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Abstract

How and when do improvements in agricultural productivity translate into development
and structural transformation? An extensive literature has addressed these questions, dating
back to the earliest days of development economics. More recently, a new literature has focused
on generating well-identified empirical evidence in settings where high-quality micro data allows
for the study of local shocks to productivity. Most of this literature has explicitly or implicitly
assumed that labor movements across space are small, such that local productivity shocks drive
within-location movements of labor across sectors. This may be a reasonable restriction for short-
run analyses, but long-run outcomes may be very different due to labor mobility. In this paper,
we draw on rich data that allow us to examine the long-run effects of agricultural productivity
gains on structural transformation, in an environment where spatial mobility of labor is a
potentially important margin of impact. Specifically, we examine irrigation canals constructed
over the last 150 years in India. In the long run, canal areas have substantially higher land
productivity and population density than nearby non-canal areas, consistent with higher
population growth through some combination of natural increase and net in-migration. However,
we see no change in the share of the workforce outside of agriculture (or even in agroprocessing).
Consumption gains have accrued only to landowners, though the landless have made some
education gains. These observations do not necessarily imply that agricultural productivity
increases have little impact on structural transformation. Indeed, we show that structural
transformation instead occurs through higher growth rates in nearby towns. Our findings suggest
that in the long run, agricultural growth may drive structural transformation through these
spatially diffuse processes. We should not necessarily expect to see transformation occurring
within the most agriculturally productive rural areas; instead, labor mobility may produce a new
spatial equilibrium in which labor moves across space rather than across sectors within a location.
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1 Introduction

The link between agricultural productivity and structural transformation has long been a central con-

cern of development economics (Lewis, 1954; Johnston and Mellor, 1961; Mellor, 1986; Schultz, 1964).

Authors such as Johnston and Mellor (1961), echoed later by Mellor (1986) and Timmer (1988), argued

that agricultural productivity growth was an essential precursor for broader structural transformation.

This early literature held that productivity growth in agriculture could have the seemingly paradoxical

effect of shrinking the agricultural sector as a share of the total economy. Building on the insight that

food is an essential good for the poor, agricultural development economists invoked a class of models in

which countries that are unproductive in agriculture must, precisely as a result, devote large shares of

labour and other resources to meet their food needs. T.W. Schultz (1953) referred to this phenomenon

as the ”food problem”. The same mechanism lies at the heart of more recent work such as Gollin et al.

(2007) and Gollin et al. (2002), which relied on non-homothetic preferences as the main driver of struc-

tural transformation. But the link between agricultural productivity growth and structural change is

not simply a product of models with non-homotheticity; it also emerges in other models where pro-

ductivity growth leads to endogenous changes in the relative price of agricultural goods. For instance,

in the model of Ngai and Pissarides (2004), differential productivity growth across sectors leads to

structural change, with the type of change depending on the extent of substitutability between sectors.

However, a conflicting strand of literature has long challenged the conceptual (lower) basis of these

agriculture-driven models of structural change. One critique has been that these models depend heavily

on a closed economy assumption. Implicitly, these models assume that the relative prices of agricultural

and non-agricultural goods are determined endogenously. The key mechanism driving structural

change in Gollin et al. (2007) or Alvarez-Cuadrado and Poschke (2011) is a change in the relative price

of agriculture. But as noted by Matsuyama (1992), relative prices for a tradeable good are exogenous

to a small open economy. To the extent that agricultural goods are tradeable, we should expect

to see increases in productivity pulling resources into agriculture in an open economy when sectoral

productivity rises. In Matsuyama (1992), there is a single input (labor), so increases in agricultural

productivity pull workers into agriculture – precisely the opposite of the mechanism proposed
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by Johnston and Mellor (1961). The same intuition applies in the somewhat more complicated

framework of Bustos et al. (2016), with more than one input into production. In this framework,

agricultural productivity growth will tend to lead to an expansion of the sector, but whether this

increases or reduces the use of labor in agriculture will depend on the factor bias of technical change.

What these two strands of literature both assume, however, is that the responses to agricultural

productivity growth will primarily take place within economies that have fixed endowments of factors.

Agricultural productivity growth induces price changes and the reallocation of existing factors. What

these models lack is any response to the supply of factors. Economies may be open to trade in

goods, but in this literature there is typically no provision for the movement of factors. Neither

labor nor capital flows into economies that experience changes in agricultural productivity.

In this paper, we relax the assumption of limited factor mobility. We consider a setting in which

agricultural productivity growth may drive transformation through the movement of people – not

just across sectors within an economy, but across locations. Specifically, we consider a setting where

spatially distinct rural economies (which we term “municipalities”) are open to human mobility – as is

the case in rural India, where labor movements across locations are commonplace and quantitatively

large, at least in the long run. In this environment, labor mobility may be a primary channel of

adjustment to agricultural productivity growth.

Our work differs from earlier research that assumes low labor mobility, primarily because we

consider much longer time periods. Where much of the existing work implicitly or explicitly assumes

that agricultural productivity shocks do not induce any movements of people across locations (e.g.,

(Foster and Rosenzweig, 1996; Foster and Rosenzweig, 2004b; Foster and Rosenzweig, 2004a; Bustos

et al., 2016; Emerick, 2018; Moscona, 2020)), we find that labor mobility offers an important margin

of adjustment. The analysis we report here focuses on one of the most quantitatively significant

episodes of agricultural productivity change of the past two centuries. Specifically, we study the

long-run effects of investments in the universe of India’s major and medium irrigation canals. This

network of irrigation canals – essentially artificial rivers and streams that carry water into dryland

areas – span thousands of miles and have transformed agricultural productivity in many regions
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of the country. The canal network has been especially important in enabling irrigation during

the relatively dry winter cropping season. Canals were historically the most important source of

irrigation in India, and even in the 21st century, they are the second largest source of irrigation

in India after groundwater. The network of canals that we study in this paper provides irrigation

to agricultural communities with over a quarter billion inhabitants. According to our calculations,

in 2011 fully 52% of rural Indians lived within 10 km of a major or medium canal. Over half of

the canals that we study were built before the 1980s and some are more than 100 years old, making

them ideal for studying long-run responses to major gains in agricultural productivity.

These canals provide an ideal natural experiment for our question because they drive sustained

and large differences in agricultural productivity across otherwise similar locations. We show that,

in the long run, the substantial productivity effects of canals are equilibrated almost entirely through

the movement of labor. In addition to higher land productivity and agricultural expansion on the

extensive margin, rural canal-treated areas experience substantial growth in population density.

However, there are no overall changes in consumption. Structural transformation takes place entirely

through the formation and growth of towns at some distance from canal areas; we estimate a tight

zero on the rural non-agricultural labor share. These results are consistent with a model where labor

mobility is high (in the long run), but towns have some productivity advantage for non-farm work,

such as reduced transport costs to wider markets or agglomeration externalities.

Our analysis proceeds in three parts. First, we obtain causal identification on the direct effects

of irrigation from the physical nature of canals — their placement is determined by engineering

specifications and topography, and water from the canals then flows downhill so that it treats only

lower-elevation locations. Locations a short distance away from a canal but a few meters of elevation

higher than the canal will thus experience no irrigation benefit and will serve as a control group

for the irrigation treatment.1 We exploit this sharp difference in irrigation access in a regression

discontinuity design, where elevation relative to the canal is the running variable.

We find a sharp effect of canal irrigation on agricultural outcomes right at the canal elevation

1In principle, these “control” areas might benefit from recharged groundwater, but we find no evidence of
increased pump irrigation in the control areas.
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boundary. Locations with canal access report greater agricultural land area, with a greater share

of irrigated land and more water-intensive crops planted. A satellite-derived measure of crop yields

suggests that land productivity is substantially higher as well. The yield effects are observed entirely

in the relatively dry winter (Rabi) season: canals improve water access to a second cropping season

but generate no significant differences during the summer (Kharif) growing seasons, when monsoon

rains provide sufficient water.

When we look at socioeconomic outcomes, canal areas have substantially higher population density

than non-canal areas, but no significant difference in the share of workers employed across the

agriculture, manufacturing, and services sectors; nor do we find significant differences in two-digit or

three-digit sectors such as agroprocessing. Canal areas have higher living standards than neighboring

non-canal areas, but this difference is driven entirely by land-owning households. The standardized

effect size of the canal on population density swamps all of the other effect sizes, suggesting that

the productivity effects of canals are primarily equilibrated through labor flows across space, rather

than sectoral reallocation within locations. The main effect of canals is to draw in additional labor

to treated locations, with little effect on the magnitude of the nonfarm sector. These results are

robust to a range of alternate specifications, including an alternate regression discontinuity using

distance to the officially designated command area boundary of the canal.2

We next consider spillovers, which are central to our analysis. Above-canal locations (the control

group above) are likely to be economically integrated with canal locations due to their proximity;

they may trade goods and services with canal areas, and migration may occur across the treatment

boundary, especially in the long run. Given this economic integration, it would be possible for

canals to have large local effects—on wages or non-farm work, for example—without generating any

differential impacts between locations just above and just below the canal. To measure canal treatment

spillovers, we compare both the treated and untreated groups above to a third set of municipalities

2The command area is the engineers’ definition of the total area that theoretically has access to irrigation water
from a given canal. This definition exploits finer details of local topography, but risks endogeneity if command
area boundaries were drawn such that they intentionally include or exclude certain locations. The elevation definition
performs better in terms of balance, but we find similar overall results under either definition. In both definitions,
we exclude locations directly on the treatment border where the spillovers may be greatest and identification of
treatment status is most subject to error.
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that are further from the canal but are otherwise similar in terms of climate, topography, and crop

suitability.3 We call these “distant” locations. Differences between above-canal control locations

and distant locations would be suggestive of direct spillovers across the canal treatment threshold.

The spillover analysis provides support for the identification strategy: distant locations have similar

sources of irrigation, agricultural productivity, and population density to above-canal locations,

suggesting that irrigation access does not spill over the canal boundary, nor does migration. There

are also no spillovers in terms of non-farm work or consumption among the landless; the null effect

of the non-agricultural labor share in the RDD is sustained in the spillover analysis as well. However,

landowners in above-canal areas have higher consumption than landowners in distant areas. Once

spillovers are taken into account, landowners in above-canal areas experience spillover consumption

gains that are about one third of the estimated treatment effect in below-canal areas.

These results suggest that labor supply is elastic across a wide geographic range. If workers could

move only short distances such that all of the new workers in below-canal areas came from nearby

above-canal areas, we might see wages rise in both of these areas relative to distant locations. The

absence of spillover effects suggests that, in the long run, rural India draws upon a much wider labor

market. All this said, the comparison to distant locations is not as well-identified as the differences

between above- and below-canal municipalities, and there could be other omitted variables that

are obscuring large spillover effects.4

Finally, we use historical urban population data to examine changes in urbanization, exploiting the

construction dates of canals in a difference-in-differences setup. In locations close to command areas,

urban population growth rates rise substantially and towns are more likely to emerge in the decades

following canal construction. Structural transformation has thus taken place in the vicinity of the

canal investments, but the growth of non-agricultural economies has taken place in a geographically

concentrated manner, with little effect on the large share of the economy that has remained rural.

3These municipalities are between 15 and 50 km from the nearest canal; we find similar results with alternate
distance choices, suggesting that municipalities 15–50 km from the canal are plausibly not directly affected by the canal.

4For instance, suppose that spillover effects to above-canal municipalities are large, but canal-proximate areas
suffer from some other disadvantage compared with distant municipalities, and these two effects cancel each other
out. However, we do not find large differences in observables between above-canal and distant areas.
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We interpret our results in the context of a model where non-agricultural production can occur

anywhere, but towns have a productivity advantage from agglomeration. In the absence of labor

mobility, Hicks-neutral technical change in agriculture would affect local wages and through them,

the size of the non-agricultural sector.5 This model is a close analog to that used in much of the

prior literature on structural transformation. When we allow for labor mobility across space, the

increased agricultural demand for labor can be met by migrants from other areas, rather than

drawing workers out of manufacturing. Labor mobility thus dampens the link between agricultural

productivity and rural manufacturing. If the pool of available labor from other areas is large, even a

small agglomeration advantage in urban areas is sufficient to attract nearly all non-agricultural firms.

Our results suggest that, in the long run, labor mobility has indeed been the primary mechanism

of adjustment to the increased land productivity associated with canals.

The key contribution of this paper is to study the causal relationship between agricultural

productivity change and structural transformation, with a focus on changes in the long run. Our

findings suggest that the labor mobility channel, which appears small in shorter run studies, may

be dominant in the long run. We also show that the geography of structural transformation is

important: the industrialization effects of agricultural changes arise via growth of urban areas rather

than through a shift of rural workers into rural manufacturing.

This paper extends a substantial literature linking technical change in agriculture to industrialization.

Foster and Rosenzweig (1996) and Foster and Rosenzweig (2004b) studied the impact of the Green

Revolution on structural change and educational attainment in a panel of villages across India,

finding that agricultural gains raised wages and inhibited industrialization. Bustos et al. (2016) found

similar effects of the introduction of a second harvesting season for maize in Brazil, but opposite

effects in soybeans where the agricultural productivity change was labor-augmenting rather than land-

augmenting. We conduct a similar analysis of a major land-augmenting productivity improvement

5Bustos et al. (2016) show that land-augmenting and Hicks-neutral technical change in agriculture increase
competition for workers from manufacturing in such a model, while labor-augmenting technical change can have
the opposite effect. Canals are best thought of as land-augmenting technical change since they effectively make
land available for agriculture for a longer season. We use the Hicks-neutral assumption as it is consistent with the
prior literature and it generates the same outcomes.
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in agriculture, but over a much longer time horizon that permits greater net movement of labor,

and we find much smaller effects on the rural economy. We also find that structural transformation

tends to occur outside the village, and occurs even in response to land-augmenting technical change.

It is notable that much of the prior empirical work has aimed to study competition for workers

between the farm and non-farm sectors in models that shut down the labor mobility channel. This

is partly for the reason that mobility is typically much lower in the short- to medium-run periods

examined in prior studies. Indeed, in an extension of their main results, Bustos et al. (2016) find that

about one-third of the shift out of agricultural employment in soybean areas occurred via migration,

over only a 10-year sample period. Our much longer run analysis suggests that it can be the primary

adjustment channel to agricultural change. Indeed, the very nature of structural transformation around

the world has involved moving billions of people from farms to cities, sometimes across large distances.6

Our results are also consistent with studies finding that the barriers to rural industrialization are

high. Asher and Novosad (2020) and Burlig and Preonas (2021) find that major investments in rural

roads and electrification respectively have limited effects on non-farm activity in India.7 Infrastructure

investments in villages may improve well-being and may motivate in- and out-migration, but are un-

likely to cause substantial changes in manufacturing opportunities in those villages. Our results are also

consistent with long run evidence that the Green Revolution had substantial positive effects on struc-

tural change (Gollin et al., 2021); our analysis suggests that this process may have been driven by the

growth of cities, rather than in the rural areas directly experiencing agricultural productivity change.

Our work also adds to a growing literature estimating the impacts of agricultural innovation, includ-

ing canal irrigation. Jones et al. (2020) study canal irrigation in Rwanda using an elevation-based RD,

with a focus on understanding why households do not completely substitute inputs to canal-irrigated

land. In a concurrent paper, Blakeslee et al. (2021) study canals in India using a command area

6While the idea that permanent migration is rare in India is widespread in the literature, this claim appears
to arise from focusing on the set of rural men who migrate for work. But over 25% of women have changed residence
at least once in their lives, and migration rates for men approach 15% (Kone et al., 2018). Since we only observe
population density in the present, we cannot distinguish migration from other mechanisms of population change.
However, we show that there are at least no contemporary effects on fertility either in below- or above-canal areas.

7Asher and Novosad (2020) find that the main impact of roads is to provide access to larger labor markets outside
the village. This result is suggested by our model, where towns have productivity advantages for non-farm work.
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distance RD similar to our elevation RD specification.8 While they find similar reduced form effects

on population density and (lack of) structural change in canal-irrigated villages, their analysis does

not consider spillovers and is focused primarily on evaluating canals as infrastructure investments,

rather than as drivers of long-run agricultural change.9

Finally, our results echo several findings in other work studying structural transformation. Bustos et

al. (2020) find that land rents were invested in cities, consistent with our finding that agriculture-driven

structural change may largely take place away from the farms directly experiencing productivity

shocks. Our results also echo the predictions of Foster and Rosenzweig (2004a), which suggested that

agricultural productivity shocks have substantially different effects on landowners and the landless,

consistent with our findings.10

Our paper proceeds as follows. Section 2 provides background on India’s irrigation canals. Section

3 describes our conceptual framework for understanding how agricultural productivity gains spill

over into other economic outcomes. Section 5 presents our multiple empirical strategies. Section 4

describes the data sources. Section 6 presents our results. Section 7 concludes.

2 Context

As a semi-arid region with a highly variable monsoon climate, South Asia has long depended on

irrigation for its agricultural productivity. For much of history, this has primarily involved gravity

flow irrigation through canals of various types. It was estimated at that the end of the 19th century,

India’s 12 million hectares of irrigated land amounted to 4 times that of the United States and 6

times that of Egypt (Shah, 2011). The British oversaw the construction of vast canal networks,

often privately funded and yielding high returns until the end of the Raj in 1947. Canals were used

8This is analogous to the secondary identification strategy we use to show robustness of the RD.
9Blakeslee et al. (2021) differ from us in arguing that canals reduce city size directly in their command area.

Our analysis uses a time series of urban populations and finds that new towns emerge in the vicinity of canals; we do
not examine direct effects of irrigated areas on towns, given that some towns may only exist as a result of the canal.

10In the Foster and Rosenzweig (2004a) model, productivity gains in agriculture can raise or lower schooling for
landless individuals. They can lower landless schooling because children of landed households may increase schooling
and exit the low-skill labor market, raising demand for unskilled labor and drawing landless children out of school.
However, increased demand for schooling among the landed can increase the supply of schools, with positive spillover
effects on the landless. Our results are consistent with the second case, in that we find schooling benefits to the
landless, albeit smaller than those to the landed.
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to divert water from India’s major rivers to its arid regions, where they facilitated settlement of

otherwise uninhabitable land, such as with the Punjab Canal Colonies (Douie, 1914).

After gaining independence, the Government of India prioritized canals as it sought to avoid mass

hunger during a period of high population growth (Mukherji, 2016). Later, they were a key part

of the strategy to provide sufficient irrigation for the input-intensive high yield variety crops that

powered India’s Green Revolution.

While groundwater eclipsed canals as India’s preeminent source of irrigation in the 1970s, surface

irrigation remains critical to the livelihoods of millions of farmers across India. In recognition of the

importance of canals, the central government launched the Accelerated Irrigation Benefit Program

(AIBP) in 1997. By 2011 it had spent more than $7.5 billion to help finish stalled large-scale irrigation

projects (Shah, 2011). More recently, states such as Madhya Pradesh have dramatically increased

canal irrigation (at least according to official statistics) through increasing maintenance, distributing

water from tail to head to reduce head-tail disparities, investments in last mile distribution networks,

reducing political interference, and building cooperation with farmer organizations (Shah and

Steinberg, 2016). According to the most recent estimates, canals account for approximately 1/4 of the

net irrigated area in India (Jain et al., 2019), although estimates vary according to the methodology.

We study the long-run impacts of the universe of India’s major and medium canals. Figure 1 plots

the length of such canals completed in each five year bin since 1850. While many canals were built in

the 19th and early 20th century, construction takes off following Indian independence in 1947, although

the post-independence canals are generally shorter than those constructed under the British Raj. By

2012, the main year in which we measure outcomes, 52% of India’s 600,000 villages were within 10 km of

a major or medium irrigation canal, with a median canal construction start year of 1968 and completion

year of 1981 – this paper thus studies the impacts of canals that are generally several decades old.

3 Conceptual Framework

Our paper focuses on India’s rural economy. Our conceptual framework is informed by both quantita-

tive data and extensive qualitative experience. A stylized view is that India’s rural economy consists of

a large number of predominantly local sub-economies that are embedded in a larger national economy.
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Each of the local economies features an expanse of agricultural land, divided into villages, typically

with a larger market town that serves as an economic center. The villages that surround each market

town are mostly small, with an average size of approximately 1000 inhabitants, most of whom work in

agriculture. Agricultural land is in general privately owned and managed. Most farms are small (as dis-

cussed by Foster and Rosenzweig (2017)), and many land owners work on their own land. Farms may

also hire workers from a large pool of landless workers, who comprise the majority of the labor force.

These observed features of the data give shape to our conceptual framework. Our model economy

consists of two spatial units: villages and towns. A region consists of a single town and its surrounding

villages, with their agricultural land. These regions are embedded in a larger economy. Regions

are price takers with respect to the broader economy, although we allow for transport costs that

imply variation in prices across locations. The economy has two goods: an agricultural good and

a non-agricultural composite. Both are tradable, subject to frictions that are described below.

Consumer preferences are defined over the agricultural and non-agricultural goods. As is standard,

we assume a non-homotheticity that implies poor consumers will spend larger shares of their

income on the agricultural good than richer consumers. Preferences over the non-agricultural good

distinguish between goods produced in different locations. Consumers view non-agricultural goods

produced in their own village as closely substitutable with the goods produced in the nearby town.

Non-agricultural goods from the rest of the economy, however, are only weakly substitutable with

local goods. This assumption reflects the fact that the non-agricultural goods include some that

are less than fully tradable (e.g., retail services).

Each village is endowed with an initial population that is divided between land owners and

landless workers. For simplicity, we assume that all villages have the same land area. This means

that average land holdings (i.e., land per land owner) may vary across villages. Similarly, the initial

ratio of laborers to land may vary. Within a region, we assume that land is ex ante homogeneous

in quality across villages. However, we allow for the possibility that land productivity may change

over time, due to the arrival of irrigation canals. Irrigation canals raise agricultural productivity

in “treatment” villages but have no direct effect on productivity in other villages or towns.
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The agricultural good is produced with land and labor, according to a constant returns to scale

technology. As noted, agricultural productivity at the village level depends on the presence of

irrigation canals. The non-agricultural good is produced using only labor, according to a technology

that displays diminishing marginal returns to labor inputs. Non-agricultural productivity varies

across villages and towns. We treat non-agricultural productivity as benefiting from an agglomeration

externality, such that productivity depends on the absolute number of people engaged in non-

agricultural production in the preceding period (to provide some determinacy). This agglomeration

externality implies that towns – which by construction have larger non-agricultural populations

than villages – will have an absolute advantage in non-agricultural production, relative to their

surrounding villages. However, the diminishing marginal returns to labor imply that villages will

undertake some of their own non-agricultural production activity.

We are interested in the impacts of irrigation canals both in the short run and the long run. As

other researchers have argued, labor mobility in rural India faces significant frictions in the short run

(Foster and Rosenzweig, 2007; Munshi and Rosenzweig, 2016) although Foster and Rosenzweig (2007)

find male out-migration from villages of over 20% when considering a longer (17 year) period. Our

conceptual framework thus considers three distinct time periods: a baseline before the construction

of the canals; a short run after canals have been constructed but before labor has adjusted to the

changes in productivity; and a long run in which a spatial equilibrium holds, and in which real

wages are equalized across locations. This long-run labor mobility is a key feature of our theoretical

framework and also of our empirical work. Allowing for labor mobility leads to important differences

relative to the models of Matsuyama (1992) or Bustos et al. (2016).

In our framework, positive agricultural productivity shocks, such as the investments in irrigation

canals studied in this paper, will lead to short-term growth in local demand for land and labor,

driving up wages and land rents, and leading to higher incomes in treated communities for both land

owners and landless workers. However, in the long run, the higher returns to labor are dissipated

due to an influx of workers. Real wages equilibrate for labor, as the mobile factor, and the treated

communities end up with higher population density. Returns to land, the fixed factor, remain higher
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even in the the long run.

The higher incomes of land owners, along with the increased population, lead in treated villages

to higher demand for non-agricultural goods. This is amplified to some degree by the standard

non-homotheticity of preferences, which implies that the land owners spend their increased rents

disproportionately on non-agricultural goods. (In the transition to the spatial equilibrium, there

is also a short-run increase in wages before population growth brings them into spatial equilibrium

with the outside world.)

As in standard models, the increased demand for non-agricultural goods drives structural

transformation (an increase in the share of workers in the non-agricultural sector). But since our local

economies are open to the rest of India, the structural change need not take place within the same

communities that benefit from gains to agricultural productivity. In a frictionless world, the increased

demand for non-agricultural goods could be met by production anywhere. Our model thus takes no

stance on the locations that will experience structural change. We allow for increased production of non-

agricultural goods to take place within villages, nearby towns, and/or the rest of the Indian economy.

What determines the location of structural change? In other words, what determines where we

see a take-off in non-agricultural production activity? In our spatial framework, each local economy

consists of a set of villages that are connected, in a hub-and-spoke arrangement, to a central town.

Trade between villages and towns faces a transport cost friction. Towns are connected to one another

(and to the external Indian economy) frictionlessly. This setup captures the reality that movement

between villages is costly, and towns function as central meeting and marketing places. Within

the local economy, this means that a sale of goods from one village to another would accrue a

double transport cost, relative to a sale between village and town. The model implies that increasing

demand for non-agricultural goods within a region will be met by some combination of production in

villages and in their central town, with the precise allocation depending on the relative productivity

levels, the substitutability of town goods and village goods, and the transport costs between towns

and villages. When town productivity is high and transport costs are low, and town goods are highly

substitutable with village goods, we would expect to see increases in demand met through production
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in the towns. At the other extreme, when town productivity is only slightly higher than village

productivity, and transport costs are high, increases in demand might be met through production

in villages. The model permits both possibilities; it is an empirical question for this paper to see how

increases in demand for non-agricultural goods may lead to structural change in different locations.

4 Data

To estimate the varied impacts of canal irrigation on current local economic outcomes, we assemble

recent high resolution data on the universe of firms, households, and municipalities (villages and towns)

in India. The backbone of our village/town-level dataset contains economic and population data from

the Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG). The SHRUG

creates a village/town-level identifier that is unique across time and space, allowing the merging of dis-

parate datasets (Asher et al., 2021) at a very high spatial resolution. Using the SHRUG, we have com-

bined various national censuses, GIS data on canals, satellite imagery, and a range of other data sources.

The 2011 Population Census contains many of our irrigation, agricultural, and demographic

outcome variables. Village-level land use data allow us to calculate total cultivated land as a share

of total village area and total, tubewell and canal irrigated areas, each as a share of the village’s

total cultivated area. The Population Census also contains the top three crops grown in each village.

If cotton, sugarcane, rice, or paddy are in that list, the village is considered to grow a water-intensive

crop.11 Since municipalities may vary in their physical area, our preferred measure for population

is population density (inhabitants per km2).12

The 2012 Socioeconomic and Caste Census (SECC), for which we have microdata covering every

household in India, gives us a range of economic outcomes at the individual level, which we aggregate

to the municipality level. We predict consumption per capita from household-level asset and earnings

data using the small area estimation methodology of Elbers et al. (2003). We also calculate the

share of the adult population that has achieved at least primary, middle, and secondary education.13

11These agricultural variables are available in the Census Village Directory but not Town Directory, and thus
all analysis using them is restricted to rural areas.

12Population density is calculated using the total municipality population divided by the area of the municipality
GIS polygon shape (area in km2) as opposed to the noisier area reported in the Population Census.

13For a secondary measure of educational attainment, we use the village literacy rate from the Population Census.
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Because the SECC is microdata, we are able to calculate these outcomes by household characteristics,

such as land ownership.

The 2013 Economic Census is a complete enumeration of all nonfarm economic establishments

in India, which we use to calculate non-agricultural activity for each municipality. To calculate

employment as a share of the adult population, we use the total population reported in the Population

Census multiplied by the share of the population over the age of 18.14 We use the National Industrial

Classification codes of firms in the Economic Census to calculate the share of the adult population

specifically employed in the manufacturing, service, and agroprocessing sectors.

In the absence of directly-measured municipality-level agricultural productivity data, we use the

Enhanced Vegetation Index (EVI), a satellite-derived measure of biomass often used as a proxy

for agricultural productivity. We calculate productivity for both the monsoon (Kharif), late May

through early October, and winter (Rabi) season, late December through late March. For each

season, we define the productivity value as the mean of the first six weeks of the season subtracted

from the maximum value reached in the entire season. Taking this difference ensures that we subtract

out the signal from any background vegetation that is non-agricultural and does not contribute

to agricultural productivity. We then take the mean for the years 2011-13 (corresponding to our

other outcome datasets), and log transform to address outliers and ease interpretation of effects.

All spatial data on canals and their command areas comes from the Ministry of Water Resources.

Canal construction dates were obtained from the Management Information System of Water Re-

sources Projects of the Central Water Commission in India, the India Water Resources Information

System (WRIS)15, and manually researched canal construction dates. These dates were merged

with the spatial canal data using canal project code or by canal name.

Using municipality polygon GIS data, we extract the distribution of elevation contained in each

municipality from Shuttle Radar Topography Mission (SRTM) raster data. Following Riley et al.

(1999) and Nunn and Puga (2012), we calculate the ruggedness of a location’s topography using

14As the Population Census only reports age-disaggregated numbers for the population aged 0-6, we estimate
the population aged 0-17 by multiplying the 0-6 population by 18/7 and then subtract that from the total to get
the adult population.

15The database can be found at https://indiawris.gov.in/wris/.
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the Terrain Ruggedness Index (TRI); TRI measures ruggedness as the average square difference

in elevation between a pixel and its eight surrounding pixels, which we average across all pixels in

a municipality. Using these same data, we compute the distance from every municipality centroid

to the nearest canal, command area, river, town, and coast.

For more details on the construction and validation of the predicted consumption and agricultural

productivity proxy variables, please see Asher and Novosad (2020) and Asher et al. (2021).

5 Empirical Strategy

Testing for the long-run impacts of increasing agricultural productivity is challenging because of the

endogeneity of agricultural productivity differences. Large, costly infrastructural investments such as

canals have generally been targeted to areas with political favor and high returns to irrigation. We are

able to estimate the causal effects of such infrastructure due to the high spatial resolution nature of our

data, using regression discontinuity designs to compare outcomes in nearby areas that differ only in

that treatment areas have access to canal irrigation and control areas do not. We employ a secondary

empirical strategy that compares canal areas to more distant areas to assess the extent of local spillovers,

such as in labor markets, from canal villages to proximate areas. Finally, we use a difference-in-

differences design with panel data on town population to test for the effects of canals on urban growth.

5.1 Regression Discontinuity

Our primary strategy exploits the gravity-driven nature of canals. Because water delivery from canal

to field physically depends on gravity, land must be below the canal in terms of elevation to be

able to access water from that canal. Municipalities that are just above the canal will not be able

to access the water.

To measure the relative elevation between a municipality and canal, we calculate elevation measures

for both. For the canal, we select the elevation on the nearest point of a canal to a given municipality.

The municipality is characterized by a distribution of elevation values from pixels inside its polygon.

We select the 5th percentile of the distribution as the point value to define elevation, which strongly

predicts the difference in canal irrigation between treatment and control areas (see Figure A2 for
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a comparison of different potential definitions of elevation).

Equation 5.1 shows the regression discontinuity design (RDD) specification using the relative

elevation strategy. yi is the variable of interest in municipality i and Ti is the dummy variable with a

value of 1 for municipalities below the elevation of the canal. Elevbelowi is the difference in elevation

between a treated municipality and the nearest canal while Elevabovei is the same value for non-treated

municipalities. Geogi is a control for geographic fundamentals (ruggedness and mean rainfall) and

αsubdistrict is the subdistrict fixed effect to ensure villages are only being compared within similar

geographic regions. We cluster standard errors at the subdistrict level to account for spatial correlation.

yi=β1Ti+β2Elev
below
i +β3Elev

above
i +β4Geogi+αsubdistrict+εi (5.1)

For robustness, we estimate the impacts of canals using a secondary regression discontinuity design.

We exploit the boundary of the command area, which is the official geographic region served by

a given canal. If a municipality centroid falls within the command area, it is defined as receiving

canal access while those that fall outside do not. This strategy exploits the variation in the xy-plane

as opposed to the z-axis as in the relative elevation strategy. We expect locations just inside and

outside a command area boundary to be similar, except for the canal access. This strategy is less

clean than our primary strategy as boundaries are drawn endogenously by government officials, who

may seek to favor certain types of municipalities over others.

yi=β1Ti+β2Dist
inside
i +β3Dist

outside
i +β4Geogi+αsegment+ε (5.2)

Equation 5.2 shows the regression discontinuity specification using the command area strategy. yi

is the variable of interest and Ti is the treatment dummy variable with a value of 1 for municipalities

inside the command area. Distinsidei is the distance between the command area boundary and

the treatment municipalities that lie inside the command area, while Distoutsidei is the distance

between untreated municipalities outside the command area and the boundary. Geogi is a control

for geographic fundamentals (ruggedness and rainfall). Command area boundaries are divided into
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fixed, 10km-length segments to which municipalities are matched. αsegment is this 10km segment

fixed effect, ensuring that municipalities are compared over similar geographic regions. We cluster

standard errors at the command-area border-segment level to account for spatial correlation.

There are 539,646 municipalities (villages and towns) in our dataset that contain non-missing

data for the majority of the outcome variables. Table 1 reports summary statistics for the total

sample size and average value of each outcome variable for the full dataset and each sample we

have defined for our analysis. Our full sample retains only canals built before 2012, meaning we

exclude projects that are reported as completed after 2012 or incomplete in the WRIS database at

the time of data collection in 2019. Because these ongoing canal construction projects may already

be delivering water before completion, we drop observations that would have been treated by canals

completed after 2012 from the sample. For the relative elevation strategy, the full sample contains

municipalities within 10km (xy-plane) and within 50m (z-axis) in elevation of the nearest canal. For

the command area strategy, the full sample contains municipalities within 25km of the command

are boundary. For both, we only include fixed effect groups (subdistricts or 10km-segment groups)

that contain at least one village in the treatment group and one village in the control group.

The regression discontinuity design relies on positioning each village along a single dimension, either

elevation or distance, using a single point to characterize its position. In reality, in our full sample,

the median municipality spans 2.1km2 in area and 18m in elevation, meaning there will inevitably be

noise at the boundary: municipalities we classify as treatment will have some portion of their area too

high to be reached by canals, and control municipalities may have some portion of their area below

the canal. We impose a donut hole restriction to prevent the downward bias to our treatment effects

that would come from misclassifying treatment status close to the cutoff. In the donut hole sample,

we drop municipalities within 2.5m of the regression discontinuity cutoff for the relative elevation

strategy and municipalities closer than 2.5km from the boundary for the command area strategy.

Finally, we impose a balance restriction on ruggedness. Ruggedness is our best measure of the

natural, geologic features underlying variability in expected agricultural productivity that could

drive different economic outcomes in canal areas even in the absence of canal irrigation. We create
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a balanced sample that requires a maximum percent difference in average ruggedness between the

treatment and control municipalities in a fixed effect group. For the relative elevation strategy, we

keep subdistricts that have less than a 25% difference in average ruggedness between their treatment

and control municipalities while for the command area strategy we keep border segment groups with

a less than 25% difference. This balanced sample, shown in Table 1, is our preferred sample. We test

the sensitivity of our results to each of these sample selection criteria as shown in Appendix Table A6.

The majority of canal infrastructure in India was built in the 19th or early-mid 20th centuries,

so we do not have consistent, detailed economic or agricultural data on municipalities prior to canal

construction. We thus establish balance in our preferred sample for our preferred (relative elevation)

RDD by testing for discontinuities in natural features of municipalities, which could not be influenced

by canal irrigation, by estimating Equation 5.1 (except without the geographic fundamentals Geog

term). Table 2 presents these results, showing that there are no significant agricultural advantages

in canal treatment municipalities; in fact, for two of the crop suitability measures, canal treatment

municipalities appear to have slightly less natural agricultural potential than control municipalities.

5.2 Testing for spillovers

While the regression discontinuity designs generate discontinuities in access to canal water, it is

possible that control municipalities could, by virtue of their proximity to treatment municipalities,

experience spillover effects either via increased access to irrigation (e.g. through groundwater recharge)

or via market linkages (e.g. increases in labor demand). To test for these effects, we create an

alternative control sample of distant municipalities within each subdistrict that lie at least 15km

from the nearest canal, meaning these municipalities lie 5km farther from the nearest canal than any

treatment or control municipalities in the RDD sample. We compare both treatment and control

municipalities from our RDD sample to these “distant” municipalities, as described in equation 5.3:

yi=βT+βC+Vi+αsubdistrict+εi, (5.3)

where T is a dummy variable for municipalities in the treatment sample and C is a dummy variable
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for municipalities in the RDD control sample, and thus both are estimated relative to the “distant”

municipalities sample. For the analysis treatment and control groups, we limit the sample to those

municipalities which lie 0-10m from the nearest canal in order to focus the comparison on the

municipalities driving our RDD results. The vector of municipality-level geophysical controls Vi

contains average annual rainfall, distance to the nearest river, sugarcane suitability (as modeled

by GAEZ), elevation, ruggedness, and square terms for elevation and ruggedness to ensure that

we are comparing similar municipalities that vary primarily in their proximity to canals. We cluster

standard errors at the subdistrict-level to allow for spatial correlation.

5.3 Town growth through time

The empirical strategies described in the preceding subsections estimate the effects of canals on

rural areas relative to proximate and more distant rural areas, but do not incorporate an alternative

channel by which canals may drive structural transformation: the growth of urban areas in the

proximity of rural areas that experience gains in agricultural productivity. Because we expect such

effects to be regional, the RDDs that produce large differences in agricultural productivity across

short radii are not appropriate. To test for impacts on urbanization, we exploit variation in canal

construction dates and examine growth and emergence of towns in their vicinity. The 2011 Population

Census lists for every town the population of that town, if it was considered urban in that year, for

each census dating back to 1901. Equation 5.4 describes a standard difference-in-difference model to

test whether town growth and emergence are affected by canal construction in the surrounding area:

yi,t=β1T+ζi+νt+εi,t, (5.4)

where yi,t is either an indicator for town existence, or else a measure of town population, ζi is a town

fixed effect and νt is a decade fixed effect. We observe towns once each decade. When yi,t represents

population, we define it as the log of 2000 plus the town population— this defines non-existent

towns just below the average population at which towns first appear in the data. Of the 7,526 towns

present in 2011, only 1,502 existed in 1911.
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For each town we define a catchment area that is a ring with outer radius r and inner radius

r−10 around the town. We define canal treatment T as the percentage of that catchment area

that is overlapped by a command area. We also use an alternate specification that defines T as a

binary treatment variable where T ==1 if any of the town catchment area is covered by a command

area. We report results for various catchment area radii r between 10 and 100km. Standard errors

are clustered at the district level.

6 Results

6.1 The Effects of Canals on Treated Municipalities: Regression Discontinuity

We begin by showing how municipalities below canals benefit from significantly more irrigation than

those above. For these municipalities, 6.9 percentage points more of the land under cultivation is

irrigated (Table 3, Panel A), which corresponds to a 17% gain over control municipalities. Increased

irrigated area is driven entirely by canals, with treatment municipalities gaining 9.2 percentage points

in canal irrigated area, an almost 300% increase compared to control municipalities. No other type

of irrigation contributes to the increased irrigation in municipalities below canals, as municipalities

below canals have no significant difference in tubewell irrigation and or other types of irrigation.16

Panel B in Table 3 shows how canal irrigation brings gains to agricultural outcomes. Municipalities

below canals cultivate 2.8 percentage points more of their total village area, a 5% increase over

control municipalities. The benefits of these increases in irrigation and cultivated area are concen-

trated in the dry season, with treatment municipalities experiencing 7.4% higher Rabi agricultural

productivity than control municipalities. As expected given that canals primarily deliver water

during the dry season, treatment municipalities show no significant increase in monsoon season

(Kharif) productivity; this is further evidence that our treatment is orthogonal to village agricultural

potential. Treatment municipalities are also more likely to grow water-intensive crops and show

16This may reflect competing effects of canals on groundwater irrigation: on the one hand they are thought to often
recharge water tables that supply tubewells (Shah, 2011), but on the other canal irrigation may reduce the demand
for alternate forms of irrigation. Alternately, they recharge the groundwater table but there is no discontinuous access
to groundwater at the elevation of the canal. In Section 6.3 we find that there is no meaningful difference in tubewell
irrigation between above-canal (control) municipalities and villages more distant from canals, which implies that
canals may not be having large effects on groundwater irrigation through water table recharge, at least in our sample.
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higher rates of complementary investments in agriculture, as measured by increased household

ownership of mechanized farm equipment.

Taken together, the preceding results imply that canals have major if unsurprising effects on

agricultural inputs, practices, and productivity. But do these gains translate into an improved

standard of living or growth in non-agricultural sectors? In Panel C we present estimates of the

impacts of canals on population density, nonfarm employment, and predicted consumption. We find

that the only significant effect at the 5% level is on population: by 2011, treatment municipalities

have 13.1% more people per square kilometer than control municipalities. Yet we estimate a tight null

effect on living standards: we can reject a 1.5% increase and -0.5% decrease in predicted consumption

in canal treatment villages with 95% confidence. This may reflect symmetric countervailing forces:

there is less less agricultural land per person (as the growth in land under cultivation is much smaller

than the increase in population), but the land is more productive due to greater access to irrigation.

Testing for impacts on structural transformation, we find no significant effect on the share of the

adult population working in non-agricultural firms generally, nor when we examine employment

broken out into services and manufacturing. Even agroprocessing, which we can precisely identify

using National Industrial Classification codes (e.g. 103: Processing and preserving of fruits and

vegetables), shows no signs of employment growth in canal villages.

Access to canal irrigation does, however, bring increases in human capital, as shown in Panel D

of Table 3. Treatment municipalities show small but precise increases of approximately 1 percentage

point in the share of the adult population that has completed primary, middle, and secondary

school. Consistent with these outcomes derived from the Socioeconomic and Caste Census, treatment

municipalities also show a 1.0 percentage point increase in the literacy rate, as measured by the

Population Census. These results add to a growing body of evidence showing that increases in labor

demand can drive up educational attainment, in contexts as diverse as rural call centers, and rural

roads (Jensen, 2012; Heath and Mobarak, 2015; Adukia et al., 2020).

Figure 3 summarizes the RDD coefficients reported in Table 3, normalized by the standard

deviation of each variable in the control sample. Blue points show the positive, significant normalized
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treatment effects while red points show negative, significant effects. Gray points are not significant at

the 95% confidence level. Regression discontinuity results are also shown in Figure 2, with outcome

variables plotted in elevation bins after residualizing on fixed effects and controls. These figures

offer alternate visualizations of the results in Table 3: there are large discontinuities in irrigation

measures, agricultural outcomes, population, and education at the canal elevation cutoff, but no

significant effects on nonfarm employment or living standards.

Guided by our theory, we test for distributional impacts by estimating treatment effects separately

for households with and without landholdings (Table 4, Figure 4). As discussed in Section 3, in

the long run a spatial equilibrium may hold in which returns to mobile factors such as labor would

equalize across treatment and control municipalities, while returns to fixed factors such as land would

remain permanently higher in locations receiving canal water. In the absence of high resolution

data on land rents and wages, we test for the returns to these factors by testing for the heterogeneity

of canal treatment effects on predicted consumption by household landholding. We first show a

decline in the share of the population that are land owners in treatment municipalities compared

to control municipalities. Average landholdings are lower in treatment municipalities when including

all households but there is no effect when condition on owning land. Taken together with our

earlier results, these findings imply that the landholding population has increased by a small amount

proportional to the increase in agricultural land driven by canal access, but the majority of the

population increase is driven by landless households. Turning to consumption, we find that while

there is no significant effect on consumption for landless households, owners of land have predicted

consumption 1.9% higher in treatment municipalities (4 Panel A), significant at the 1% level and

significantly different than the estimate for landless household consumption. The bottom quintile

of landowners, those owning <1.32 hectares of land, also see no gains in consumption relative to

their peers in nearby municipalities, and we observe the largest predicted consumption gains among

households in the highest quintiles of the landholding distribution (4 Panel B).17 Landowners also

experience larger gains in education attainment, with the landless receiving about one third of the

17We define quintiles in the landholding distribution based on national data, to maintain consistent quintile
boundaries across municipalities.
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benefit in the likelihood of achieving primary, middle, or secondary school education (4 Panel C).

6.2 Robustness

We test for the robustness of our main results in three ways. First, we estimate the effects of

canals using the alternative command area boundary RDD described in Section 5.1, according to

Equation 5.2. While we consider this a secondary identification strategy due to the potentially

endogenous placement on command area boundaries, it is instructive to test whether our results hold

up to a different source of variation. In Panel F of Tables A2, A3, A4, and A5, we present the results

of this estimation. Even more than in the elevation RDD, canal treatment villages in the command

area RDD have a much higher share of agricultural land under irrigation than in the control villages

(12 percentage points, or a 22% increase on a base share of 53%). Effects on agricultural outcomes

are very close in magnitude to the elevation RDD, although in the command area specification

there is also a large effect during the monsoon (Kharif) growing season. While is possible that

this reflects the endogeneity of command area boundaries, as canals are generally not delivering

water during the monsoon season, it is also possible that the local average treatment effect (LATE)

for the command area estimation is different from the relative elevation sample due to different

characteristics of the complier sample. For economic outcomes, the command area strategy again

yields very similar results to the elevation strategy: large effects on population density but small and

insignificant impacts on nonfarm employment and predicted consumption. Finally, for education,

both the elevation and command area strategies yield significant if small effects (1-2 percentage

points) on the share of the population literate and completing primary, middle, and secondary school.

Second, we estimate results for the full and donut-hole samples, for both the elevation and

command area specifications, as described above. Even though the former sample is contaminated

by municipalities close to the regression discontinuity cutoff whose treatment status we are less

confident in, and both samples by municipalities in subdistricts where there is meaningful imbalance in

ruggedness between above- and below-canal municipalities, the estimated results are broadly consistent

with the effects found in our preferred samples (Tables A2, A3, A4, and A5). Treatment is always

associated with significantly more irrigation, land under cultivation, Rabi productivity, population

23



density, and educational attainment. In all elevation RDD specifications, treatment municipalities

grow more water-intensive crops. The null effects on non-farm employment is confirmed in most

samples. All samples produce treatment effects on consumption of under 2%, with significance in some.

Finally, we test for sensitivity of the main outcomes to parameter choice in the preferred elevation

RDD (Table A6). In Panel A, we find that the estimated canal treatment effects on irrigation,

Rabi productivity, population density, and literacy are highly stable across bandwidths from 20m to

75m in elevation relative to the nearest canal, and that all coefficients remain significant at the 1%

level regardless of bandwidth choice. In Panel B, we find that the estimated effects are also stable

across sample restrictions on maximum distance from canal to municipality: reducing the maximum

distance from 10 to 5 km has little effect on the coefficients, nor does increasing the distance to 15km.

6.3 Comparison to more distant municipalities

Our regression discontinuity results cleanly identify the effects of canal irrigation, but only in the con-

text when both treatment and control municipalities are close to canals and to each other. It is possible

that control municipalities experience spillovers via market linkages from canal treatment municipali-

ties, thus biasing the estimated impacts of agricultural productivity gains. In Table 5, we present the

results of Equation 5.3 where we compare both RDD treatment and control municipalities to a sample

of similar but more distant municipalities, controlling for various natural village characteristics.

Considering the coefficients for the treatment sample first, we confirm the main results from the

RDD. Treatment municipalities have much more irrigation (driven by canal irrigation), higher land

under cultivation, and higher Rabi agricultural productivity.18 Treatment municipalities have greater

population density but no more nonfarm jobs per capita. Consumption is higher, with gains much

larger for households with land.

The coefficients for the RDD sample control locations suggest that there may be some local spillovers

from canal treatment to control municipalities. Compared with the sample of more distant locations,

RDD sample control municipalities are not more irrigated or agriculturally productive (Rabi productiv-

18Kharif productivity is actually lower in treatment municipalities than in the alternate control sample, consistent
either with the possibility that canals target less fertile areas or that greater Rabi irrigation induces some substitution
away from Kharif cultivation.
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ity is actually slightly lower, although with marginal significance). However, population densities and

predicted consumption are both somewhat higher than in the distant municipalities. These differences

between canal control and distant municipalities are much smaller than the differences between canal

treatment and distant (approximately one fourth the size in the case of population density and one half

in the case of predicted consumption). We interpret these results through our model. In the absence

of agricultural spillovers to control municipalities (Panel A), the small increases in control municipality

population and living standards are likely the product of local market or marriage linkages to treat-

ment municipalities. That landless consumption is slightly (1 percentage point) higher in canal control

and treatment municipalities than distant municipalities (less than 1/3 the estimated difference of 3.4

percentage points between land owners in canal treatment and distant areas) suggests that while in

the long run landless labor flows across space nearly equalize living standards, spatial frictions prevent

them from entirely erasing differences in consumption even many decades after canal construction.

Figures 5 and 6 show these results alongside the RDD results. The figures compare the RDD

results (Columns 1 and 4) to the difference between the canal treatment and control effects calculated

by Equation 5.3 (Columns 2 and 5), both measuring the difference between treated municipalities and

their nearby control municipalities. Columns 3 and 6 estimate the local spillover effect by estimating

the differences in outcomes between canal control and distant municipalities. That the estimates

in Columns 2 and 5 closely track those in the RDD estimates in Columns 1 and 4 suggest that

this exercise of comparing canal-proximate to canal-distant areas (controlling for natural features)

is likely picking up the causal effect of canals on both canal treatment municipalities (through the

increase in agricultural productivity) and canal control municipalities (through market and marriage

linkages to canal treatment areas).

6.4 The Effects of Canals on Town Growth: Diff-in-Diffs

The increased agricultural productivity experienced by canal-irrigated municipalities does not appear

to drive local economic growth in the non-agricultural sector. However, it is possible that structural

transformation is induced by agricultural gains in the minority of municipalities that are urban

enough to provide the conditions for nonfarm growth. In this section, we test this hypothesis in panel
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data on town populations going back to 1901. Bringing in data on the dates of canal construction

completion, we examine how town growth changes when a canal is built nearby. Figure 7 takes

the set of 2011 town locations that can be observed for 30 years before and after a canal is built

(i.e. towns within 30 km of a canal that is built between 1951 and 1971), and plots their mean log

population. There is a clear trend break around the date of canal construction, indicating that towns

grew much more quickly in the 30 years after nearby canals were built than in the 30 years before.

Our formal estimation uses the difference-in-differences specification described by Equation 5.4,

with results shown in Table 6. Columns 1 through 4 show that towns are more likely to appear in

the Population Census in years following canal construction, controlling for the average rate of town

appearance. This result is robust to defining town appearance as a population greater than either

5,000 or 10,000, and to both a binary canal measure (any command area within a 50 km radius of

a town), or a continuous canal measure (the share of a town’s circular catchment that is in a canal

command area). Columns 5 and 6 demonstrate a significant intensive margin effect of canals on town

log population. The continuous measure suggests that the saturation of an area with canal irrigation

causes a statistically and economically significant 20% increase in the area’s urban population.

How does distance affect the impact of canals on urban growth? Figure 8 plots the diff-in-diff

estimate for various distance rings around town centroids. Across a range of different measures

of urbanization, canals within 10km of towns have the largest effects on urban population growth.

Effects rapidly attenuate with distance from canal to town, but even canals 100km from towns

appear to increase their growth, implying that the increased demand for non-agricultural goods

is met by distant urban production.19 Given that even our maximum distance shows significant

effects, it is likely that we are underestimating the impact of canals on city growth, as firms in cities

across the country (and perhaps even world) may be meeting some of the demand. But the fact

that the largest effects are estimated within 10km says that spatial frictions such as transport costs

may limit the distance at which agricultural productivity translates into structural transformation.

19It is possible that there are other channels not captured by our parsimonious model by which agricultural
productivity growth may contribute to urbanization, such as financing investments migration (Clemens, 2014) or
non-agricultural firms (Bustos et al., 2020).
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7 Conclusion

India’s canal systems provide an ideal testing ground for examining the geographic relationship

between agricultural productivity improvements and structural transformation. Canal irrigation raises

agricultural productivity – and especially the returns to land. A unique feature of canals is they create

sharp spatial changes in agricultural productivity that can persist for decades after they are built.

In the long run, we find that spatial equilibrium is restored primarily through substantial changes

in the size of the laborer population. Decades after the canals were built, there are few differences

in living standards between landless workers in canal and non-canal municipalities. However, struc-

tural transformation has taken place, with towns emerging disproportionately near canal-irrigated

municipalities. Canal-fed agriculture may have competed for labor from the secondary and tertiary

sectors, but that competition was outweighed by other channels.

The limitations of our work arise from the impossibility of measuring labor flows directly in our

context; we observe higher population levels in canal areas, but the data do not tell us from where

these people came. Mobile laborers who settled in canal locations, changes in fertility, or even changes

in exogamous marriage patterns could explain what we observe in equilibrium. Disentangling this

economic history is beyond the scope of this paper but would be valuable in completing the picture.

Many shorter term studies have found that rising agricultural wages can deter or delay indus-

trialization. Our study suggests that, in the long run, these effects may be tempered by changes in

the labor supply. Naturally, it is difficult to compare different contexts in different times and places.

Most of India’s canals were built during the License Raj period, where manufacturing investments

were slow and state-inhibited and may have had difficulties responding to changes in labor demand,

potentially enhancing the role of mobile labor. Whether modern agricultural shocks will be equally

mitigated by labor flows remains an important question for researchers.

Mobile workers pose challenges for applied empirical researchers by violating assumptions of

population stability across treatment and control groups. Yet hundreds of millions of Indians report

living in places other than those of their birth, and there are tens of millions of temporary migrants

on top of those. Our study suggests that this large mobile population is a powerful economic force
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that can affect policy outcomes substantially.
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Table 1: Summary statistics

All Relative Elevation Command Area
India Full Sample Donut Hole Balanced Sample Full Sample Donut Hole Balanced Sample

Sample Size 539,646 260,893 145,119 98,661 251,791 64,996 49,450
Percent Treatment – 83 78 80 27 38 41

Total irrigated area (share of ag. land) 0.466 0.581 0.519 0.539 0.456 0.505 0.545
Canal irrigated area (share of ag. land) 0.132 0.172 0.135 0.130 0.084 0.114 0.117

Tubewell irrigated area (share of ag. land) 0.200 0.262 0.225 0.243 0.218 0.274 0.300
Other irrigated area (share of ag. land) 0.142 0.161 0.177 0.180 0.161 0.124 0.136

Agricultural land (share of total village area) 0.584 0.669 0.632 0.651 0.591 0.639 0.687
Kharif agricultural production, EVI-derived (log) 7.565 7.735 7.706 7.687 7.701 7.663 7.630
Rabi agricultural production, EVI-derived (log) 7.228 7.366 7.285 7.295 7.310 7.352 7.349

Any water intensive crop grown (any) 0.590 0.664 0.620 0.629 0.600 0.660 0.702
Mechanized farming equipment (share of households) 0.047 0.062 0.056 0.062 0.047 0.047 0.051

Population density (log) 5.510 5.736 5.584 5.622 5.518 5.795 5.960
Consumption (log) 9.719 9.747 9.741 9.753 9.694 9.687 9.704

Total nonfarm employment (share of adult pop) 0.091 0.081 0.083 0.083 0.082 0.079 0.072
Services employment (share of adult pop) 0.065 0.057 0.058 0.058 0.057 0.054 0.052

Manufacturing employment (share of adult pop) 0.020 0.020 0.021 0.022 0.019 0.019 0.019

Primary school ed attained (share of adult pop) 0.477 0.502 0.496 0.503 0.457 0.438 0.458
Middle school ed attained (share of adult pop) 0.322 0.341 0.333 0.335 0.304 0.294 0.309

Secondary school ed attained (share of adult pop) 0.198 0.215 0.211 0.212 0.189 0.180 0.190
Literacy rate (literate share of adult pop) 0.568 0.582 0.583 0.588 0.558 0.546 0.556

Notes: There are 539,646 villages and towns in our sample that have data for most relevant variables. The analysis
sample contains all municipalities ≤10km from the nearest canal in distance. For the relative elevation specification,
the analysis sample also requires municipalities to be within ±50m of the nearest canal in elevation. For the command
area specification, the analysis sample requires municipalities to be within 25km of the command area boundary.
Imbalanced fixed effect groups are dropped, meaning any subdistrict or 10km segment groups (for the relative
elevation and command area strategies respectively) that contain no municipalities in either treatment or control
were dropped. The donut hole sample drops all municipalities 0-2.5m from the canal in elevation, using the relative
elevation specification, or within 2.5km of the command area boundary, using the command area specification. The
balanced sample then imposes a balance criteria on ruggedness by dropping all subdistricts in which there is a ≥25%
difference in average ruggedness between treatment and control municipalities for the relative elevation strategy and a
≥25% difference between treatment and control municipalities in 10km segment groups for the command area strategy.
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Table 2: Balance

Panel A. Geophysical parameters

Ruggedness Annual rainfall Distance to coast
avg. 2010-2014 (mm) (km)

Below canal -0.044 -3.226* 0.065
(0.055) (1.709) (0.366)

Control group mean 4.733 1166.497 366.643
Observations 98,553 98,553 98,553
R2 0.570 0.990 1.000

Panel B. Crop suitability

Sugarcane Wetland rice Wheat Maize

Below canal -0.034 0.008 0.003 -0.028
(0.021) (0.015) (0.005) (0.021)

Control group mean 3.425 2.277 0.768 3.312
Observations 98,553 98,553 98,553 98,553
R2 0.880 0.880 0.970 0.890

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table reports the regression discontinuity effect on several outcomes we expect to be balanced following
Equation 5.1, except without the control on ruggedness. Crop suitability measures are taken from the Global
Agro-Ecological Zones model that estimates expected conditions for agricultural production based on climate, soil,
and terrain parameters. Model values for sugarcane, wetland rice, groundnuts, and maize assume that crops have
gravity-fed irrigation and intermediate inputs (e.g. some fertilizer).
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Table 3: Regression discontinuity results for main outcomes

Panel A. Irrigation outcomes

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Below canal 0.069*** 0.092*** -0.006 -0.006
(0.008) (0.006) (0.006) (0.005)

Control group mean 0.436 0.031 0.213 0.198
Observations 89,628 89,467 89,539 88,757
R2 0.610 0.380 0.480 0.640

Panel B. Agriculture outcomes

Agricultural land Kharif (monsoon) Rabi (winter) Water intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of households)

Below canal 0.028*** 0.014 0.074*** 0.027*** 0.004*
(0.005) (0.009) (0.012) (0.009) (0.002)

Control group mean 0.602 7.689 7.210 0.561 0.056
Observations 96,403 97,089 96,792 75,349 92,357
R2 0.610 0.820 0.700 0.720 0.310

Panel C. Economic outcomes

Population Total emp. Services emp. Manuf. emp Consumption
density (log) (share of adult pop.) (share of adult pop.) (share of adult pop.) per capita (log)

Below canal 0.131*** -0.005 -0.004 -0.003* 0.005
(0.017) (0.007) (0.005) (0.002) (0.005)

Control group mean 5.354 0.082 0.057 0.020 9.737
Observations 90,223 90,695 91,022 91,126 92,327
R2 0.460 0.010 0.010 0.040 0.530

Panel D. Education outcomes

At least primary At least middle At least secondary Literacy
(share of adult pop.) (share of adult pop.) (share of adult pop.) (share of pop.)

Below canal 0.012*** 0.012*** 0.009*** 0.010***
(0.003) (0.003) (0.002) (0.002)

Control group mean 0.481 0.316 0.200 0.572
Observations 92,268 92,268 92,268 97,879
R2 0.570 0.560 0.530 0.590

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: Results for all outcome variables each separately obtained following Equation 5.1. The β1 coefficient is reported
in the first row for each variable, with the stars indicating its significance and the standard error below in parentheses.
The control group mean, number of observations with non-missing data for that outcome, and R2 for that regression
are each reported.
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Table 4: Regression discontinuity results for land owners vs. landless

Panel A. Land ownership overview

Land owners Avg. size of land holdings Avg. size of land holdings Consumption (log)
(share of households) (log hectares, all households) (log hectares, land owners) Land owners Landless

Below canal -0.022*** -0.042** 0.002 0.019*** 0.000
(0.005) (0.018) (0.013) (0.005) (0.006)

Control group mean 0.538 0.751 1.499 9.814 9.608
Observations 92,359 89,752 89,718 90,094 89,921
R2 0.460 0.470 0.510 0.560 0.470

Panel B. Consumption distribution

Consumption (log) Consumption (log) Consumption (log) Consumption (log) Consumption (log)
1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile
land holders land holders land holders land holders land holders

Below canal 0.000 0.014** 0.013* 0.021*** 0.028***
(0.005) (0.006) (0.007) (0.007) (0.007)

Control group mean 9.630 9.769 9.808 9.848 9.935
Observations 91,762 81,749 77,301 79,475 74,063
R2 0.500 0.460 0.410 0.420 0.390

Panel C. Education attainment

At least Primary At least Middle At least Secondary
(share of adult pop.) (share of adult pop.) (share of adult pop.)

Land owners Landless Land owners Landless Land owners Landless

Below canal 0.019*** 0.009*** 0.020*** 0.009*** 0.017*** 0.005**
(0.004) (0.004) (0.004) (0.003) (0.003) 0.002

Control group mean 0.521 0.435 0.356 0.271 0.235 0.002
Observations 90,042 89,715 90,042 89,715 90,042 89,715
R2 0.600 0.480 0.580 0.470 0.550 0.420

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: Regression discontinuity results following Equation 5.1 for land owners and the landless. Panel A summarizes
differences in the share of land owners, the size of land owners’ plots, and the overall consumption of land owners and
the landless. Panel B shows the consumption of landowners by quintile of land holding size. The bottom (1st) quintile
are the landowners with plots in the 0-20% range of the national distribution while the top (5th) quintile are those
landowners with total land holdings in the top 80-100% of the national distribution. The quintile break points in
ascending order are 1.32, 2.30, 3.65, and 6.10 acres.
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Table 5: Comparison to distant municipalities

Panel A. Irrigation outcomes

Irrigated Canal irrigated Tubewell irrigated Other irrigated
area (share) area (share) area (share) area (share)

Treat Control Treat Control Treat Control Treat Control

Group 0.064*** -0.002 0.083*** -0.003 0.003 0.004 -0.012 -0.003
(0.027) (0.020) (0.044) (0.026) (0.022) (0.021) (0.020) (0.015)

Control group mean 0.418 0.045 0.209 0.170
Observations 252,262 251,772 252,040 250,394
R2 0.660 0.350 0.520 0.560

Panel B. Agriculture outcomes

Agricultural Kharif ag. prod Rabi ag. prod
land (share) EVI-based (log) EVI-based (log)

Treat Control Treat Control Treat Control

Group 0.030*** 0.004 -0.013 0.002 0.017 -0.031*
(0.022) (0.022) (0.025) (0.020) (0.035) (0.028)

Control group mean 0.595 7.738 7.244
Observations 266,134 279,352 278,800
R2 0.560 0.710 0.620

Panel C. Economic outcomes

Population Total emp. Services emp. Manuf. emp
density (log) (share) (share) (share)

Treat Control Treat Control Treat Control Treat Control

Group 0.111*** 0.025 -0.006 -0.003 -0.005 -0.002 0.001 0.002
(0.020) (0.019) (0.043) (0.028) (0.053) (0.032) (0.030) (0.024)

Control group mean 5.616 0.077 0.053 0.018
Observations 247,406 246,945 248,411 248,743
R2 0.420 0.010 0.000 0.020

Panel D. Living Standards outcomes

Consumption (log) Consumption (log) Consumption (log) Literacy
total land holders landless (share)

Treat Control Treat Control Treat Control Treat Control

Group 0.020*** 0.006 0.040*** 0.014** 0.000 -0.002 0.020*** 0.010***
(0.020) (0.020) (0.019) (0.019) (0.018) (0.018) (0.020) (0.021)

Control group mean 9.679 9.752 9.557 0.561
Observations 258,638 248,156 245,790 271,985
R2 0.480 0.490 0.390 0.540

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: Regression results following Equation 5.3 comparing treatment and control municipalities to distant municipalities
far from the canal. Distant municipalities are defined as municipalities more than 15km away from a canal. The
coefficients on the dummy variables for being in the treatment (below canal) or control (above canal) groups are
reported here.
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Table 6: Effect of canals on urbanization (event study)

Town Existence Town Existence Population
(pop. 5,000) (pop. 10,000) (log)

1 2 3 4 5 6

Any command area in town catchment area 0.014* 0.022** 0.026**
(0.007) (0.009) (0.011)

Share of town catchment area in command area 0.066*** 0.159*** 0.193***
(0.023) (0.032) (0.037)

Lagged Population (log) 0.587*** 0.585***
(0.008) (0.008)

Constant 0.338*** 0.332*** 0.224*** 0.204*** 3.563*** 3.550***
(0.003) (0.004) (0.003) (0.006) (0.062) (0.063)

N 88,632 88,632 88,632 88,632 81,246 81,246
R2 0.70 0.70 0.64 0.64 0.88 0.88
∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows the estimated effect of canal area on town growth as estimated in Equation 5.4. Each column
reports the β1 values for various outcome variables. The outcome variable in columns 1 and 2 is the existence of a
town with population 5,000 or greater as the outcome variable. In columns 3 and 4 the outcome variable is towns
with population 10,000 or greater. Columns 5 and 6 use log population as the outcome variable, assuming that before
towns appear in the time series they have a population of 2,000.



Figure 1: Canal construction through time

Notes: The total length of medium and major canals constructed in India from 1850-2013. The average length of a
project in each 5-year time window is also plotted. Any canals with dates older than 1850 are coded as 1850 while any
canals not completed before 2013 are not included. Note that 217 of the 1442 total canal projects reported, or 9%
of total canal length in the canal shapefile, have an unknown date of completion and are not included in this plot.
Additionally, 236 projects totaling 22% of total canal length in the data were not completed as of 2013 (the last date
of our major outcome variables) and so are not included in this plot.
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Figure 2: Regression discontinuity binscatters for key variables
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Notes: Each figure shows the binned scatterplot relationship between an outcome of interest and the RDD running
variable (elevation relative to the nearest canal), after residualizing on the controls (ruggedness and rainfall) and
subdistrict fixed effects. Treatment municipalities that lie below the canal have negative relative elevation while
untreated municipalities that lie above the canal have positive relative elevation. All regressions were done following
Equation 5.1. The regression discontinuity coefficient (Coef) for each variable is reported with stars indicating the
significance and the standard error in parentheses below. The control group mean is also reported (µc).
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Figure 3: Regression discontinuity coefficients for main outcomes

Notes: This figure shows the regression discontinuity results for our main outcomes using our preferred specification
and following Equation 5.1. Blue points indicate normalized treatment effects above 0, red below zero, and gray
indicates an insignificant result. The normalized treatment effect is calculated by dividing the regression discontinuity
coefficient by the standard deviation of the outcome variable in the sample. Error bars indicate the 95% confidence
interval for each estimate.
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Figure 4: Land ownership outcomes

Notes: This figure shows the regression discontinuity coefficients for outcomes disaggregated by land ownership.
Following Equation 5.1, we estimate the RD coefficients for outcomes based on land ownership status. Error bars
indicate the 95% confidence interval for each estimate.
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Figure 5: RDD and alternate control group analysis results for irrigation and agricultural outcomes

Notes: This figure combines all village-level results for agricultural and irrigation outcomes. Blue points indicate
positive, significant coefficients while red points indicate negative, significant coefficients. Grey points are insignificant.
The left panel shows results using the relative elevation strategy while the right panel shows results using the command
area strategy. Columns 1 and 4 report the main RDD result of each outcome variable as reported in Table 3. Columns
2 and 5 report the difference between the coefficient on Treatment and Control municipalities as calculated by
Equation 5.3. This value is equivalent to the difference between the Treat and Control columns in Table 5. Columns 3
and 6 report the Control column from Table 5, the effect on control municipalities relative to distant municipalities.
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Figure 6: RDD and alternate control group analysis results for economic and education outcomes

Notes: This figure combines all village-level results for economic and education outcomes. Blue points indicate positive,
significant coefficients while red points indicate negative, significant coefficients. Grey points are insignificant. The left
panel shows results using the relative elevation strategy while the right panel shows results using the command area
strategy. Columns 1 and 4 report the main RDD result of each outcome variable as reported in Table 3. Columns 2
and 5 report the difference between the coefficient on Treatment and Control municipalities as calculated by Equation
5.3. This value is equivalent to the difference between the Treat and Control columns in Table 5. Columns 3 and 6
report the Control column from Table 5, the effect on control municipalities relative to distant municipalities.
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Figure 7: Trend break in town population growth after canal construction

Notes: This figure shows the trend break that occurs in town population after canal construction. Towns are aligned
by period, where period 0 is the decade in which a command area first appeared in the town catchment area, with the
30km town radius used in this figure. Period increment 10 indicates 1 decade after the command area appearance
while period increment -10 indicates 1 decade before the first command area appearance.
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Figure 8: Difference in Difference, town population

Notes: This figure shows the effect calculated as β1 in Equation 5.4. Each point shows an individual estimate with its
95% confidence interval. The binary outcome of a town existing, using 5,000, 10,000, and 50,000 population thresholds,
as well as the log of the town population are all estimated as the outcome variable yi,t. Results are clustered by these
outcome variables along the x-axis, with each individual estimate representing a different area ring around the town
with and outer radius r ranging from 10 to 100km, and inner radius 10−r.
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Table A1: Additional RDD outcomes

Municipality is a Town
(likelihood)

Panel A: Relative elevation

Below canal 0.010
(0.006)

Control group mean 0.023
Observations 97,879
R2 0.150

Panel B: Command area

Inside command area 0.008
(0.011)

Control group mean
Observations 49,010
R2 0.210

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: Additional outcomes reported for both the relative elevation and commanda rea boundary specifications.
These results use the balanced sample for each specification.

45



Table A2: Regression discontinuity results for irrigation outcomes for all specifications

Total irrigated area Canal irrigated area Tubewell irrigated area Other irrigated area
(share of ag. land) (share of ag. land) (share of ag. land) (share of ag. land)

Panel A: Relative elevation, full sample

Below canal 0.061*** 0.084*** -0.006 -0.008***
(0.001) (0.001) (0.000) (0.000)

Control group mean 0.434 0.068 0.212 0.159
Observations 243,510 243,186 243,319 241,538
R2 0.640 0.450 0.480 0.570

Panel B: Command area, full sample

Below canal 0.071*** 0.108*** -0.010** -0.015***
(-0.005) (-0.006) (0.000) (0.002)

Control group mean 0.412 0.054 0.212 0.153
Observations 232,601 232,062 232,354 230,738
R2 0.670 0.450 0.540 0.690

Panel C: Relative elevation, donut hole

Below canal 0.075*** 0.104*** -0.007 -0.009**
(0.001) (0.002) (0.000) (0.000)

Control group mean 0.387 0.050 0.180 0.163
Observations 133,195 132,941 133,046 131,567
R2 0.600 0.390 0.490 0.640

Panel D: Command area, donut hole

Below canal 0.133*** 0.193*** -0.025** -0.022**
(-0.001) (-0.001) (-0.002) (0.001)

Control group mean 0.484 0.060 0.299 0.138
Observations 57,540 57,393 57,462 56,934
R2 0.710 0.500 0.570 0.530

Panel E: Relative elevation, balanced sample

Below canal 0.069*** 0.092*** -0.006 -0.006
(0.001) (0.001) (0.000) (0.000)

Control group mean 0.418 0.045 0.209 0.170
Observations 89,628 89,467 89,539 88,757
R2 0.610 0.380 0.480 0.640

Panel F: Command area, balanced sample

Below canal 0.120*** 0.155*** -0.004 -0.021*
(-0.001) (-0.002) (-0.002) (0.002)

Control group mean 0.534 0.063 0.332 0.156
Observations 43,342 43,267 43,311 42,850
R2 0.730 0.510 0.570 0.520

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: The full sample, reported in panels A and B, contains all municipalities ≤10km from the nearest canal in
distance and ±50m from the nearest canal in elevation for the relative elevation strategy. For the command area
strategy, municipalities must be within 25km of the command area boundary. The donut hole sample drops all
municipalities 0-2.5m from the canal for the relative elevation strategy (Panel C) or within 2.5km of the command
area boundary for the command area strategy (Panel D). The balanced sample, shown in panels E and F, then
imposes a balance criteria on ruggedness by dropping all subdistricts in which the there is a ≥25% difference in
average ruggedness between treatment and control municipalities for the elevation specification, and all 10km segment
groups with ≥25% difference for the command area specification. Panel E is our preferred specification.
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Table A3: Regression discontinuity results for agricultural outcomes for all specifications

Agricultural land Kharif (monsoon) Rabi (winter) Water intensive Mechanized farm equip.
(share of village area) ag. prod (log) ag. prod (log) crops (any) (share of households)

Panel A: Relative elevation, full sample

Below canal 0.032*** 0.025*** 0.051*** 0.028*** 0.003**
(0.002) (0.003) (0.002) (0.001) (0.000)

Control group mean 0.593 7.744 7.268 0.697 0.043
Observations 255,083 257,253 255,368 203,904 244,668
R2 0.580 0.790 0.710 0.720 0.340

Panel B: Command area, full sample

Below canal 0.047*** 0.055*** 0.057*** 0.017*** 0.003***
(-0.003) (-0.015) (-0.005) (-0.002) (0.000)

Control group mean 0.581 7.700 7.312 0.675 0.040
Observations 245,872 248,131 247,414 198,080 235,445
R2 0.590 0.800 0.700 0.780 0.300

Panel C: Relative elevation, donut hole

Below canal 0.041*** 0.023*** 0.068*** 0.028*** 0.006***
(0.002) (0.003) (0.002) (0.000) (0.000)

Control group mean 0.565 7.735 7.234 0.672 0.039
Observations 141,755 142,862 142,378 109,864 135,980
R2 0.580 0.810 0.680 0.740 0.310

Panel D: Command area, donut hole

Below canal 0.048*** 0.125*** 0.100*** 0.031 0.006**
(-0.001) (-0.003) (0.001) (-0.002) (0.000)

Control group mean 0.624 7.639 7.378 0.755 0.043
Observations 63,536 64,153 64,010 54,067 60,573
R2 0.690 0.790 0.770 0.800 0.350

Panel E: Relative elevation, balanced sample

Below canal 0.028*** 0.014 0.074*** 0.027*** 0.004*
(0.002) (0.003) (0.002) (0.001) (0.000)

Control group mean 0.595 7.738 7.244 0.648 0.047
Observations 96,403 97,089 96,792 75,349 92,357
R2 0.610 0.820 0.700 0.720 0.310

Panel F: Command area, balanced sample

Below canal 0.027** 0.147*** 0.061** 0.028 0.008**
(0.000) (-0.003) (0.001) (-0.002) (0.000)

Control group mean 0.655 7.610 7.389 0.783 0.047
Observations 48,307 48,811 48,699 41,788 46,124
R2 0.720 0.800 0.790 0.770 0.350

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: The full sample, reported in panels A and B, contains all municipalities ≤10km from the nearest canal in
distance and ±50m from the nearest canal in elevation for the relative elevation strategy. For the command area
strategy, municipalities must be within 25km of the command area boundary. The donut hole sample drops all
municipalities 0-2.5m from the canal for the relative elevation strategy (Panel C) or within 2.5km of the command
area boundary for the command area strategy (Panel D). The balanced sample, shown in panels E and F, then
imposes a balance criteria on ruggedness by dropping all subdistricts in which the there is a ≥25% difference in
average ruggedness between treatment and control municipalities for the elevation specification, and all 10km segment
groups with ≥25% difference for the command area specification. Panel E is our preferred specification.
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Table A4: Regression discontinuity results for economic outcomes for all specifications

Population Total emp. Services emp. Manuf. emp Consumption
density (log) (share of adult pop.) (share of adult pop.) (share of adult pop.) per capita (log)

Panel A: Relative elevation, full sample

Below canal 0.100*** -0.004 -0.002 -0.002** 0.009***
(0.004) (0.000) (0.000) (0.000) (0.000)

Control group mean 5.690 0.083 0.056 0.019 9.662
Observations 235,840 237,477 238,355 238,745 244,570
R2 0.510 0.020 0.010 0.060 0.530

Panel B: Command area, full sample

Below canal 0.139*** 0.001 0.003 -0.001 0.019***
(-0.011) (0.001) (0.001) (0.000) (-0.002)

Control group mean 5.712 0.081 0.055 0.018 9.646
Observations 226,560 227,426 228,553 228,870 235,379
R2 0.520 0.060 0.020 0.130 0.550

Panel C: Relative elevation, donut hole

Below canal 0.144*** -0.002 -0.001 -0.001 0.014***
(0.004) (0.000) (0.000) (0.000) (0.000)

Control group mean 5.567 0.083 0.056 0.019 9.654
Observations 133,180 132,703 133,264 133,449 135,943
R2 0.440 0.010 0.010 0.050 0.530

Panel D: Command area, donut hole

Below canal 0.190*** 0.016 0.013 0.001 0.019
(0.001) (0.003) (0.003) (0.000) (-0.001)

Control group mean 6.021 0.078 0.053 0.018 9.645
Observations 56,403 58,777 59,033 59,116 60,551
R2 0.640 0.020 0.010 0.080 0.570

Panel E: Relative elevation, balanced sample

Below canal 0.131*** -0.005 -0.004 -0.003* 0.005
(0.004) (-0.001) (0.000) (0.000) (0.000)

Control group mean 5.616 0.077 0.053 0.018 9.679
Observations 90,223 90,695 91,022 91,126 92,327
R2 0.460 0.010 0.010 0.040 0.530

Panel F: Command area, balanced sample

Below canal 0.175*** 0.017 0.016 0.002 0.017*
(0.002) (0.003) (0.003) (0.000) (-0.001)

Control group mean 6.186 0.070 0.051 0.019 9.664
Observations 42,402 44,895 45,005 45,071 46,104
R2 0.640 0.020 0.020 0.050 0.560

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: The full sample, reported in panels A and B, contains all municipalities ≤10km from the nearest canal in
distance and ±50m from the nearest canal in elevation for the relative elevation strategy. For the command area
strategy, municipalities must be within 25km of the command area boundary. The donut hole sample drops all
municipalities 0-2.5m from the canal for the relative elevation strategy (Panel C) or within 2.5km of the command
area boundary for the command area strategy (Panel D). The balanced sample, shown in panels E and F, then
imposes a balance criteria on ruggedness by dropping all subdistricts in which the there is a ≥30% difference in
average ruggedness between treatment and control municipalities for the elevation specification, and all 10km segment
groups with ≥25% difference for the command area specification. Panel E is our preferred specification.
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Table A5: Regression discontinuity results for education outcomes for all specifications

At least primary At least middle At least secondary Literacy
(share of adult pop.) (share of adult pop.) (share of adult pop.) (share of pop.)

Panel A: Relative elevation, full sample

Below canal 0.015*** 0.015*** 0.011*** 0.008***
(0.001) (0.000) (0.000) (0.000)

Control group mean 0.464 0.309 0.187 0.554
Observations 244,447 244,447 244,447 258,854
R2 0.580 0.560 0.520 0.590

Panel B: Command area, full sample

Below canal 0.015*** 0.015*** 0.013*** 0.009***
(-0.002) (-0.002) (-0.002) (-0.002)

Control group mean 0.454 0.305 0.183 0.549
Observations 235,267 235,267 235,267 249,890
R2 0.610 0.580 0.540 0.620

Panel C: Relative elevation, donut hole

Below canal 0.021*** 0.020*** 0.015*** 0.013***
(0.001) (0.000) (0.000) (0.000)

Control group mean 0.450 0.297 0.179 0.547
Observations 135,862 135,862 135,862 143,990
R2 0.590 0.580 0.540 0.600

Panel D: Command area, donut hole

Below canal 0.025*** 0.024*** 0.023*** 0.019***
(-0.001) (-0.001) (0.000) (0.000)

Control group mean 0.450 0.304 0.176 0.548
Observations 60,518 60,518 60,518 64,416
R2 0.640 0.610 0.570 0.670

Panel E: Relative elevation, balanced sample

Below canal 0.012*** 0.012*** 0.009*** 0.010***
(0.001) (0.000) (0.000) (0.000)

Control group mean 0.469 0.312 0.190 0.561
Observations 92,268 92,268 92,268 97,879
R2 0.570 0.560 0.530 0.590

Panel F: Command area, balanced sample

Below canal 0.021*** 0.021*** 0.021*** 0.019***
(-0.001) (-0.001) (0.000) (0.000)

Control group mean 0.471 0.322 0.187 0.562
Observations 46,081 46,081 46,081 48,969
R2 0.650 0.620 0.570 0.680

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: The full sample, reported in panels A and B, contains all municipalities ≤10km from the nearest canal in
distance and ±50m from the nearest canal in elevation for the relative elevation strategy. For the command area
strategy, municipalities must be within 25km of the command area boundary. The donut hole sample drops all
municipalities 0-2.5m from the canal for the relative elevation strategy (Panel C) or within 2.5km of the command
area boundary for the command area strategy (Panel D). The balanced sample, shown in panels E and F, then
imposes a balance criteria on ruggedness by dropping all subdistricts in which the there is a ≥25% difference in
average ruggedness between treatment and control municipalities for the elevation specification, and all 10km segment
groups with ≥25% difference for the command area specification. Panel E is our preferred specification.
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Table A6: Sensitivity to bandwidth and canal distance

Panel A. Regression discontinuity bandwidth

Bandwidth Total irrigated area Rabi (winter) Population Literacy Balance Sample size
(m) (share of ag. land) ag. prod (log) density (log) (share of pop.) (ruggedness)

15 0.064*** 0.037** 0.077*** 0.005* 0.124 81,389
(0.010) (0.016) (0.024) (0.003) (0.146)

25 0.064*** 0.057*** 0.100*** 0.009*** -0.050 95,863
(0.008) (0.012) (0.018) (0.002) (0.059)

50 0.068*** 0.080*** 0.131*** 0.010*** -0.044 98,553
(0.008) (0.012) (0.017) (0.002) (0.055)

75 0.072*** 0.074*** 0.139*** 0.010*** -0.084 98,572
(0.008) (0.012) (0.017) (0.002) (0.054)

Panel B. Percent difference in ruggedness

Percent difference in ruggedness Total irrigated area Rabi (winter) Population Literacy Balance Sample size
(km) (share of ag. land) ag. prod (log) density (log) (share of pop.) (ruggedness)

10% 0.063*** 0.056*** 0.119*** 0.007** -0.030 58,480
(0.011) (0.016) (0.022) (0.003) (0.039)

25% 0.069*** 0.074*** 0.131*** 0.010*** -0.044 98,553
(0.008) (0.012) (0.017) (0.002) (0.055)

50% 0.072*** 0.070*** 0.138*** 0.011*** -0.209*** 126,371
(0.007) (0.011) (0.015) (0.002) (0.052)

Panel C. Distance to Canal

Max distance to canal Total irrigated area Rabi (winter) Population Literacy Balance Sample size
(km) (share of ag. land) ag. prod (log) density (log) (share of pop.) (ruggedness)

5 0.080*** 0.071*** 0.155*** 0.008*** -0.034 64,307
(0.011) (0.016) (0.021) (0.003) (0.053)

10 0.069*** 0.074*** 0.131*** 0.010*** -0.044 98,553
(0.008) (0.012) (0.017) (0.002) (0.055)

15 0.066*** 0.077*** 0.117*** 0.002 -0.066 121,636
(0.007) (0.011) (0.015) (0.007) (0.042)

∗p<0.10,∗∗p<0.05,∗∗∗p<0.01

Notes: This table shows the sensitivity of our major results to changes in the construction of our sample. Each
panel shows the results if one assumption were to be changed. The bolded parameters indicate the values used
in our preferred sample. These preferred values are used for the two parameters not being tested in each panel.
In panel A, we modify the bandwidth of the regression discontinuity where 50m would include municipalities that
lie 50m above to 50m below the nearest canal. Here we test 15m, 25m, and 75m bandwidths in addition to our
preferred 50m bandwidth. In panel B, we modify the threshold allowed for the average difference in ruggedness
between treatment and control municipalities for each fixed effect group. We test 10% (more strict) and 50% (less
strict) in addition to our preferred 25% threshold. Lastly in panel C we modify the maximum distance a village
may lie away from the nearest canal. Here we test 5km and 15km in addition to our preferred 10km.
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Figure A1: Illustrating village assignment by command areas.

Notes: This map shows a region in Southwestern India to illustrate the command area data. Village polygons are in
gray, with subdistricts outlined in yellow. The command areas are in purple with the canals themselves are the blue
lines. Municipalities that fall within the command area are considered treated, while those outside are the control
municipalities.
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Figure A2: Calculating the relative elevation of each village.

Notes: Each line in this figure uses a different moment of the distribution of elevation in a village polygon to define
the relative elevation between that village and the nearest canal. The elevation of the nearest canals is parameterized
by the elevation of the single closest point. Share of agricultural land irrigated by canal is on the y-axis. Relative
elevation is plotted on the x-axis, with negative relative elevation indicating municipalities below the canal. We select
the 5th percentile to define village elevation.
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