ

−α
H

)
=
(
1− γαMγ

⋆−α
t

)
(qP,tγM − qM,t) + . . .

· · ·+
(
ϑηJ̃

η−1
η

t q
1
η

P,t

)
αη

αη − 1

(
γαM

γ
⋆α−1/η
t

− γαM

γ
α−1/η
H

)
, (B.21)

γM − γα+1
M

γ⋆αt
+ ϑJ̃

η−1
η

t q
η−1
η

P,t

αη

αη − 1
γαM

(
γ
⋆ 1−ηα

η

t − γ
1−ηα

η

H

)
= . . .

· · · = Yt
Ξt

(
1− γαMγ

−α
H

)
, (B.22)

Ξt
ξ

1
η (1− η)

1
η

1− γαMγ
−α
H

J̃
− 1

η

t q
1
η

P,t

αη

αη − 1
γαM

(
γ
⋆−α+1/η
t − γ

−α+1/η
H

)
= Nt, (B.23)

Ntut = Nt −
ϑJ̃

η−1
η

t q
1−η
η

P,t

1− γαMγ
−α
H

× . . .

· · · × αη

αη − 1 + η
Ξtγ

α
M

[
γ
⋆−α+(1−η)/η
t − γ

−α+(1−η)/η
H

]
, (B.24)

Nt = J̃tUC,t/λH . (B.25)

We can also obtain the average real wage, wt ≡ Wt/Pt, as follows:

wt =

∫ γH
γ⋆t

qP,tγ(1− η)
αγαMγ−α−1

1−γαMγ−α
H

dγ∫ γH
γ⋆t

αγαMγ−α−1

1−γαMγ−α
H

dγ
= . . .

. . . = qP,t(1− η)
α

α− 1

γ⋆ 1−αt − γ1−αH

γ⋆−αt − γ−αH
. (B.26)

Then, combining Equations (B.23) and (B.24), we have that at steady state
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the real value that individuals have in searching for a job equals

¯̃J =
(1− ū)(1− η)p̄P

(
γ
⋆−α+1/η
t − γ

−α+1/η
H

)
[
γ
⋆−α+(1−η)/η
t − γ

−α+(1−η)/η
H

] αη − 1 + η

αη − 1
. (B.27)

Given the auxiliary variable ϖ1 ≡ q̄PγM − q̄M , log-linearizing the equilibrium

conditions around the steady state gives

−σĈt = βR̂tEt
[
−σĈt+1 − π̂t+1

]
, (B.28)

Ŷt =
C̄

Ȳ
Ĉt +

Ī

Ȳ
Ît, (B.29)

π̂t =
ϵ− 1

ϕ
q̂P,t + β

ϵ− 1

ϕ
Et [π̂t+1] , (B.30)

Ξ̂t +

αγαM
γ̄⋆α

1− γαM
γ̄⋆α

γ̂∗t = Ît, (B.31)

(ϖ1,S − ηq̄PγM)q̂P,t +ϖ1,S(η − 1) ˆ̃Jt +ϖ1,S γ̂⋆t = 0, (B.32){[
1−

(
γM
γ̄⋆

)α]
ηq̄PγM +ϖ1

αη

αη − 1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α(
γH
γ̄⋆

) 1
η

]}
q̂P,t + . . .

· · ·+ϖ1
αη(η − 1)

αη − 1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α(
γH
γ̄⋆

) 1
η

]
ˆ̃Jt = 0, (B.33)

ϖ1

ηq̄P

αη

αη − 1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α(
γH
γ̄⋆

) 1
η

](
η − 1

η
ˆ̃Jt +

1− η

η
q̂P,t

)
+ . . .

· · ·+
(
αγM − ϖ1α

ηq̄P

)(
γM
γ̄⋆

)α
γ̂⋆t = (Ŷt − Ξ̂t)

Ȳ
(
1− γαMγ

−α
H

)
Ξ̄

, (B.34)

Ξ̂t −
1

η
ˆ̃Jt +

1

η
q̂P,t +

[(
1

η
− α

)
γ̄⋆−α+1/η

γ̄⋆−α+1/η − γ
−α+1/η
H

]
γ̂⋆t = L̂t, (B.35)

ū

1− ū
ût = L̂t − Ξ̂t −

(η − 1)

η
ˆ̃Jt −

(1− η)

η
q̂P,t + . . .

· · ·+
[(

α− 1− η

η

)
γ̄⋆−α+(1−η)/η

γ̄⋆−α+(1−η)/η − γ
−α+(1−η)/η
H

]
γ̂⋆t , (B.36)

L̂t =
ˆ̃Jt − Ĉt, (B.37)

ŵt = q̂P,t + (1− α)
γ̄⋆ 1−α

γ̄⋆ 1−α − γ1−αH

γ̂⋆t . (B.38)
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B.3 Derivation of the price Phillips Curve

Section 4.2 establishes that automation alters the slope of the price Phillips curve

such that a relative larger share of robot firm among producers lead to a flatten-

ing of the relationship between price inflation and unemployment. In this section,

we provide the details on the derivation of the price Phillips curve.

Specifically, rearranging Equation (B.33) and using the definition of the aux-

iliary variable ϖ1 yields the following condition:

ˆ̃Jt =

(
1− γαM

γ̄⋆α

)
ηq̄PγM +ϖ1

αη
αη−1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α (
γH
γ̄⋆

) 1
η

]
ϖ1

αη(1−η)
αη−1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α (
γH
γ̄⋆

) 1
η

] q̂P,t = . . .

. . . =
1

1− η

(
ηq̄PγM
ϖ1

ϖ2 + 1

)
q̂P,t. (B.39)

Similarly, rearranging Equation (B.35) leads to

Ξ̂t =
1

η
ˆ̃Jt −

1

η
q̂P,t +

[(
α− 1

η

)
γ̄⋆−α+1/η

γ̄⋆−α+1/η − γ
−α+1/η
H

]
γ̂⋆t + L̂t. (B.40)

Next, combining Equation (B.32) with Equation (B.39) gives

(ϖ1 − ηq̄PγM)q̂P,t +ϖ1γ̂⋆t + . . . (B.41)

· · ·+ϖ1(η − 1)

{[
1−

(
γM
γ̄⋆

)α]
ηq̄PγM +ϖ1

αη
αη−1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α (
γH
γ̄⋆

) 1
η

]}
ϖ1

αη(1−η)
αη−1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α (
γH
γ̄⋆

) 1
η

] q̂P,t = 0,

γ̂⋆t =
ηq̄PγM
ω1

1 +
1−

(
γM
γ̄⋆

)α
αη
αη−1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α (
γH
γ̄⋆

) 1
η

]
 q̂P,t = . . .

· · · = ηq̄PγM
ω1

(1 +ϖ2) q̂P,t. (B.42)

Let us define the set of structural parameters Θ = {η, γM , γH , α, ϵ}. Then,

combining Equations (B.39), (B.40) and (B.42) with Equation (B.36), and using

Equation (B.27) while noting that at steady state the relative price of producers

goods equals q̄P = (ϵ− 1)/ϵ, we have that
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ût =
1− ū

ū

[
1

η
q̂P,t − L̂t −

1

η
ˆ̃Jt −

[(
α− 1

η

)
γ̄⋆−α+1/η

γ̄⋆−α+1/η − γ
−α+1/η
H

]
γ̂⋆t + . . .

· · ·+
[
α−

(
1− η

η

)
γ̄⋆−α+(1−η)/η

γ̄⋆−α+(1−η)/η − γ
−α+(1−η)/η
H

]
γ̂⋆t − . . .

· · · − (η − 1)

η
ˆ̃Jt −

(1− η)

η
q̂P,t

]
+

1− ū

ū
L̂t, (B.43)

ût =
1− ū

ū

{
− ˆ̃Jt + q̂P,t + . . . (B.44)

· · ·+


(
α− 1−η

η

)
γ̄⋆−α+(1−η)/η

γ̄⋆−α+(1−η)/η − γ
−α+(1−η)/η
H

−

(
α− 1

η

)
γ̄⋆−α+1/η

γ̄⋆−α+1/η − γ
−α+1/η
H

 γ̂⋆t
}
,

q̂P,t =
ū

1− ū

1{
− η

1−η −
η(ϵ−1)γM

ϵω1

[
1

1−ηϖ2 −ϖ3 (1 +ϖ2)
]} ût = . . .

= Ψ(γ̄⋆; Θ)ût, (B.45)

where the auxiliary variables ϖ1, ϖ2, and ϖ3 equal

ϖ1 = ξ

[
η
ϵ− 1

ϵ

]η
γ̄⋆/

{
(1− ū)γ̄⋆

[
1− (γH/γ̄

⋆)
1
η
−α

1− (γH/γ̄⋆)
(1−η)

η
−α

](
1 +

η

αη − 1

)}1−η

,

ϖ2 =

[
1−

(
γM
γ̄⋆

)α]
/

{
αη

αη − 1

[(
γM
γ̄⋆

)α
−
(
γM
γH

)α(
γH
γ̄⋆

)1/η
]}

,

ϖ3 =

(
α− 1− η

η

)[
1−

(
γH
γ̄⋆

) (1−η)
η

−α
]−1

−
(
α− 1

η

)[
1−

(
γH
γ̄⋆

) 1
η
−α
]−1

.

If we denote by uF t the level of unemployment in the counterfactual economy

featuring flexible prices, the price Phillips curve can then be written as

π̂t =
ϵ− 1

ϕ
Ψ(γ̄⋆; Θ)(ˆ̃ut − ˆ̃uFt ) + Et

[
β
ϵ− 1

ϕ
π̂t+1

]
, (B.46)

where ˆ̃ut =
ut−uF t

ū
is defined as the deviation of unemployment level from its level

under flexible prices, and ˆ̃uFt =
uFt −ū
ū

is the adjusted deviation of unemployment

under flexible prices from its steady-state level.
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B.4 Derivation of the Wage-to-Price Pass-Through

Section 4.3 expands the analysis of Section Section 4.2 to establish that automa-

tion affects not only the slope of the price Phillips curve, but also the pass-through

from wages into prices. In what follows, we show the derivation of the wage-to-

price pass-through, defined as the relationship that links changes in the average

real wage, wt, and changes in wholesalers’ real marginal cost, qP,t. We can then

rearrange Equation (B.38) to uncover the pass-through as follows

ŵt = q̂P,t +
γ̄⋆−αγ−αH [1− α + α(γH/γ̄

⋆)](
γ̄⋆−α − γ−αH

)2 γ̂⋆t (B.47)

= q̂P,t +
γ̄⋆−αγ−αH [1− α + α(γH/γ̄

⋆)](
γ̄⋆−α − γ−αH

)2 ηq̄PγM
ω1

(1 +ϖ2) q̂P,t (B.48)

1

1 +
γ̄⋆−αγ−α

H [1−α+α(γH/γ̄⋆)]

(γ̄⋆−α−γ−α
H )

2
ηq̄P γM
ω1

(1 +ϖ2)
ŵt. (B.49)

Consequently, we have the final relationship between changes in wholesalers’

marginal costs and changes in the average real wage as

q̂P,t = Υ(γ̄⋆; Θ)ŵt, (B.50)

where the variable Υ(γ̄⋆; Θ) captures the wage-to-price pass-through and is de-

fined as

Υ(γ̄⋆; Θ) =

{
1 +

γ̄⋆−αγ−αH [1− α + α(γH/γ̄
⋆)](

γ̄⋆−α − γ−αH
)2 ηq̄PγM

ω1

(1 +ϖ2)

}−1

. (B.51)
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C Further Results of the Model

Section 4.5 reports the responses of unemployment, price inflation, the average

wage, the wage-to-price pass-through, the number of firms, and the automation

threshold in the low and high automation economies to an expansionary consumer

demand shock εΩ,t that reduces unemployment by 1 percentage point.

In this section, we study the robustness of our findings by evaluating the re-

sponse of the same set of variable in the low and high automation economies

produced by two alternative sources of exogenous uncertainty. In the first case,

we consider a monetary policy shock. Specifically, we alter the Taylor rule of

Equation (33) by adding the monetary policy shock εR,t as follows

Rt/R̄ =
[
Rt−1/R̄

]ψR

[
(1 + πt)

ψπ
(
ut/u

F
t

)ψu
]1−ψR

+ εR,t. (C.1)

We then compare the responses to an expansionary monetary policy shock of

the six key variables by equalizing the response of unemployment in the two low

and high automation economies, such that on impact unemployment drops by

one percentage point. We report the results of this exercise in Figure C.1, which

confirm the patterns derived by the responses to the consumer demand shock.

An expansionary demand shock leads to price inflation, wages, and the wage-to-

price pass-through to surge, coupled with an increase in both the total number of

firms and the automation cut-off, so that the measure of labor firms raises both

in relative and absolute terms.

However, the low automation economy features a much more muted response

of price inflation: the impact response goes down by 13%, from 9.1 to 7.96

percentage points. In other words, the quantitative reduction in the inflation

responsiveness due to automation is exactly the same for the case of monetary

policy shocks or for the consumer demand shocks. As for the case of the prefer-

ence shock, automation also leads to a reduction in the wage response as well as

in the wage-to-price pass-through.

In the second case, we consider the effect of a productivity shock. Specifically,

we alter the wholesalers’ technology of Equation (18) as follows

Yi,t = AtZi,t, (C.2)

where At is the level of productivity, whose logarithm follows the first-order auto-

regressive process

logAt = ρA logAt−1 + εA,t, (C.3)
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Figure C.1: Impulse Responses - Monetary Shock
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Note: Impulse responses of the unemployment rate (in percentage points), price
inflation (in percentage points, annualized), average wage, the wage-to-price pass-
through, number of firms and the automation cut-off point (γ∗) to an expansionary
monetary policy shock designed to generate similar responses in unemployment
in economies with high and low degrees of automation.

in which ρA captures the persistence of the process, and εA,t is the productivity

shock. We set the persistence to ρA = 0.9 so to generate exactly the same auto-

correlation patterns for the shock process as those associated with the consumer

demand process of Equation (30).

As in the previous case, we compare the responses to a contractionary produc-

tivity shock of the six key variables (looking in this case at the unemployment gap

rather than the unemployment rate) by equalizing the response of the unemploy-

ment gap in the two low and high automation economies, such that on impact

the unemployment gap drops by one percentage point.22 We report the results

in Figure C.2. Again, we find that a productivity shock reducing the unemploy-

ment gap leads to a surge in inflation, and this happens to a lower extent in

the high automation economy. When automation surges, also the drop in wages

22A contractionary productivity shock raises the unemployment rate but it does so to a relatively lower
extent than in the model specification with flexible prices. As a result, the unemployment gap goes down.
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is more muted. The quantitative implications of automation on the decoupling

of inflation and unemployment in the aftermath of a productivity shock equals

to those derived under the preference shock: the impact response goes down by

13%, from 5.35 to 4.66 percentage points.

Figure C.2: Impulse Responses - Productivity Shock
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Note: Impulse responses of the unemployment rate (in percentage points), price
inflation (in percentage points, annualized), average wage, the wage-to-price pass-
through, number of firms and the automation cut-off point (γ∗) to a contractionary
productivity shock designed to generate similar responses in unemployment in
economies with high and low degrees of automation.
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D Model Specification with Random Search

Section 4.5 isolates the mechanisms through which automation flattens the price

Phillips curve by comparing the baseline model to alternative specifications in

which rather than directed search the form of the labor market friction is due to

random search, where we can specify the degree of bargaining power of workers.

In this section, we detail how this change alters the equilibrium conditions of the

model.

As in the baseline model, the producers that decide to operate with a labor

technology have to post a vacancy in the labor market, taking into consideration

the probability of filling it with one of the individuals that are actively looking

for a job. However, in this case we abstract from the presence of a continuum of

sub-markets, and consider that all firms post vacancies in the same market.

Let vt be the number of vacancies being posted and Nt the measure of indi-

viduals who search for a job. The flow of matches, xt(vt, st), is pinned down by

the matching function

xt(vt, st) = ξvηt s
1−η
t , (D.1)

where η is the elasticity of the matching function with respect to vacancies, and

ξ denotes the matching efficiency. Matches continue to last for one period.

Upon a match, workers and firms bargain on the wage (define the real wage

by wt) by splitting the total surplus of the match. Firms are heterogenous with

respective to their labor productivity level and would have the incentive to claim

they have the lowest productivity level, γ⋆t , to maximize their surplus. Workers,

therefore cannot identify the productivity level of the matched firm. However,

workers have information on prices and the distribution of productivity levels

across firms, and therefore can obtain the expected value of the matched firm’s

surplus, by inferring the set of firms who posted vacancies (firms whose γj > γ⋆t ,

thus total vacancies vt = ΞL,t = Ξt
∫ γH
γ⋆t

f (γ) dγ), and predicting the relative price

qP,t. Workers then set the expected value of the surplus of firms who participate
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in the labor market to be23

Et [St] =

∫ γH

γ⋆t

[qP,tγ − wt] f(γ)dγ

Et [St] =

∫ γH

γ⋆t

[qP,tγ − wt]
αγαMγ

−α−1

1− γαMγ
−α
H

dγ

Et [St] =

{
α

α− 1
qP,t[γ

⋆ 1−α − γ1−αH ]− wt[γ
⋆−α − γ−αH ]

}
γαM

1− γαMγ
−α
H

.

If individuals are matched with a producer, they get the real wage wt, and

otherwise they receive no income.24 The wage in equilibrium, as a result of the

bargaining, is given by

argmax
wt

= (wt)
τ (Et [St])1−τ

Thus wt = τ
α

α− 1
qP,t

(γ⋆t )
−α+1 − (γH)

−α+1

(γ⋆t )
−α − (γH)−α

Where τ denotes the bargaining power of workers. If we set τ = η = 0.5, then

firms and workers have equal bargaining power and markets are efficient (Hosios

condition). Low values of τ describe an economy in which firms have more bar-

gaining power, thus wages are compressed and firm surpluses are maximized. We

exploit how altering the degree of worker’s bargaining power affects the role of

automation as a treat that depresses wages given an unemployment change.

We can then determine the labor market tightness, and therefore the proba-

bility of filling a vacancy. They are:

θt =
Ξt
∫ γH
γ⋆t

f(γ)dγ

Nt

=
Ξtγ

α
M [(γ⋆t )

−α − (γH)
−α]

Nt(1− γαMγ
−α
H )

qt(θt) = ξ

(
Ξtγ

α
M [(γ⋆t )

−α − (γH)
−α]

Nt(1− γαMγ
−α
H )

)η−1

The value of firm j that enters the labor market is given by

Vj(γj) = ξ

(
Ξtγ

α
M [(γ⋆t )

−α − (γH)
−α]

Nt(1− γαMγ
−α
H )

)η−1(
pPγj − τ

α

α− 1
pP

(γ⋆t )
−α+1 − (γH)

−α+1

(γ⋆t )
−α − (γH)−α

)
−κ

23We assume the distribution of firms is f(γ) =
αγM

αγ−α−1
j

1−γM
αγH

−α , as in the baseline model.
24As in the baseline model, we abstract from unemployment benefits as we assume perfect consumption

insurance within households.

A.19



Finally the expected value of a firm entering in the economy at time t is∫ γ⋆t

γM

(qP,tγM − qM,t − κ) f(γ)dγ +

∫ γH

γ⋆t

[qt(θt) (qP,tγ −Wt)− κ] f(γ)dγ = 0(
1− γαM(γ⋆t )

−α) (pP,tγM − qt) + . . .

. . .+ qt(θt)
α

α− 1
pP,t

(
γαM ((γ⋆)−α+1 − (γH)

−α+1)

(1− γαMγ
−α
H )

)
− . . .

. . .− (qt(θt)W )

(
γαM
(γ⋆t )

α
− γαM

(γH)α

)
= κ

(
1− γαMγ

−α
H

)
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D.1 Equilibrium Conditions

Using the modified equations above, the equilibrium conditions of the model

version featuring random search in the labor market are the following ones:

UC,t = βEt
[
RtUC,t+1

πt+1

]
, (D.2)

Yt = Ct + It +
ϕ

2
(πt − 1)2(Ct + It), (D.3)

(1− ψ)(Ct + It) + ψqP,t(Ct + It)− ϕ(πt − 1)πt(Ct + It) + . . .

· · ·+ βEt
[
UC,t+1

UC,t
ϕ(πt+1 − 1)πt+1(Ct+1 + It+1)

]
= 0, (D.4)

qM,tΞt

∫ γ⋆t

γM

f(γ)dγ = It, (D.5)

γMqP,t − qM,t = qt(θt) (qP,tγ
⋆
t − wt) , (D.6)∫ γ⋆t

γM

(qP,tγM − qM,t − κ) f(γ)dγ + . . .

· · ·+
∫ γH

γ⋆t

[qt(θt) (qP,tγ − wt)− κ] f(γ)dγ = 0, (D.7)

Ξt

(∫ γ⋆t

γM

γMf(γ)dγ +

∫ ∞

γ⋆t

qt(θt)γf(γ)dγ

)
= Yt, (D.8)

qt(θt) = ξ

[
Ξtγ

α
M

(
γ⋆−α − γ−αH

)
Nt(1− γαMγ

−α
H )

]η−1

(D.9)

wt = τ
α

α− 1
qP,t

γ⋆ 1−α − γ1−αH

γ⋆−α − γ−αH
(D.10)

Ntut = Nt − Ξtqt(θt)

(∫ γH

γ⋆t

γf(γ)dγ

)
, (D.11)

Nt =
wtUC,t
λH

. (D.12)
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