ECONOMIC DEVELOPMENT, THE NUTRITION TRAP AND CARDIOMETABOLIC DISEASE*

Nancy Luke† Kaivan Munshi‡ Anu Mary Oommen§ Swapnil Singh¶

January 14, 2019

Abstract

This research provides a unified explanation for two stylized facts: (i) the relatively weak relationship between nutritional status and income in developing countries, and (ii) the increased prevalence of cardiometabolic disease (diabetes, hypertension, cardiovascular disease) among normal weight individuals with economic development. Our explanation is based on an epigenetically determined set point for body weight or BMI, which is adapted to economic conditions in the pre-modern economy, but which subsequently fails to adjust to rapid economic change. Thus, during the process of development, the population consists of two types of individuals: those who remain at their set point BMI, despite the increase in their consumption, and those who have escaped the nutrition trap and are at elevated risk of cardiometabolic disease. To test this theory, we develop a model of nutrition and health in which the presence of a set point is taken as given. The cross-sectional implications of the model, and the dynamic structural relationships underlying the model, are validated with micro data from multiple countries; India, Indonesia, and Ghana. In addition, the model is adapted to macro data, allowing us to explain differences in the nutritional status-income relationship and the diabetes-BMI relationship between Asia and Africa. Our structural estimates and counter-factual simulations for India, a country where both stylized facts have been well documented, indicate that stunting among 5-19 year olds would have declined by 30% and the fraction of underweight adults (with a BMI below 18.5) would have declined by 50% in the absence of the set point. The set point simultaneously generates a discontinuous increase in the risk of cardiometabolic disease (for those who have escaped the nutrition trap) at a BMI that is well within the normal range.

*We are grateful to Seema Jayachandran and numerous seminar participants for their constructive comments. Research support from the National Institutes of Health through grant R01-HD046940, the Keynes Fund at the University of Cambridge, and Cambridge-INET is gratefully acknowledged. We are responsible for any errors that may remain.

†Pennsylvania State University
‡University of Cambridge
§Christian Medical College, Vellore
¶Bank of Lithuania
1 Introduction

Two stylized facts motivate our research: First, the relatively weak relationship between nutritional status and income in developing countries; both across countries (Deaton, 2007) and within country over time (Deaton and Drèze, 2009). Second, the increased prevalence of cardiometabolic disease among normal weight individuals with economic development (Narayan, 2016). Take India, for example, a country which has received much attention in the nutrition and health literatures. India has experienced substantial economic growth and sharp declines in the prevalence of poverty in recent decades. Nevertheless, a surprisingly large fraction of its population remains malnourished, while, simultaneously, the incidence of diabetes and related metabolic disorders (hypertension and cardiovascular disease) has increased dramatically. There is an erroneous belief that the rapid increase in diabetes in countries like India is due to increased obesity; e.g. Diamond (2011). While obesity may well end up being the primary contributor to diabetes in these countries in the long run, once they have developed, we will see below, using nationally representative data, that a relatively small fraction of the population is currently obese and that the risk of diabetes starts to increase at a BMI level that is well within the normal range.

Our unified explanation for why malnutrition stubbornly persists, even as cardiometabolic diseases emerge with economic development, is inspired by an economics literature on poverty traps; e.g. Dasgupta and Ray (1986), Galor and Zeira (1993), Banerjee and Newman (1993), but is based on a biologically determined “nutrition trap”. A growing biomedical literature; e.g. Müller et al. (2010), Farooqi (2014), posits that there exists a predetermined set point for each individual’s body weight or BMI, with metabolic and hormonal adjustments defending the set point against variations in energy intake (food consumption) over the life-course. In general, the set point is determined by genetics, the environment in early life, and epigenetics. We focus on the epigenetic mechanism, in which genes interact with the environment over many generations to create physical traits (phenotypes) that are adapted to the environment, because these traits will persist after the conditions that gave rise to them have ceased to be relevant. As seen below, this combination of initial adaptation and subsequent persistence is a key ingredient in our analysis.\(^1\)

Developing countries were characterized by low and fluctuating food supply for centuries, with economic conditions only improving relatively recently. Given the physiological cost of fluctuating body weight, and given low levels of consumption on average, the set point would have been optimally set at a low BMI; i.e. the population would have been characterized by a lean body type (Narayan, 2016). With economic development, consumption will increase, but the individual’s body will defend its inherited BMI set point against these increases in consumption, just as her ancestors’ bodies adjusted to fluctuations in food supply in the premodern economy. We posit that once the mismatch between current and ancestral income (consumption) crosses a threshold, the body will no longer be able to defend the set point. The individual’s BMI will now track more closely with current income, but because the metabolic load now exceeds the metabolic capacity, there will be in tandem an increased risk of cardiometabolic disease (Wells et al., 2016).

The preceding discussion indicates that during the process of development, the population will be par-

\(^1\)In contrast, changes to the set point through genetic modification require thousands of years, while adaptation to the environment (without genetic involvement) is relatively flexible but not heritable.
Partitioned into two distinct groups: Individuals in the first group remain at their BMI set point, despite the increase in their consumption, and are responsible (in part) for the weak observed relationship between nutritional status and current income in developing countries. Individuals in the second group, who have escaped the nutrition trap, are the primary contributors to the increased incidence of cardiometabolic disease that accompanies economic development. This partition of the population is only temporary. While our framework has an important feature in common with poverty-trap models – the presence of a threshold – the difference is that in the long-run the entire population will escape the nutrition trap. The biological friction that we incorporate is perhaps more closely related to models of institutional adaptation and persistence. For example, Munshi and Rosenzweig (2006) describe how community networks, which emerged in response to labor market imperfections in the pre-modern economy, can generate a dynamic inefficiency because they fail to respond flexibly to subsequent structural change. In the current analysis, the human body adapts to the environment in the pre-modern economy, which was stable for many centuries, but then fails to adjust to rapid economic development, resulting in the persistence of malnutrition and the emergence of cardiometabolic disease.

To provide empirical support for our theory, we begin by developing a model of nutrition and health in which the existence of a predetermined BMI set point for each individual is taken as given. This set point is determined by the income (consumption) of the individual’s ancestors in the pre-modern economy, which is period 0 in the model. Starting from period 1, which denotes the onset of economic development, each dynasty receives an income shock in each period, which can be positive or negative, but is positive on average. With the accumulation of income shocks over time, dynasties gradually drift away from their initial income level. However, as long as current income remains sufficiently close to ancestral income, a dynasty’s members will continue to remain at their BMI set point. This will only change when the gap between current income and ancestral income crosses a threshold; BMI will now be determined by current income and there will be a discrete increase in nutritional status. Accompanying this escape from the nutrition trap will be an increased risk of cardiometabolic disease.

Our theory, based on an epigenetically determined set point, has many features in common with Barker’s (1995) influential fetal origins hypothesis, but there are also important differences. In Barker’s framework, the set point is determined in each generation by the environment (nutrition) in utero. Studies by Barker and his colleagues, and the rich literature in economics that has advanced the fetal origins hypothesis (see Almond and Currie (2011), and Almond et al. (2018), for comprehensive overviews) has exploited random shocks to the intra-uterine environment; for example, due to famines, for identification. A robust finding from the biomedical fetal origins literature is that a combination of (accidentally) low birth weight; i.e. a low BMI set point, and high adult BMI puts individuals at greatest risk of cardiometabolic disease. In our model, the set point for a given dynasty is determined by economic conditions over hundreds of years in the pre-modern economy. The “health shock” in our model is economic development, which causes an increasing fraction of the population to escape its epigenetically determined set point over time. An individual who has escaped her set point in a developing economy faces a health risk that is similar to the risk faced by a low birth weight individual in an advanced economy (who will inevitably escape his set point). Drawing
on the findings of Barker and his colleagues, we thus specify that the risk of cardiometabolic disease is increasing in the mismatch between current income, which determines current BMI, and ancestral income, which determines the BMI set point, for those who have escaped the nutrition trap.

If data on income, BMI, and cardiometabolic disease were available for each dynasty over many generations, then we could test the structural relationships specified above directly. For a given dynasty, we would expect to observe a discrete increase in BMI in a particular generation (in which the gap between current and ancestral income exceeded the threshold) with an accompanying increase in the incidence of cardiometabolic disease. Given that information on ancestral income is unavailable in standard data sets, what we do, instead, is to derive the cross-sectional relationships between current income and both nutritional status and the risk of cardiometabolic disease. This requires us to place additional structure on the distribution of income shocks; following standard convention, we assume that these shocks are log-normally distributed. Given this distributional assumption, we can prove the following result: (i) Although nutritional status is increasing in current income at all income levels, there is a discontinuous increase in the slope of the relationship at a particular income threshold. Households below the threshold remain at their set point, which is determined by ancestral income. This is why there is a relatively weak relationship between nutritional status and current income for them. (ii) The risk of cardiometabolic disease is constant below the threshold, and increasing in income above the threshold.

We use nationally representative household data from the India Human Development Survey (IHDS) to test the preceding implications of our model. Our main result is that the nutritional status-income relationship (separately for children and adults) and the disease-income relationship are precisely as predicted by the model.\(^2\) The presence of a slope discontinuity, which we detect formally using Hansen’s (2017) threshold test, is indicative of a set point. The weak relationship between nutritional status and household income below the estimated threshold, which is located close to the median income level in the population, can explain (in part) the first stylized fact. The steep increase in the probability of cardiometabolic disease with income above the same threshold helps explain the second stylized fact.

Although our model and the accompanying empirical tests provide an internally consistent and unified explanation for both stylized facts, we must still account for other independent determinants of nutritional status and cardiometabolic disease. The estimating equations include a rich set of covariates, which account for the effect of son preference on nutritional status, as documented by Jayachandran and Pande (2017), as well as spatial variation in food tastes (Atkin, 2013, 2016) and the disease environment (Duh and Spears, 2017; Spears et al., 2013; Dandona et al., 2017). In addition, we use IHDS data to examine the possibility that our results are being driven by variation in two proximate determinants of nutritional status discussed by Deaton (2007) – nutrient intake and the disease environment – with income. In contrast with the nonlinear income effect that we estimate with nutritional status and the probability of cardiometabolic disease as outcomes, there is a positive and continuous relationship between nutrient intake and household income and a negative and continuous relationship between childhood illness and household income. This is confirmed by Hansen’s

\(^2\)Nutritional status is measured by height-for-age for children and BMI for adults in the empirical analysis. Alternative measures, based on weight-for-age for children and height for adults, deliver similar results.
threshold test, which fails to detect a slope discontinuity with these outcomes.\(^3\)

It is difficult to come up with an alternative explanation for the discontinuous income effects that are predicted by our model, with a slope-change at the same income threshold for nutritional status and the risk of cardiometabolic disease. Nevertheless, to provide additional independent support for the presence of a BMI set point, we proceed to directly estimate the structural relationships that underlie the model. Recall that nutritional status is determined by ancestral income, which determines the set point, below the income threshold and by current income above the threshold. We cannot test these relationships with standard data sets, including the IHDS, but this is possible with unique data we have recently collected as part of the South India Community Health Study (SICHS). The key features of the SICHS data, described in detail in Borker et al. (2018), are a census of the study area covering a population of 1.1 million individuals in rural Tamil Nadu, a detailed survey of 5,000 households that are representative of the study area, and historical revenue tax records for all villages in the region (extending beyond the study area) collected from the British Library in London. As shown below, current household income from the SICHS census, information on marriages over two generations from the SICHS survey, and the 1871 village revenue tax per acre of cultivated land obtained from the colonial records, taken together, can be used to construct measures of ancestral wealth (or permanent income) on both the paternal and the maternal line.\(^4\) We estimate the relationship between adult BMI and household income, separately above and below the estimated income threshold, including current income and ancestral income (on the maternal line) in the estimating equation. The striking result is that ancestral income alone matters below the threshold, whereas current income alone matters above it. Our research advances the biomedical literature by demonstrating that the epigenetically determined set point is adaptive; i.e. determined by historically stable economic conditions in the ancestral village, and persistent; crossing multiple generations. The additional finding from our research is that epigenetic transmission of nutritional status occurs exclusively through the female line; adding ancestral income on the paternal line to the estimating equation has no effect on the results.

The presence of a set point is evidently not unique to India. To assess the external validity of our theory, we test the model with micro-data from other countries. To be comparable with the analysis using IHDS and SICHS data, the same set of outcomes and covariates must be available. A search of publicly available data recovered just two data sets that satisfy this requirement: the Indonesia Family Life Survey (IFLS) and the Ghana Socioeconomic Panel Survey (GSPS). The results with the IFLS match almost exactly with what we obtain with Indian data; there is a nonlinear relationship between household income and each outcome – children’s nutritional status, adult nutritional status, and the risk of cardiometabolic disease – with a slope-change at a precisely estimated threshold. In contrast, there is a positive and continuous relationship between household income and nutritional status – for children and adults – with the Ghanaian data (information on adverse health conditions is not available in the GSPS). To interpret these findings, it is important to recognize that while a set point may be present in other countries, the fraction of the population that has

\(^3\)As a supplemental check, we examine, and rule out, the possibility that selective child mortality can explain the observed discontinuous relationship between children’s nutritional status and household income.

\(^4\)As shown below, ancestral income on the male line is measured by 1871 income in the individual’s natal village, while ancestral income on the female line is measured by 1871 income in the mother’s natal village. Given that most women leave their natal village when they marry, these measures will typically differ.
escaped its set point will depend on a country’s stage in the process of development. India and Indonesia are evidently at a stage where a substantial fraction of the population lies on either side of the threshold, whereas the Ghanaian population appears to be largely at its pre-modern set point. A cross-country comparison of current income and historical income (measured by height in the nineteenth century) provides support for this conjecture: the gap between current and historical income, which determines the fraction of the population that has crossed the threshold, is substantially higher in Asia than in Africa.

The preceding observation leads to the final step of the analysis, where we move from micro-data to cross-regional comparisons. Deaton (2007) observes that adult nutritional status in South Asia is lower than what would be predicted by GDP per capita, whereas the opposite is true for Africa. While other explanations are available; e.g. son preference in South Asia or culturally determined food preferences, this finding can be easily interpreted through the lens of our model. Adapting the model to account for particular aspects of aggregate data, average BMI in the adult population can be expressed as a weighted average of current income (the contribution of those who have escaped the nutrition trap) and historical income (the contribution of those who remain at their set point). We know from the cross-regional income dynamics that conditional on current income, historical income is higher in Africa than in Asia. Under conditions derived below, this fact is shown to imply that average BMI, conditional on current income, will be higher in Africa than in Asia, and this is indeed what we observe (and what Deaton observes, using adult height to measure nutritional status).

Previous explanations for the South Asia-Africa nutritional status difference have focused on South Asia, and are based on the persistence of a taste for particular foods (Atkin, 2013, 2016) or on gender discrimination (Jayachandran and Pande, 2017); i.e. on cultural frictions. These frictions can explain why nutritional status in India has not responded to economic growth (Deaton and Drèze, 2009) nor to nutrition interventions (Duh and Spears, 2017). Our explanation, based on a biological friction, is able to explain the South Asia-specific stylized facts, as well as the wider difference between Africa and Asia (not just South Asia) that we document. Moreover, unlike cultural frictions, which exclusively address the mismatch between current income and nutritional status, biological frictions based on a set point also have implications for the emergence of metabolic diseases during the process of economic development. The unusually high prevalence of diabetes and related metabolic diseases among South Asians, despite the fact that they have relatively low BMI on average, is well documented (see, for example, Narayan (2017)). Once again, an Africa-Asia (and not just South Asia) comparison of the diabetes-BMI relationship can be examined through the lens of our model. Given that the gap between current and historical income is larger in Asia, if an Asian and African country have the same average BMI, then the Asian country must have higher current income and lower historical income. It follows that a greater fraction of the population will have escaped the nutrition trap, and those who have escaped will be at greater risk of diabetes and related cardiometabolic diseases, in the Asian country.\footnote{Recall that the risk of cardiometabolic disease, conditional on escaping the nutrition trap, is specified to be increasing in the mismatch between current and ancestral (historical) income.}

As predicted, Asian countries have higher diabetes prevalence than African countries at every level of average BMI.

Although our model is designed to explain nutritional status and the incidence of cardiometabolic disease
in developing countries, the preceding arguments can be used to examine the same outcomes for migrants from those countries to advanced economies. Given the enormous income differential between origin and host country, most migrants to advanced economies will escape the nutrition trap in the first generation. This is consistent with the empirical evidence that migrants’ nutritional status converges to the level of the native population very swiftly (Alacevich and Tarozzi, 2017). The set point, however, is heritable and can persist for multiple generations. Given the low set point that the migrants and their descendants are endowed with, these groups will continue to face a high risk of cardiometabolic disease, long after they might have assimilated, culturally and economically. Immigrants from South Asia residing in the U.K. and the U.S., who as usual receive disproportionate attention in the literature, are many times more likely to have cardiometabolic diseases than the native population, despite having lower BMI’s (McKeigue et al., 1991; Oza-Frank and Narayan, 2010; Staimez et al., 2013; Kanaya et al., 2014). Other studies, cited in Gujral et al. (2013), document similar patterns in countries such as Fiji, South Africa, and Singapore to which South Asians moved many generations ago as indentured workers.6

While the model is informative about a variety of health outcomes at the micro and the macro level, it is important, particularly from a policy perspective, to go further and quantify the effect of the set point on malnutrition and the prevalence of cardiometabolic disease. This exercise, which is conducted for the Indian population where both problems have been well documented, begins by estimating the structural parameter that measures the slope of the fundamental relationship between nutritional status and income in the model. This parameter can be estimated by adding adjustment terms derived from the model (above and below the threshold) in the estimating equation, and can subsequently be used to predict counter-factual nutritional status in the absence of a set point. A comparison of counter-factual nutritional status and actual nutritional status (predicted by the model) with IHDS data indicates that stunting among 5-19 year old children would have declined by 30% and that the fraction of underweight adults (with BMI less than 18.5) would have declined by 50% in the absence of a set point. To quantify the contribution of the set point to cardiometabolic disease, we first show, based on the model, that the risk of disease will not respond to variation in BMI below a threshold (where individuals are at their set point), but will be increasing in BMI above the threshold. Estimates with IHDS data locate this threshold at a BMI just under 22 for the country as a whole and below 21 for South India, which is well within the normal range (18.5-25). This indicates that the Indian population is at much greater risk of diabetes, and related metabolic disorders, than currently believed. The set point is predetermined and, hence, cannot be targeted directly. However, health policies can be designed to take account of the set point, and its consequences, as discussed in the concluding section.

6The elevated risk of cardiometabolic disease will not be permanent. Although epigenetic traits acquired in the pre-modern economy may be heritable, they are not as rigid as genetic traits, and in the long-run they will cease to be salient. This is also true for the native population in advanced economies, which presumably went through the same disease-nutrition transition that we describe in this paper, but more than a century ago. We would expect that by now the set point in those populations is independent of the pre-modern economic conditions that drive our analysis, in line with Deaton’s (2007) finding that the income-nutritional status relationship is stronger in advanced economies than in developing economies.
Figure 1: Evolution of Income in India

![Graph showing evolution of income in India from 1600 to 2000.](image)

GDP per capita is measured in 2011 US dollars.

2 Biological Foundations

Epigenetic theory postulates that environmental stresses interact with the genotype to create adaptive phenotypes that are transmitted across generations. Epigenetic inheritance occurs when genetic reprogramming, which takes place in the developing germ cells and in the early embryo, fails to completely erase epigenetic signatures acquired during development, or imposed by the environment, in the previous generation (Heard and Martienssen, 2014; Radford, 2018). In theory, epigenetic traits can adapt to environments that are relatively stable over multiple generations (Richards, 2006; Jablonka and Raz, 2009). Developing economies were characterized by low and fluctuating food supply for centuries. Given the physiological cost of fluctuating body weight, and given low levels of consumption on average, the epigenetically determined set point would have been optimally fixed at a low BMI (Narayan, 2016, 2017; Wells et al., 2016).

Economic development is associated with a substantial increase in income and, with it, consumption. Figure 1, for example, plots GDP per capita (in logs) for India, a country that receives much attention in our analysis, from 1600 to 2016. Income is stable (declining mildly) for the first 350 years, after which it starts to increase steeply. Based on the preceding discussion, the epigenetic component of the set point in the Indian population would have been determined by economic conditions in the pre-modern economy, prior to 1950. Given the heritability of epigenetic traits, this low-BMI set point would have been transmitted to subsequent generations. Their bodies would have defended the set point against the increase in consumption that accompanied development, just as their ancestors’ bodies defended the set point against fluctuations in food supply in the pre-modern economy. However, there are limits to this response, and we posit that the body can only defend the set point up to a threshold level of consumption.

Thus, during the process of development, there will be two types of individuals: (i) As long as current...
consumption is sufficiently close to the ancestral levels that determined an individual’s set point, her BMI will remain at the set point. (ii) Once the mismatch between current consumption and ancestral consumption crosses a threshold, however, the individual will escape the nutrition trap and her BMI will track with current income. Escape from the nutrition trap is associated with an increased risk of cardiometabolic disease.

Among the cardiometabolic diseases that are positively associated with economic development, type 2 diabetes has received disproportionate research and policy attention. Diabetes manifests in two forms (Narayan, 2016): (i) Type 2A diabetes is caused by insulin resistance, disproportionately among obese individuals. This type of diabetes is most commonly observed in advanced economies, where the epigenetic component of the set point, associated with economic conditions in the pre-modern economy, is no longer relevant. (ii) Type 2B diabetes, which is the focus of our analysis, is caused by poor insulin secretion, and is largely associated with normal weight individuals in developing economies (Narayan, 2017). Individuals who remain at their epigenetically determined set point are not at elevated risk of type 2B diabetes, even if their consumption has increased with economic development. This is because their metabolism can adjust to the changes in consumption, ensuring that the body’s energy balance is maintained. It is individuals who have escaped the nutrition trap, but who are not necessarily overweight, who are at elevated risk because the metabolic load now exceeds their metabolic capacity (Wells et al., 2016).

Economic development increases the prevalence of diabetes, and related health conditions such as hypertension and cardiovascular disease, through two channels. At the extensive margin, it increases the fraction of the population that has escaped the nutrition trap and is at risk of these diseases. At the intensive margin, it increases the risk of cardiometabolic disease, conditional on the individual having escaped the trap, by increasing the mismatch between ancestral income, which determines the BMI set point, and current income. Evidence from across the world, collected by Barker and his colleagues, provides broad support for the mismatch hypothesis. Barker’s (1995) fetal origins hypothesis is a special case of set point theory in which the set point in each generation is determined by the environment (nutrition) in utero. A robust finding from the fetal origins literature is that a combination of low birth weight; i.e. a low set point, and high adult BMI puts individuals at greatest risk of diabetes, hypertension, and cardiovascular disease (Hales et al., 1991; Barker et al., 2002; Bhargava et al., 2004; Li et al., 2016). In our framework, the set point is determined by conditions many generations ago, but, either way, it is the mismatch between the set point BMI and the BMI in adulthood that determines the risk of cardiometabolic disease.7

As described above, the presence of an epigenetically determined set point can explain both stylized facts that motivate our research. However, while it has been established that environmental cues such as temperature can have transgenerational effects in plants (Heard and Martienssen, 2014) and there is evidence that epigenetic inheritance occurs in small mammals (Radford, 2018), the evidence for epigenetic adaptation and inheritance in humans is sparse. In addition, there is a lack of evidence supporting the presence of a set point in humans (Müller et al., 2010). An important objective of our research will be to fill this gap in the

7Providing additional support for the mismatch hypothesis that is more closely related to our developing country context, individuals who were subjected to caloric restrictions in utero during the 1944-1945 Dutch famine had a heightened risk of cardiometabolic risk as adults in a subsequently affluent economy (Ravelli et al., 1998). In contrast, fetal survivors of the Leningrad siege did not experience adverse health outcomes during adulthood, presumably because there was little difference between their intrauterine and extrauterine economic environment (Stanner et al., 1997).
literature. We do this by developing a model that generates predictions for the cross-sectional relationship between current income and nutritional status, as well as cardiometabolic disease, when BMI is determined by a set point for some fraction of the population. We will subsequently test these predictions with cross-sectional micro data from multiple developing countries, supplementing the analysis with direct tests of the mechanism, going back many generations, that gives rise to the set point.

3 The Model

3.1 Population and Income

The population consists of a large number of infinitely lived dynasties. Each dynasty consists of a single individual in each time period or generation, who is replaced by a single descendant in the period that follows. There is a fixed return on wealth in each period; i.e. an income flow, which is consumed, so that the stock is passed on (without depletion) to the next generation. We will thus use (permanent) income and wealth interchangeably in the discussion that follows. Denote the logarithm of the dynasty’s initial income, in period 0, by \(y_0 \). We normalize so that the distribution of initial income is bounded below at zero. We can think of the initial period as describing the pre-modern economy, while subsequent periods describe the process of development. Permanent income in an economy is well approximated by the log-normal distribution (Battistin et al., 2009). We thus assume that each dynasty receives a permanent, additive and independent income shock \(u_\tau \) in each subsequent period \(\tau \), where \(u_\tau \sim N(\mu, \sigma^2) \). Solving recursively, log-income of a dynasty in period \(t \) is, \(y_t = y_0 + U_t \), where \(U_t = \sum_{\tau=1}^{t} u_\tau \sim N(t\mu, t\sigma^2) \). For ease of exposition, we will denote \(t\mu \) by \(\mu_t \) and \(t\sigma^2 \) by \(\sigma_t^2 \).

3.2 Structural Relationships

In this section we describe the structural relationships between (i) nutritional status, measured by BMI, and income, and (ii) the risk of cardiometabolic disease and income, during the process of economic development. A dynasty’s set point for its body weight or BMI is determined by it’s initial income, \(y_0 \). There is a positive and continuous relationship between income and consumption in any time period. In addition, BMI is increasing continuously in consumption in the initial period; those dynasties that consumed at a higher level in the pre-modern economy will have a higher set point.\(^8\) We thus specify the following relationship between initial BMI, \(z_0 \), or the set point, and initial income:

\[
z_0 = a + by_0. \tag{1}
\]

In subsequent periods, each descendant’s body will defend her dynasty’s set point in the face of fluctuations in consumption that arise due to the income shocks. However, as noted above, the body can only respond up to a point to deviations in income from the initial level, \(y_0 \), that determined the set point. There is thus...
a threshold \(\alpha \), such that BMI in period \(t \),

\[
 z_t = \begin{cases}
 a + by_0 & \text{if } U_t \leq \alpha \\
 a + by_t & \text{if } U_t > \alpha
 \end{cases}
\] (2)

Equation (2) imposes the restriction that the structural relationship between BMI and income is the same, below and above the threshold; what changes is the relevant measure of income, from \(y_0 \) to \(y_t \). We will test this restriction by separately estimating the \(b \) parameter, below and above the (estimated) threshold.

Notice that the set point, \(z_0 \), determined in period 0, is assumed to be fixed across all subsequent generations. Although an epigenetically determined set point may be heritable, it will ultimately cease to be relevant once a changed economic environment has been in place for a sufficient number of generations. Our model thus describes the relationship between nutritional status and income over a finite number of generations during the initial rapid-growth phase of economic development.

Notice also that there is no lower threshold; the implicit assumption is that dynasties do not regress with regard to nutritional status during a period of rapid economic growth. Given historically low levels of food supply in developing countries, the metabolism would have adapted to defend the set point especially vigorously against downward fluctuations in consumption. Although mean income is increasing in our model, the distribution of income shocks is unbounded and, hence, a small number of dynasties could, nevertheless, accumulate a sequence of very negative shocks that the body could not defend. However, all societies have consumption-smoothing mechanisms in place to insure against precisely such catastrophic outcomes. We thus assume that dynasties always successfully defend the set point in the face of negative income shocks, either biologically or by taking advantage of social safety nets to augment their income.

As long as consumption remains within the threshold associated with the dynasty’s set point, metabolic and hormonal adjustments ensure that the increases in consumption that accompany the increases in income due to economic development do not translate into increases in BMI. Once consumption crosses the threshold, however, the metabolism can no longer maintain the energy balance and BMI starts to track with current income. As discussed in the preceding section, the accompanying mismatch between metabolic capacity and metabolic load simultaneously increases the risk of cardiometabolic diseases. As in the fetal origins literature, this risk is specified to be increasing in the gap between current income, \(y_t \), which determines current BMI (conditional on having crossed the threshold) and initial income, \(y_0 \), which determines the BMI set point. The structural relationship between the probability of cardiometabolic disease, \(P(D_t) \), and income can thus be characterized as follows:

\[
P(D_t) = \begin{cases}
 \gamma_1 & \text{if } U_t \leq \alpha \\
 \gamma_1 + \gamma_2(y_t - y_0) & \text{if } U_t > \alpha
\end{cases}
\] (3)

3.3 BMI-Income Relationship

Figure 2 describes the evolution of BMI across multiple generations (time periods) for a single dynasty, based on the structural relationships specified above. For expositional convenience, we assume that the dynasty only receives positive income shocks. Starting from an initial income, \(y_0 \), the dynasty’s income thus increases
monotonically over time. However, its members’ BMI will remain at the dynasty’s set point, \(z_0 = a + by_0 \), until \(y_t \) exceeds \(y_0 + \alpha \). At that point in time, there will be a discrete increase in BMI, after which BMI will track with current income. If trans-generational data were available for multiple dynasties, then these predictions could be tested directly. However, standard data sets typically provide information on nutritional status and household income at a single point in time. We thus proceed to derive the cross-sectional relationship between BMI and income, as implied by equation (2), when a dynasty-specific set point for body weight is present.

Recall that we normalize so that the initial income distribution is bounded below at zero. We also do not specify a lower threshold for the set point. It follows that all individuals with \(y_t \leq \alpha \) must lie within their dynasty’s set point threshold; some of these individuals will belong to dynasties that had initial incomes below \(\alpha \) and which subsequently increased their income by relatively little, whereas others will belong to dynasties whose income has drifted down over time. Given the assumed (normal) distribution of income shocks, mean BMI at any given level of income, \(y_t \), for \(y_t \leq \alpha \) is determined by the following expression:

\[
\bar{z}(y_t|y_t \leq \alpha) = \int_{-\infty}^{y_t} \left[a + b(y_t - U_t) \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \ dU_t = a + b(y_t - e^L(y_t))
\]

(4)

where \(e^L(y_t) = \frac{1}{\frac{\Phi(y_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)}} \int_{-\infty}^{y_t} U_t \phi(U_t; \mu_t, \sigma_t^2) \ dU_t. \)

For individuals with \(y_t > \alpha \), some will have crossed their set point threshold, while others (who started with a higher initial income) will remain within their thresholds. The expression for mean BMI at income level \(y_t \), given that \(y_t > \alpha \), thus includes both types of individuals,

\[
\bar{z}(y_t|y_t > \alpha) = \int_{-\infty}^{\alpha} \left[a + b(y_t - U_t) \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \ dU_t + \int_{\alpha}^{y_t} \left[a + by_t \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \ dU_t = a + b(y_t - e^H(y_t))
\]

(5)
where \(e^H(y_t) = \frac{1}{\Phi(y_t; \mu_t, \sigma_t^2)} \int_{-\infty}^{y_t} U_t \phi(U_t; \mu_t, \sigma_t^2) \, dU_t \).

Equations (4) and (5) can be used to derive following result.

Proposition 1 (i) The slope of the BMI-income relationship is positive but less than \(b \) for \(y_t \leq \alpha \) and greater than \(b \) for \(y_t > \alpha \). (ii) There is a discontinuous change in the slope of the BMI-income relationship at \(y_t = \alpha \). (iii) However, there is no level discontinuity at \(y_t = \alpha \).

To obtain these results, we first derive closed-form solutions for \(e^L(y_t) \) and \(e^H(y_t) \). This can be done using the properties of the normal and standard normal distributions. Using these properties we can write \(e^L(y_t) \) and \(e^H(y_t) \) as:

\[
e^L(y_t) = \mu_t - \sigma_t \frac{\phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)}{\Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)} = \mu_t - \sigma_t \Lambda \left(\frac{y_t - \mu_t}{\sigma_t} \right) \tag{6}
\]

\[
e^H(y_t) = \mu_t \Phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) - \sigma_t \phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) \tag{7}
\]

where \(\Lambda(\bullet) \) is the inverse Mill’s ratio with the property that its derivative, \(\frac{d\Lambda(\bullet)}{d(\bullet)} \), is negative, increasing and bounded on the interval \((-1, 0)\).\(^9\)

To establish that the slope of the BMI-income relationship is positive but less than \(b \) below the threshold, substitute the expression for \(e^L(y_t) \) from equation (6) in equation (4) and differentiate with respect to \(y_t \),

\[
\frac{d \bar{z}(y_t | y_t \leq \alpha)}{dy_t} = b \left[1 + \Lambda \left(\frac{y_t - \mu_t}{\sigma_t} \right) \right] \in (0, b)
\]

Further, to demonstrate that the slope of the BMI-income relationship above the threshold is greater than \(b \), observe from the expression for \(e^H(y_t) \) in equation (7), that the numerator is independent of \(y_t \) and the denominator is increasing in \(y_t \). Hence, \(\frac{d e^H(y_t)}{dy_t} < 0 \), which implies \(\frac{d \bar{z}(y_t | y_t > \alpha)}{dy_t} > b \).

Note, from equations (6) and (7), that \(e^L(y_t) = e^H(y_t) \) at \(y_t = \alpha \), and thus, from equations (4) and (5), there is no level discontinuity at the threshold. To prove that there is, nevertheless, a slope discontinuity at

\(^9\)For \(e^L(y_t) \), focusing on the numerator, we can write

\[
\int_{-\infty}^{y_t} U_t \phi(U_t; \mu_t, \sigma_t^2) \, dU_t = \int_{-\infty}^{y_t} U_t \frac{1}{\sqrt{2\pi}\sigma_t} \exp \left[-\frac{1}{2} \left(\frac{U_t - \mu_t}{\sigma_t} \right)^2 \right] \, dU_t = \int_{-\infty}^{y_t - \mu_t/\sigma_t} (\sigma_t x_t + \mu_t) \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} x_t^2 \right] \, dx_t
\]

where the last equality comes from the substitution \(x_t = \frac{U_t - \mu_t}{\sigma_t} \). The last equality can be written as

\[
\mu_t \Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) = \sigma_t \phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)
\]

given that \(\frac{d\Phi(x_t; 0, 1)}{dx_t} = -x_t \phi(x_t; 0, 1) \). A similar transformation of \(\Phi(y_t; \mu_t, \sigma_t^2) \) in the denominator gives us the closed-form expression for \(e^L(y_t) \) in equation (6). The corresponding expression for \(e^H(y_t) \) in equation (7) is derived by replacing \(y_t \) with \(\alpha \) in the limits for integration.
the threshold, \(y_t = \alpha \), we need to show that

\[
\lim_{y_t \uparrow \alpha} \frac{d \bar{z}(y_t | y_t \leq \alpha)}{d y_t} \neq \lim_{y_t \downarrow \alpha} \frac{d \bar{z}(y_t | y_t > \alpha)}{d y_t}
\]

From equations (4) and (5), a necessary and sufficient condition for the preceding inequality to be satisfied is that \(\frac{d e^L(y_t)}{d y_t} \neq \frac{d e^H(y_t)}{d y_t} \) at \(y_t = \alpha \). Using equations (6) and (7), it can be established that this is indeed the case. For this result, first denote \(v_t = \frac{y_t - \mu_t}{\sigma_t} \). From equation (6), \(e^L(y_t) = \frac{L(v_t)}{\Phi(v_t; 0, 1)} \), where \(L(v_t) = \mu_t \Phi(v_t; 0, 1) - \sigma_t \phi(v_t; 0, 1) \). From equation (7), \(e^H(y_t) = \frac{L(v_t)}{\Phi(v_t; 0, 1)} \) where \(v = \frac{\alpha - \mu_t}{\sigma_t} \). Given that the denominator and the numerator (evaluated at \(y_t = \alpha \)) of the \(e^L(y_t) \), \(e^H(y_t) \) expressions are the same, a necessary condition for \(\frac{d e^L(y_t)}{d y_t} \neq \frac{d e^H(y_t)}{d y_t} \) is that \(\frac{d L(v_t)}{d y_t} \neq \frac{d L(v_t)}{d y_t} \) at \(y_t = \alpha \), \(\frac{d L(v_t)}{d y_t} = 0 \). From the property of the standard normal distribution, \(\phi'(v_t; 0, 1) = -v_t \phi(v_t; 0, 1) \), and, hence, \(\frac{d L(v_t)}{d y_t} \bigg|_{y_t=\alpha} = \frac{\alpha - \mu_t}{\sigma_t} \phi(\tau; 0, 1) > 0 \).

The relationship between BMI and income implied by Proposition 1 is described graphically in Figure 3. Each dynasty transitions discretely to a higher BMI level, at a particular point in time, in Figure 2. This level-shift is smoothed out, and translates into a slope change, when we derive the corresponding cross-sectional BMI-income relationship across dynasties at any point in time.

3.4 Disease-Income Relationship

Taking as given the structural relationship between the probability of cardiometabolic disease, \(P(D_t) \), and income, as specified in equation (3) for a single dynasty, the corresponding relationship in the cross-section across dynasties can be derived as follows:

Proposition 2 (i) There is no relationship between \(P(D_t) \) and \(y_t \) for \(y_t \leq \alpha \), and a positive relationship for \(y_t > \alpha \). (ii) There is a discontinuous change in the slope of the \(P(D_t) - y_t \) relationship at \(y_t = \alpha \). (iii) There is no level discontinuity in the \(P(D_t) - y_t \) relationship at \(y_t = \alpha \).
From equation (3),

\[P(D_t|y_t \leq \alpha) = \int_{-\infty}^{y_t} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t = \gamma_1 \]

(8)

\[P(D_t|y_t > \alpha) = \int_{-\infty}^{\alpha} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t + \int_{\alpha}^{y_t} (\gamma_1 + \gamma_2 U_t) \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \]

\[= \gamma_1 + \gamma_2 \int_{\alpha}^{y_t} U_t \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \]

Following the same steps that we used to derive the expression for \(e^L(y_t) \) in (6), we can write

\[P(D_t|y_t > \alpha) = \gamma_1 + \gamma_2 \left[\mu_t - \sigma_t \Lambda \left(\frac{y_t - \mu_t}{\sigma_t} \right) - \sigma_t \Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) \right] \]

(9)

From equation (8), \(\frac{dP(D_t|y_t \leq \alpha)}{dy_t} = 0 \) and from equation (9), \(\frac{dP(D_t|y_t > \alpha)}{dy_t} > 0 \) because \(\Lambda'(\cdot) < 0 \) and \(\Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) \) is increasing in \(y_t \). This also establishes that there is a slope discontinuity at \(y_t = \alpha \). Further, substituting \(y_t = \alpha \) in equation (9) eliminates the term inside square brackets, implying that there is no level discontinuity at \(y_t = \alpha \).

The \(P(D_t) - y_t \) relationship derived above is described graphically in Figure 3. This relationship is qualitatively the same as the \(\bar{z}(y_t) - y_t \) relationship, except that the slope is zero below the threshold. Note that the model predicts that both relationships will exhibit a slope discontinuity at \(y_t = \alpha \).\(^{10}\)

4 Testing the Model

4.1 Descriptive Statistics

The key variables in the model are income, nutritional status, and the probability of cardiometabolic disease. Although there is a single individual in each generation in our model, multiple individuals will reside in a household. Income will thus be measured at the household level. Nutritional status is measured for each (available) member of the household; by height-for-age for children and BMI for adults. BMI rather than height is used as our benchmark measure of nutritional status for adults because it is directly related to the set point for body weight or BMI that drives the model. The additional advantage of using BMI is that it will respond to nutrient intake into adulthood; this is especially important in a dynamic economy.

The primary tests of the model are conducted with Indian data. This is because the rapidly developing Indian economy is simultaneously characterized by high levels of malnutrition and a high incidence of malnutrition.

\(^{10}\)Although we normalize so that the initial income distribution is bounded below at zero, it can more generally be bounded below at some income level \(y_0 \), in which case the threshold would be located at \(y_0 + \alpha \). Since the initial income distribution is unobserved, the location of the estimated threshold cannot, therefore, be used to recover the \(\alpha \) parameter.
Figure 4 describes the distribution of household income in the IHDS data, measured as the log of monthly income in thousands of Rupees, averaged over the two survey rounds. The vertical dashed line in Figure 4 denotes the median income, which is 1.8 in our nationally representative sample of households. Our tests of a slope-change, reported below, will locate an income threshold close to the median income, which tells us that it is not just the poorest who remain in the nutrition trap in this economy.

Figure 5a describes the nutritional status of children in the IHDS, separately for children aged 0-59 months and 5-19 years. Nutritional status, measured by the height-for-age, is reported as a z-score, based on child growth standards provided by the WHO. We see that a substantial fraction of Indian children are stunted;
Figure 5: Nutritional Status Distribution - children and adults

Source: India Human Development Survey (IHDS).

with a z-score less than -2. Figure 5b describes the corresponding distribution of adult nutritional status, measured by the BMI adjusted for age and sex. The vertical dashed line in the figure denotes a BMI of 18.5, which is a cutoff conventionally associated with being underweight. We see that a substantial fraction of the Indian population remains below this cutoff, despite the substantial economic progress of the past decades. By international standards, individuals are underweight if their BMI is below 18.5, the normal range is 18.5-25, the overweight range is 25-30, and obesity is defined by a BMI above 30. Based on this convention, most Indians are underweight or normal weight, and only a small fraction are obese. BMI that is too low or too high is physiologically damaging, but the latter is evidently less of a problem in India. We will see below that diabetes and related metabolic disorders, which are commonly associated with obesity in advanced economies, largely affect normal weight individuals in India.

4.2 Cross-Sectional Analysis

Proposition 1 derives the cross-sectional relationship between nutritional status and income when a set point is present: although the relationship is positive at all income levels, there will be a discontinuous shift to a steeper slope at a particular income threshold. Proposition 2 derives the corresponding relationship between the risk of cardiometabolic disease and income: while a slope-change at the same income threshold is predicted here as well, the difference is that variation in income is not expected to affect the risk of disease below the

14The BMI is defined as the weight in kilograms divided by the square of the height in meters. The BMI was collected for men and women in the 2011-2012 round, but only for a small fraction of men in the 2004-2005 round. As with the children, we include the age-specific BMI statistic separately from the two survey rounds when it is available for an adult.
Figure 6: Nutritional Status - Household Income and Disease - Household Income Relationships

(a) Children

(b) Adults

Source: India Human Development Survey (IHDS).

Disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. Covariates listed in the text are partialled out prior to nonparametric estimation.

We test these predictions with nationally representative data from the India Human Development Survey (IHDS) by separately estimating the relationship between income and both nutritional status and the probability of cardiometabolic disease. Adult nutritional status, and the accompanying risk of cardiometabolic disease, are determined by food intake over the life-course. Given that the IHDS rounds are conducted nearly a decade apart (2004-2012) we measure the household’s income and, hence, the food intake of its members over a wider time window by taking the average over the two rounds. The additional benefit of this procedure is that it helps smooth out the noise in the round-specific income measures, providing a more accurate estimate of the household’s permanent income. Nutritional status is measured by height-for-age for children and by BMI for adults, with individual information from both survey rounds (appropriately adjusted for age) included in the estimation sample when available. Cardiometabolic disease is constructed as a binary variable that indicates whether an individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.\(^{15}\)

Figure 6a nonparametrically estimates the relationship between the nutritional status of the children and household income. Figure 6b repeats this exercise with nutritional status and the probability of cardiometabolic disease among adult members of the household as outcomes.\(^ {16}\) Although our analysis focuses on

\(^{15}\)While BMI can shift up or down from one period to the next, cardiometabolic disease is irreversible. If an individual is reported to have the disease in the 2004-2005 round, there is thus no additional information content in the 2011-2012 report. Those observations are thus dropped from the estimation sample.

\(^{16}\)Observations in the top and bottom 1% of the outcome distribution are excluded from the estimation sample in all of our analyses. This ensures that the estimation results are not driven by extreme outliers.
the income effect, other individual and household characteristics could also determine nutritional status and the risk of cardiometabolic disease. All of the estimating equations in our analysis thus include the following covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural/urban dummy, and district dummies.17 The effect of gender bias on nutritional status, as documented by Jayachandran and Pande (2017), is captured by the gender and birth order dummies. Geographical variation in food tastes, as emphasized by Atkin (2013, 2016) or in the disease environment, as documented by Spears et al. (2013), Duh and Spears (2017), and Dandona et al. (2017) is captured by the district dummies. The covariates listed above are partialled out using the Robinson (1988) procedure prior to the nonparametric estimation reported in Figures 6a and 6b.

It is evident from both figures, and all four outcomes, that the income effect is weaker at lower income levels, with a slope-change at an income threshold between 1 and 2. To test formally for a slope-change and to place statistical bounds on the location of the threshold (where relevant) we implement a procedure developed by Hansen (2017). The procedure involves sequential estimation of the following piecewise linear equation:

\begin{equation}
 z_i = \beta_0 + \beta_1 y_i + \beta_2 (y_i - \gamma) + x_i \lambda + \epsilon_i,
\end{equation}

where z_i is an outcome of interest; e.g. nutritional status, y_i is household i’s income, γ is the location of the income threshold (which must be estimated), β_1, β_2 are slope parameters, and x_i is a vector of additional covariates. This equation is estimated at different assumed income thresholds (values of γ), starting at a very low income level and then covering the entire income range in small increments. An F-type statistic is computed at each assumed threshold, based on a comparison of the sum of squared residuals at that assumed threshold and the minimized value across all assumed thresholds. This statistic will have a minimum value of zero by construction, and the assumed income threshold corresponding to that value will be our best estimate of the true threshold. If there is indeed a slope-change, then the F-type statistic will increase steeply as the assumed threshold moves away (on either side) from the income level at which it is minimized.

Figures 7a and 7b plot the F-type statistic across the range of assumed thresholds, for children’s nutritional status and the adult outcomes, respectively. Bootstrapped, outcome-specific, 5\% critical values for the F-type statistic are also reported in the figures, allowing us to locate the threshold with the requisite degree of statistical confidence. The F-type statistic increases steeply as the assumed threshold moves away from the income level at which it is minimized, which implies, in turn, that the location of the threshold can be bounded with a relatively high degree of statistical precision. Our best estimate of the threshold location matches closely for the 0-59 month and the 5-19 year old children. Nutritional status is measured by height-for-age for the children and BMI for the adults. Despite the fact that we are using different measures, the estimated threshold for the adults in Figure 6b, with BMI as the dependent variable in the estimating equation, is very close to what we obtain for the children in Figure 6a. The estimated threshold location with the probability of cardiometabolic disease as the outcome shifts to a slightly higher income level, but we will see below that the 95\% confidence intervals for the threshold location overlap across all outcomes.

17Age is measured in years, except for the analysis with 0-59 month children where it is measured in months. The birth order is top coded at 3.
The same (wild) bootstrap procedure that is used to compute the critical values and, hence, the 95% confidence interval for the threshold location in Figures 7a and 7b can also be used to compute standard errors for the slope parameters in a piecewise linear equation estimated at the threshold we have located. Moreover, a similar bootstrap procedure can be used to test our statistical model with a slope change, as described in equation (10), against the null hypothesis that there is a linear relationship between household income and each of the outcomes. These results are reported in Table 1. We can easily reject the null that there is no slope change, with each outcome. The reported point estimates of the baseline slope parameter (β_1) and the slope-change parameter (β_2) are obtained at our best estimate of the true threshold, γ, for each outcome. As predicted by our model with a set point, the slope increases to the right of the threshold with each outcome (the slope-change coefficient is positive and significant). Proposition 1 indicates, in addition, that the slope to the left of the threshold should be positive with nutritional status as the outcome. This result is obtained for adults (Column 3) but not children (Columns 1-2), perhaps because sample sizes are smaller for the children or because the income effect strengthens over the life-course. In line with Proposition 2, there is no relationship between the probability of cardiometabolic disease and household income below the threshold in Column 4, in contrast with the strong positive relationship above the threshold.

The estimated threshold location ranges from 1.4 to 1.9 for the four outcomes, with some amount of overlap in the confidence intervals between any pair of outcomes. Recall that the median income in our nationally representative sample of households is 1.8. Based on our model, all households with income to the left of the threshold remain in the nutrition trap, as do some households to the right of the threshold.
Table 1: Piecewise Linear Equation Estimates - nutritional status and disease

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59</th>
<th>HFA 5-19</th>
<th>BMI</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.049</td>
<td>0.024</td>
<td>0.239*</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.029)</td>
<td>(0.046)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.365*</td>
<td>0.206*</td>
<td>0.940*</td>
<td>0.025*</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.030)</td>
<td>(0.054)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.40</td>
<td>1.50</td>
<td>1.65</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>[1.20, 2.00]</td>
<td>[1.35, 1.90]</td>
<td>[1.55, 1.75]</td>
<td>[1.70, 2.05]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.649</td>
<td>22.002</td>
<td>0.670</td>
</tr>
<tr>
<td>N</td>
<td>21634</td>
<td>48845</td>
<td>76949</td>
<td>147729</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.
Logarithm of household income is the independent variable.
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.

This implies that over half the Indian population remains in the nutrition trap at this stage of economic development, with this group being partly responsible for the weak relationship between nutritional status and income that has been documented in the literature. Among the households to the right of the threshold, the substantial fraction that have escaped the nutrition trap are at elevated risk of cardiometabolic disease. The micro-evidence we have provided can thus explain the co-existence of malnutrition and a high incidence of diabetes and other metabolic disorders at this stage in India’s economic development, as a consequence of an underlying predetermined set point in the population. We complete this section by verifying the robustness of this evidence in a number of ways: First, we show in Appendix Table A1, that the results are robust to including period-specific income in place of average income (over the two survey rounds). Second, we show, in Appendix Table A2, that the results continue to be obtained when the outcomes are restricted to the 2011-2012 survey round. Third, we show, in Appendix Table A3, that the results are robust to including household composition; measured by the number of children, the number of teens, the number of adults, and the number of adults engaged in physical labor, which could directly determine individual access to nutrition, as additional covariates in the estimating equation. Fourth, we show, in Appendix Table A4, that the results continue to be obtained with alternative measures of nutritional status; weight-for-age for the children and height for adults.

18 Household income and household composition are intimately related, which is why we exclude household composition from the estimating equation in the benchmark specification.
Figure 8: Nutrient Intake - Household Income and Children’s Illness - Household Income Relationships

(a) Nutrient intake
(b) Children's illness

Source: India Human Development Survey (IHDS).
Covariates listed in the text are partialled out prior to nonparametric estimation.

4.3 Alternative Explanations

The additional covariates that we include in the estimating equations account for two independent determinants of nutritional status in India: gender bias and a culturally determined preference for particular foods. However, we must also account for the possibility that the proximate determinants of nutritional status – nutrient intake and the disease environment – vary with household income in a way that independently generates our results.\(^{19}\) Our model assumes a positive and continuous relationship between income and nutrient intake (consumption). It is the biologically determined set point that breaks the smooth relationship between consumption and, by extension, income, and nutritional status. Suppose, instead, that the nutrient intake-income relationship strengthens discontinuously above an income threshold. Alternatively, suppose that there is a discontinuous change in the disease-income relationship. Either way, the nonlinear nutritional status-income relationship that we estimate could be obtained without a set point.\(^{20}\)

To assess the validity of these alternative explanations, we nonparametrically estimate the nutrient intake-household income relationship in Figure 8a and the children’s illness-household income relationship in Figure 8b using IHDS data. Nutrient intake is measured by the consumption of calories and fats (in grams) at the household level. Children’s illness is measured by whether the child (aged 0-19) is reported to have had diarrhea and cough in the past month. The usual set of covariates, including household composition (and

\(^{19}\)As noted by Steckel (1995) and Deaton (2007), genes are important determinants of individual height (and nutritional status more generally) but cannot explain variation across populations. Deaton also considers energy expenditure (physical activity) as a determinant of nutritional status, which is accounted for in the analysis that follows.

\(^{20}\)Social norms determine feeding practices, health seeking behavior, sanitary practices, and other behaviors that contribute to nutrient intake and the disease environment. These norms can change discontinuously when income in the relevant social group, consisting of multiple dynasties, crosses a threshold level, providing an alternative explanation for our results.
the number of adults engaged in physical labor), are partialled out prior to estimation using Robinson’s procedure. We see that there is a positive and continuous relationship between the intake of calories and fats and household income in Figure 8a. In contrast, there is a negative and continuous relationship between the incidence of both diarrhea and cough with household income in Figure 8b.

The dashed vertical line in Figure 8a marks the spot at which we located the income threshold with adult BMI as the outcome. The vertical line in Figure 8b marks the threshold location with height-for-age for 5-19 year olds as the outcome. In neither figure do we observe a discontinuous slope-change at the imposed threshold. Indeed, Hansen’s threshold test fails to locate a slope-change at any assumed threshold. Figure 9a tests for a slope-change in the nutrient intake- household income relationship and Figure 9b applies the test to the children’s illness- household income relationship. In contrast with the V-shaped pattern for the F-type statistic that we documented with nutritional status and the risk of cardiometabolic disease as outcomes, the F-type statistic never even exceeds the critical value with three of the four outcomes in Figure 8. For the one outcome – fat intake – where it does, the F-type statistic only exceeds the critical value on one side.

21Our finding that nutrient intake is increasing continuously in household income does not contradict Deaton and Drèze (2009) who document a decline in real food consumption, even as income increased over time in India, using National Sample Survey (NSS) data. Deaton and Drèze (2009) posit that declining levels of physical activity and improvements in the disease environment with economic development could have generated this decline. Providing empirical support for this hypothesis, Duh and Spears (2017) exploit variation within districts over time (with NSS data) and across households in the cross-section (with IHDS data) to establish that an improvement in the disease environment, specifically associated with a reduction in diarrheal disease, does indeed reduce caloric consumption. A rich set of covariates are included in our estimating equation. Among the covariates are caste category, a rural/urban dummy, district dummies, the number of children, teenagers, and adults in the household, and the number of household members engaged in physical labor. These covariates will capture variation in both physical activity and the disease environment across households. Once these confounding factors are accounted for, nutrient intake will increase with income, which is what we observe.
Table 2: Piecewise Linear Equation Estimates - nutrient intake and children’s illness

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>nutrient intake</th>
<th></th>
<th></th>
<th>children’s illness</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log calories (1)</td>
<td>log fat (2)</td>
<td>log protein (3)</td>
<td>Pr[diarrhea] (4)</td>
<td>Pr[fever] (5)</td>
<td>Pr[cough] (6)</td>
<td></td>
</tr>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.057*** (0.003)</td>
<td>0.120*** (0.004)</td>
<td>0.069*** (0.003)</td>
<td>−0.007*** (0.002)</td>
<td>−0.018*** (0.005)</td>
<td>−0.019*** (0.004)</td>
<td></td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.003 (0.004)</td>
<td>−0.001 (0.006)</td>
<td>0.013*** (0.004)</td>
<td>0.000 (0.001)</td>
<td>0.001 (0.002)</td>
<td>0.002 (0.002)</td>
<td></td>
</tr>
<tr>
<td>Imposed threshold (γ)</td>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>12.514</td>
<td>8.517</td>
<td>9.024</td>
<td>0.039</td>
<td>0.217</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>75031</td>
<td>75031</td>
<td>75031</td>
<td>60332</td>
<td>60332</td>
<td>60332</td>
<td></td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).

Logarithm of household income is the independent variable.

Covariates listed in the text are included in the estimating equation.

Standard errors are reported in parentheses.

* significant at 10%, ** at 5% and *** at 1%.

(to the right) of the assumed threshold at which the statistic is minimized. We cannot place bounds on the threshold location and, hence, we cannot locate a threshold at conventional levels of statistical confidence with any outcome in Figure 8.

Table 2 reports piecewise linear equation estimates, with household income as the independent variable and nutrient intake and children’s illness as outcomes. Nutrient intake is measured for calories, fat, and protein in Columns 1-3 and children’s illness is measured by diarrhea, fever, and cough in the last month in Columns 4-6. Since we cannot locate a threshold with any of these outcomes, we impose the slope-change in Columns 1-3 at the income level where the slope was located with adult BMI as the outcome and in Columns 4-6 at the income level where the slope was located with height-for-age for 5-19 year olds as the outcome.

In contrast with the results obtained with nutritional status and the probability of cardiometabolic disease as outcomes in Table 1, the baseline slope coefficient in Table 2 is large in magnitude, relative to the slope change coefficient, and statistically significant with each outcome. Our results for nutritional status cannot be explained by either a discontinuous relationship between nutrient intake and household income or the disease environment and household income.

Although the proximate determinants of nutritional status do not vary discontinuously with household income, could the observed nonlinearity be generated by selective child mortality? Suppose that there is a positive and continuous relationship between mean nutritional status and household income, with a fixed dispersion in nutritional status at each level of income, as in Figure 10. If children can only survive above a nutrition status threshold, and this constraint only binds at lower income levels, then as observed in the figure there will be a discontinuous relationship between mean nutritional status and income. Although the
nutritional status-income relationship now precisely matches the prediction of our model, notice that it is
 driven entirely by households at the lower end of the nutritional status distribution, at each income level.
Child mortality is concentrated in the first five years and, hence, if the nutritional status-income relationship
is distorted by child mortality, this will show up most clearly among the 5-19 year olds. Figures 11a and 11b
report quantile regression estimates of the baseline slope coefficient (β_1) and the slope-change coefficient (β_2)
in a piecewise linear equation with child (aged 5-19) height-for-age as the dependent variable. Coefficient

Source: India Human Development Survey (IHDS).
estimates for the same equation, evaluated at the mean of the dependent variable rather than at each quantile, were reported earlier in Table 1, Column 2. It is evident from Figures 11a and 11b that those results were not driven by a small fraction of households at the bottom of the nutritional status distribution, as the alternative explanation based on selective child mortality would predict. We cannot statistically reject the hypothesis that the estimated coefficients are equal to the corresponding conditional mean coefficient at each quantile.22

4.4 The Mechanism

Given a biologically determined set point for body weight, equation (2) describes the structural relationship between nutritional status and income as follows: For individuals who remain at their set point, BMI is determined by ancestral income, \(y_0 \). For individuals who have escaped the nutrition trap, BMI is determined by current income, \(y_t \). We cannot test these relationships with standard data sets such as the IHDS because \(y_0 \) is unobserved. This is why we derive and test the corresponding cross-sectional BMI-income \((z_t - y_t)\) relationship. However, unique data from the South India Community Health Study (SICHS), together with particular features of the marriage institution in India, can be used to directly test the structural relationships implied by equation (2). The analysis that follows complements recent research by Borker et al. (2018), which uses SICHS data to examine the relationship between wealth and marriage in India.

The SICHS covers a rural population of 1.1 million individuals residing in Vellore district in the South Indian state of Tamil Nadu. Borker et al. (2018) provide a detailed description of the study area, documenting that it is representative of rural Tamil Nadu and rural South India with respect to socioeconomic and demographic characteristics; e.g. age distribution, marriage patterns, literacy rates, and labor force participation.23 Two components of the SICHS are relevant for our analysis: a census of all 298,000 households residing in the study area, completed in 2014, and a detailed survey of 5,000 representative households, completed in 2016. The SICHS census collected each household’s income in the preceding year. The SICHS survey collected information on the marriage of the household head and his wife, as well as their parents. These data are supplemented with historical records, obtained from the British Library in London, on the agricultural revenue tax per acre of cultivated land that was collected from each village in the Northern Tamil Nadu region (encompassing the study area) in 1871; the year of the first colonial population census.24 As shown below, current household income from the SICHS census, information on marriages over two generations from the SICHS survey, and historical village tax revenue, taken together, can be used to construct measures of ancestral income, \(y_0 \), for each household.

Each dynasty consists of a single individual in each generation in our model. We now consider an extension

\[\text{\footnotesize (22) Deaton (2007) considers the possibility that variation in child survival with income could explain the weak nutritional status-income relationship that he documents across countries. However, evidence from numerous studies, cited in Alderman et al. (2011) indicates that selective mortality would have a negligible effect on the nutritional status-income relationship in most contexts. This appears to hold true in contemporary India as well.}

\[\text{\footnotesize (23) The SICHS study area was purposefully selected to be representative of rural South India, defined by the following states: Tamil Nadu, Andhra Pradesh, Karnataka, and Maharashtra. Munshi and Rosenzweig (2016) define the South Indian region by the same set of states. Kerala is excluded from the list because it is an outlier on many socioeconomic characteristics.}

\[\text{\footnotesize (24) There are 377 panchayats or village governments in the SICHS study area. These panchayats were historically single villages, which over time sometimes divided or added new habitations. The panchayat as a whole, which often consists of multiple modern villages, can thus be linked back to a single historical village. What we refer to as a ‘village’ in the discussion that follows is thus a historical village or, equivalently, a modern panchayat.}
to the model in which there are two individuals – a man and a woman – in each generation. They are succeeded by two children – a male and a female – preserving the gender balance in the population over time. What we refer to as (permanent) income in the model can be equivalently interpreted as wealth, with the couple consuming an amount that is equal to the return on their wealth in each generation. Their wealth is thus passed on (equally divided) to the next generation. Once we introduce males and females in the model, we must specify how they match. Our model incorporates a particular feature of the marriage institution in India, which is that matches are arranged by the parents and relatives of the groom and bride, with families matching assortatively on wealth. Each individual in the model thus matches with a partner who inherits the same amount of wealth. The total wealth inherited by the couple is augmented by a wealth (or permanent income) shock to determine the total amount of wealth (or income) that is available to them for consumption. Figure 12 describes the matching and wealth process, as described above, for a single dynasty over three generations. Linking our model to the data, household heads in the SICHS survey are aged 25-60. Their grandparents would have been working 60-80 years ago; i.e. in the first half of the twentieth century, which is when the Indian economy began to develop after centuries of stagnation, as observed in Figure 1. We thus assume that the current generation of adults in the SICHS data is period \(t = 3 \) in the model. The figure thus describes the income process over the first three generations of Indian economic development for an adult, \(I = \in \{ M, W \} \), from the current generation, where \(M \) denotes the household head and \(W \) denotes his wife.

Once the dynasty consists of a man and a woman in each generation, ancestral income can be measured by either \(y_{0M}^I \) or \(y_{0W}^I \); i.e. the wealth inherited by the paternal or maternal grandparents, respectively. Which measure is appropriate depends on whether epigenetic traits are transmitted through the mother or the father. Trans-generational epigenetic inheritance was traditionally assumed to occur exclusively through

25Borker et al. (2018) use data on marriages from the SICHS survey to document that approximately 85% of marriages are arranged and that families match assortatively on wealth.

26Each paternal (maternal) grandparent inherited wealth \(y_{0M}^I \) (\(y_{0W}^I \)). This inheritance was augmented by wealth shocks \(u_{1M}^I \), \(u_{1W}^I \), respectively, so that the grandparents on both sides ended up with wealth \(y_1^I \). The parents of individual \(I \) both inherited \(y_1^I / 2 \), and this initial endowment was augmented by a wealth shock, \(u_2^I \), so that they ended up with wealth \(y_2 \). Both the husband \((I = M)\) and the wife \((I = W)\) in the current generation thus inherit \(y_2 / 2 \) and so their family ends up with wealth, \(y_3 = y_2 + u_3 \).
the maternal line (Lind and Spagopoulou, 2018). However, recent research indicates that paternal traits can be transmitted epigenetically (Jablonka and Raz, 2009) and thus we allow for both possibilities in our analysis. If epigenetic inheritance occurs through the female line, then the initial wealth that determines the set point in period 0 will be the mother’s mother’s inherited wealth; i.e. \(y_{0W}^{IW}/2 \). If epigenetic inheritance operates through the male line, then the set point will be determined by the father’s father’s inherited wealth; i.e. \(y_{0M}^{IM}/2 \).

To construct measures of \(y_{0W}^{IW}/2 \) and \(y_{0M}^{IM}/2 \), we make use of the 1871 revenue tax data, which are available for all villages in the Northern Tamil Nadu region. The revenue tax per acre of cultivated land was based on detailed measures of soil quality, irrigation, and other growing conditions in the village. It thus would have been highly correlated with agricultural productivity and, by extension, household income in the village in 1871. We would expect this historical income to have had a persistent effect on future income; indeed, our model specifies the dynamic income process for a particular dynasty as \(y_t = y_0 + U_t \), where \(y_t \) is current (permanent) income and \(y_0 \) is initial (permanent) income, measured in logs, and \(U_t \) captures the subsequent accumulation of income shocks.\(^{27}\) It follows that if we estimate the relationship between the log of the household’s current income, obtained from the SICHS census, and the 1871 revenue tax, which measures historical income, then the predicted income will measure \(y_0 \).\(^{28}\) To separately measure ancestral income along the male and female line, we take advantage of the fact that marriage in India is patrilocal, with women moving into their husbands’ homes, which are often outside their natal village. Using data from the SICHS survey, Borker et al. (2018) document that over 80% of women in the study area move outside their natal village when they marry. Given that men do not move when they marry, predicted current income based on the historical revenue tax in an individual’s natal village determines ancestral income along the male line; i.e. the father’s father’s inherited wealth, \(y_{0M}^{IM}/2 \). In contrast, predicted current income based on the historical tax revenue in the mother’s natal village determines ancestral income along the female line; i.e. the mother’s mother’s inherited wealth, \(y_{0W}^{IW}/2 \).\(^{29}\)

Having constructed measures of ancestral income that are specific to the household head and his wife, along the male and the female line, the next step is to locate the current income threshold at which SICHS households escape the nutrition trap. We do this by implementing the same procedure that was used to locate

\(^{27}\)The implicit assumption underlying the historical persistence is that households or dynasties; in particular, the men in those dynasties, have remained in the same village for many generations. This assumption is supported by recent evidence that permanent male migration from rural to urban areas is extremely low in India (Munshi and Rosenzweig, 2016). Providing additional support for the low spatial mobility in India, Borker et al. (2018) report an extremely high correlation between the caste composition of each village in the study area in 1871, based on the colonial population census, and the corresponding statistic in 2014, based on the SICHS census.

\(^{28}\)We allow for the possibility that the relationship between current income and the 1871 revenue tax will vary across castes or jatis, whose members were historically engaged in different occupations, by including caste fixed effects and the interaction of the fixed effects with the 1871 revenue tax in the estimating equation. As reported in Borker et al. (2018), the historical revenue tax strongly predicts current household income, with the F-statistic measuring joint significance of the revenue tax variable and the revenue tax-caste interactions exceeding 20. Note that although the estimation sample is restricted to households residing in the study area, the estimated parameters together with the historical revenue tax and a household’s caste affiliation can be used to predict current household income and, hence, measure ancestral wealth anywhere in the Northern Tamil Nadu region.

\(^{29}\)Both maternal grandparents in Figure 12 inherit \(y_{0W}^{IW}/2 \). Given that there are no wealth shocks prior to period 1; i.e. the grandparents’ generation, this implies that all their ancestors would have inherited \(y_{0W}^{IW}/2 \), going back to 1871. Predicted current income based on the 1871 revenue tax in the mother’s natal village measures ancestral wealth on the maternal grandfather’s male line, which, as discussed above, is equal to \(y_{0W}^{IW}/2 \).
Figure 13: Nutritional Status - Household Income and Disease - Household Income Relationships (South India)

(a) Height-for-age (0-59 months)
(b) Height-for-age (5-19 years)
(c) BMI
(d) Pr[disease]

Source: India Human Development Survey (IHDS) and South India Community Health Study (SICHS).
Disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.
Covariates listed in the text are partialled out prior to nonparametric estimation.

As a threshold earlier, with adult BMI as the outcome, using IHDS data. Prior to that, as a test of internal validity, we verify that the nutritional status-household income and cardiometabolic disease-household income relationships obtained with IHDS data are also obtained with SICHS data in Figures 13a-13d. The same set of covariates that were included in the estimating equation and partialled out prior to nonparametric estimation with the IHDS data are included here as well. To smooth out transitory shocks, we take the average of the household income reported in the SICHS census and the SICHS survey as our measure of household income. As a basis for comparison, we also include the corresponding nonparametric plot obtained with IHDS data for the South Indian states in each figure. The first observation from Figures 13a-13d is that the estimated relationships between each outcome and household income look very similar to what we obtained earlier with all-India data using the IHDS.\(^{30}\) The second observation is that the estimated relationships with SICHS and

\(^{30}\) The SICHS data set is not large enough to locate an income threshold with precision, except for adult BMI as the outcome.
the IHDS South India data match very closely across the income distribution in each figure.31

We next proceed to locate an income threshold, with adult BMI as the outcome, using SICHS data. Figure 14 reports the result of Hansen’s threshold test with SICHS data and, for comparison, with IHDS South India data. The F-type statistic used for the test increases steeply as the assumed income threshold moves away (on either side) from the income level at which it is minimized; the location of the threshold can thus be bounded relatively tightly. Notice that the threshold is located at precisely the same point with SICHS and IHDS South India data. Table 3 uses this result to separately estimate the adult BMI - household income relationship above and below the estimated threshold. Columns 1-2 report the estimation results with IHDS South India data; as with the all-India data, the relationship is positive and statistically significant above and below the threshold, although it is substantially larger above. Columns 3-4 repeat this exercise with the SICHS data; the results are qualitatively the same, except that the BMI-income relationship below the threshold is no longer statistically significant. Columns 5-6 add ancestral income to the estimating equation. Epigenetic inheritance has traditionally been assumed to occur along the female line and, hence, we include predicted household income based on the 1871 revenue tax in the mother’s natal village as an additional regressor in the estimating equation. The coefficient on this variable is positive and significant (reported below). However, a threshold can be located for each outcome using the IHDS data for South India. The threshold location, the baseline slope coefficient, and the slope change coefficient, with bootstrapped standard errors, are reported for each outcome in Appendix Table A5. Reassuringly, the estimated coefficients are very similar to what we obtained above with the all-India data.

31 Nutritional status is systematically higher with SICHS data relative to IHDS South India data. In line with this finding, Alacevich and Tarozzi (2017) document that average heights for children under 5 are lower in the IHDS than in the Demographic Health Survey (DHS). Once we control for the level, however, the SICHS and the IHDS South India data track very closely with household income for each outcome.
Table 3: BMI - Income Relationship (below and above the threshold)

<table>
<thead>
<tr>
<th>Sample relative to threshold:</th>
<th>IHDS South India</th>
<th>SICHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.: BMI</td>
<td>below above</td>
<td>below above below above below above above above</td>
</tr>
<tr>
<td>Current income</td>
<td>0.200** (0.084)</td>
<td>0.116 (0.251) 1.247*** (0.137) -0.201 (0.514) 1.241*** (0.198) -0.183 (0.539) 1.240*** (0.194)</td>
</tr>
<tr>
<td>Ancestral income (female line)</td>
<td>– – – – 0.509** (0.224) -0.033 (0.226) 1.032** (0.475) 0.129 (0.410)</td>
<td></td>
</tr>
<tr>
<td>Ancestral income (male line)</td>
<td>– – – – – – – – – -0.442 (0.482) -0.298 (0.397)</td>
<td></td>
</tr>
<tr>
<td>γ [Threshold location]</td>
<td>1.70 [1.55, 1.90]</td>
<td>1.69 [1.31, 2.05] 1.55 [1.00, 2.24] 1.51 [1.08, 1.99]</td>
</tr>
<tr>
<td>N</td>
<td>10194 12122 2652 4997 640 2286 603 2324</td>
<td></td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS) and South India Community Health Study (SICHS).
Current income constructed with SICHS data. Ancestral income constructed with SICHS data and 1871 revenue tax records.
Covariates listed in the text are included in the estimating equation.
* significant at 10%, ** at 5% and *** at 1%.

below, but not above, the threshold. The coefficient on current income, in contrast, continues to be positive and statistically significant above (but not below) the threshold.

The results reported above provide strong support for an epigenetically determined set point. Adult BMI today, for individuals whose household income lies below the threshold, is determined by ancestral income on their female line. There is sufficient variation in the 1871 revenue tax across villages to estimate the ancestral income effect with precision, which is indicative of epigenetic adaptation to (historically stable) local economic conditions. Moreover, our measure of ancestral income is based on the 1871 revenue tax in the village where the individual’s mother was born, which is not the same as the village in which the individual

As in the model, ancestral income could, in principle, determine BMI for some individuals above the threshold. However, their numbers will depend on the initial distribution of income and the evolution of income over time.

Notice that the sample size declines when we include ancestral income in the estimating equation. This is because some respondents in the SICHS survey were unable to recall their mother’s natal village. When they did know the name, they sometimes did not know the administrative block in which it was located (this information is needed because many villages have the same name). Finally, some current village names could not be matched with the names in the historical records. However, the sample attrition does not appear to be systematic. Appendix Figure A1a reports the nonparametric relationship between adult BMI and household income using the full SICHS sample and the reduced sample (consisting of individuals for whom ancestral income on the female side is available). The relationships with the two samples are almost identical. Appendix Figure A1b reports the corresponding threshold tests. While a threshold can also be located with the reduced sample, it shifts to the left, which explains the decline in the number of observations below the threshold, going from the full sample to the reduced sample. Nevertheless, and in line with the view that the reduced sample is not systematically selected, the coefficient on current household income is almost identical in Column 4 and Column 6.
was born. The fact that the maternal grandmother’s inherited wealth determines the individual’s BMI is indicative of epigenetic persistence. There remains the possibility that unobserved familial characteristics are generating a spurious correlation across the generations, but this would not explain why our measure of ancestral income only affects adult BMI for households below the estimated income threshold. A final contribution of our analysis to the epigenetics literature is that we can test for trans-generational inheritance along both the male and the female line. Recall that predicted household income based on the 1871 revenue tax in the mother’s natal village measures ancestral wealth on the female line, whereas the corresponding statistic based on the individual’s own village measures ancestral wealth on the male line. Including our measures of ancestral wealth on both the male and the female line in Table 3, Columns 7-8 we see that it is only ancestral income on the female line that contributes to current nutritional status. Consistent with the traditional view, our analysis indicates that trans-generational epigenetic transmission (at least with respect to nutritional status) occurs along the female line.

Having validated the structural BMI-income relationships specified by equation (2), we now proceed to equation (3). Given a set point for body weight, equation (3) specifies that the probability of cardiometabolic disease will be increasing in the difference between current income, y_t, and ancestral income, y_0, above an income threshold. Although we have an appropriate measure of y_0 with the SICHS data, we cannot directly verify the relationship implied by equation (3) because the SICHS sample is too small to accurately locate an income threshold with the risk of cardiometabolic disease as the outcome. What we do instead is to derive and estimate the biological relationship between the risk of cardiometabolic disease and BMI that is implied by equation (3), in combination with Proposition 1.
Table 4: Piecewise Linear Equation Estimates: disease - BMI

<table>
<thead>
<tr>
<th>Dataset:</th>
<th>IHDS All India (1)</th>
<th>IHDS South India (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.003** (0.001)</td>
<td>0.001 (0.002)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.006** (0.001)</td>
<td>0.007** (0.002)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>21.80 [20.20, 22.80]</td>
<td>20.60 [18.80, 22.20]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>0.066</td>
<td>0.061</td>
</tr>
<tr>
<td>N</td>
<td>76103</td>
<td>22060</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.
BMI is the independent variable.
Covariates listed in the text are included in the estimating equation.
* significant at 10%, ** at 5% and *** at 1%.

Proposition 1 indicates that there is a positive relationship between adult BMI and household income below an income threshold, while equation (3) specifies that there is no relationship between the risk of cardiometabolic disease and household income below the same threshold. If heterogeneity in household income is the source of forcing variation, then this implies that there will be no relationship between disease and BMI below a BMI threshold (which corresponds to an underlying income threshold). Above the threshold, both BMI and the risk of cardiometabolic disease are increasing in current household income from Proposition 1 and equation (3), respectively. This implies that the risk of disease will be increasing in BMI above the BMI threshold. Figure 15a tests the preceding predictions by nonparametrically estimating the relationship between the probability of cardiometabolic disease and BMI with IHDS all-India and IHDS South India data. The usual set of covariates are included in the estimating equation and partialled out prior to nonparametric estimation using Robinson’s procedure. There appears to be no relationship between the probability of disease and BMI up to a BMI threshold and a positive relationship above the threshold. This is confirmed by Hansen’s threshold test, reported in Figure 15b, where a threshold is located, with tight bounds on the 95% confidence interval, with both all-India and South India data.

The coefficients from piecewise linear equations, estimated with a slope-change at the thresholds located above, and with bootstrapped standard errors in parentheses, are reported in Table 4. The baseline slope coefficient, measuring the disease-BMI relationship below the estimated threshold, is small in magnitude, and we cannot reject the hypothesis that it is equal to zero with South Indian data. The slope-change coefficient, measuring the change in the disease-BMI relationship above the estimated threshold, is an order of magnitude
larger than the baseline slope coefficient and is precisely estimated with both samples. The threshold BMI at which there is a discontinuous slope change is estimated at 21.8 with all-India data and 20.6 with South India data. Although the threshold locations are precisely estimated, there is still substantial overlap in the confidence intervals and thus we cannot statistically reject the hypothesis that the threshold is the same with all-India and South India data. Even if we take the (higher) threshold location, obtained with all-India data, as the benchmark, a BMI of 21.8 is well within the normal range. The risk of cardiometabolic disease increases discontinuously at an extremely low BMI in the Indian population, and we will return to this observation in the concluding section of the paper.

4.5 Structural Estimation and Quantification

Having tested and validated the model, we proceed to estimate the key structural parameter, \(b \), in the model. The BMI-income relationship, below and above the income threshold, is derived in equations (4) and (5) as follows:

\[
\begin{align*}
\mathbb{E}(y_t | y_t \leq \alpha) &= a + b(y_t - e^L(y_t)) \\
\mathbb{E}(y_t | y_t > \alpha) &= a + b(y_t - e^H(y_t)).
\end{align*}
\]

Closed-form solutions for \(e^L(y_t) \), \(e^H(y_t) \), as functions of \(y_t, \mu_t, \sigma_t^2 \), and \(\alpha \) are derived in equations (6) and (7). The \(\alpha \) parameter can be estimated from the location of the threshold. Based on the discussion that followed Figure 12, we assume that \(t = 3 \) in the current generation. Recall that \(\mu_t \equiv t\mu \) and \(\sigma_t^2 \equiv t\sigma^2 \); it then follows that if the parameters of the distribution of income shocks, \(u_t \sim N(\mu, \sigma^2) \) can be estimated, then \(e^L(y_t), e^H(y_t) \) can be computed for any level of current income, \(y_t \). Once these adjustment terms are included in the estimating equation, the structural slope parameter, \(b \), can be independently estimated, below and above the income threshold.

To estimate the parameters of the distribution of income shocks, we require data on the income distribution over multiple time periods or generations. The distribution of pre-tax national income is available from the World Inequality Database from 1951 onwards for India (Chancel and Piketty, 2017). Assuming that each generation spans 30 years, we use the (real) income distribution in 1951, 1981, and 2011 and, in particular, the change in these distributions, to estimate the \(\mu \) and \(\sigma \) parameters.\(^{34}\)

Table 5 reports coefficient estimates from a piecewise linear equation, using IHDS all-India data, with child (aged 5-19) height-for-age in Columns 1-2 and adult BMI in Columns 3-4 as outcomes. In addition to household income, the usual covariates are included in each estimating equation. The slope-change in the estimating equation is imposed at the income level where the threshold was previously located, separately for each outcome. Columns 1 and 3 report benchmark estimates without including the \(e^L(y_t), e^H(y_t) \) adjustment terms. This specification is essentially the same as what we estimated earlier in Table 1, except that we now

\(^{34}\)The World Inequality Database provides the 99 fractiles of the income distribution: \(p_{0.01}, \ldots, p_{0.99} \), where \(p_xp_y \) refers to the average income between percentiles \(x \) and \(y \), in each of the three years. We set the number of dynasties in the economy to be equal to 10,000. We draw 10,000 times from the 1951 income distribution, with each fractile being equally represented, to generate the initial income distribution. For a given value of \(\mu \) and \(\sigma^2 \) this allows us to simulate the income distribution in 1981 and 2011. Our best estimate of the parameters of the income-shock distribution is the value of \(\mu \) and \(\sigma^2 \) for which the simulated income distribution in 1981 and 2011 matches most closely with the actual distribution.
Table 5: Structural Parameter Estimates

<table>
<thead>
<tr>
<th>Sample:</th>
<th>IHDS All India</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. variable:</td>
<td>HFA 5-19</td>
<td></td>
</tr>
<tr>
<td>Method:</td>
<td>without correction</td>
<td>with correction</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Slope below (β_L)</td>
<td>0.011 (0.028)</td>
<td>0.132*** (0.019)</td>
</tr>
<tr>
<td>Slope above (β_H)</td>
<td>0.221*** (0.031)</td>
<td>0.166*** (0.033)</td>
</tr>
<tr>
<td>F-statistic ($\beta_L = \beta_H$)</td>
<td>44.69 [0.000]</td>
<td>0.78 [0.374]</td>
</tr>
<tr>
<td>Imposed threshold</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>N</td>
<td>48846</td>
<td>48846</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Logarithm of household income (with and without adjustment term) is the independent variable.
Covariates listed in the text are included in the estimating equation.
* significant at 10%, ** at 5% and *** at 1%.

...report the slopes below and above the threshold (rather than the slope-change). Columns 2 and 4 report estimates with the adjustment terms included in the estimating equation. Although we can easily reject the null hypothesis that the slopes below and above the threshold are equal in Columns 1 and 3, without the adjustment, we cannot reject the null once the adjustment terms are included.

When $e^L(y_t)$, $e^H(y_t)$ are included in the estimating equation, the slope coefficients can be interpreted as the structural, b, parameter in the model. We impose the restriction in the model that the nutritional status - income relationship is the same below and above the threshold. The estimates reported in Columns 2 and 4 indicate that the restriction we have imposed is supported by the data. Moreover, as implied by Proposition 1, the slope without the adjustment term is less than (greater than) b, below (above) the threshold.

One benefit of the structural estimation is that it allows us to test restrictions that are imposed on the data by the model. An additional benefit is that it allows us to quantify the consequences of the nutrition trap. If the set point is irrelevant, there will be a linear relationship between household income and nutritional status: $\bar{z} = a + by_t$. The estimated b parameter can thus be used to predict what nutritional status would have been in the absence of the nutrition trap. Figure 16a reports actual height-for-age, predicted height-for-age (based on the model), and the counter-factual height-for-age (in the absence of the nutrition trap) for children aged 5-19. Figure 16b reports the corresponding relationships with adult BMI as the outcome. The usual set of covariates are partialled out, and the dashed vertical line in each figure marks the location of the income...
threshold. Based on these estimates, the fraction of stunted children (with a z-score below -2) would decline by 30% and the fraction of underweight adults (with a BMI below 18.5) would decline by 50% if the set point were absent.35 The dampening of the nutritional status-income relationship below the threshold, which we attribute to a predetermined set point, has important consequences for child and adult nutritional status in India, and we will return to this point in the concluding section of the paper.

5 External Validity

5.1 Micro Evidence Across Countries

The presence of a set point is evidently not unique to India. The next step in the analysis is thus to assess the applicability of the model to other countries. To test the model, the following data are required: (i) Household income, preferably at multiple points in time. (ii) Nutritional status of adults and children. (iii) Indicators of cardiometabolic disease. (iv) Household composition and detailed geographical indicators. The additional constraint is that a large sample is needed to locate a slope-change with precision. India is unusual in that two independent data sets are available that satisfy this requirement. A search of publicly available data sets from other countries recovered just two data sets that are suitable to test our model: the Indonesia Family Life Survey (IFLS) and the Ghana Socioeconomic Panel Survey (GSPS), although the GSPS does not contain information on adverse health conditions.36 We thus proceed to test the model with these two

35These statistics are based on a comparison of predicted and counter-factual malnutrition, taking account of the independent impact of the covariates.

36Other well known data sets that we considered, but were determined to be unsuitable, include the Demographic Health Survey (DHS), the Living Standards Measurement Study (LSMS), Young Lives, and the China Health and Nutrition Survey.
data sets, just as we did with the IHDS and SICHS for India.

While a set point may be present in other countries, the fraction of the population that has escaped its set point will depend on a country’s stage in the process of development. In the initial phase, when current income is relatively close to pre-modern income, most of the population remains in the nutrition trap. In the intermediate phase, as observed for India, a substantial fraction of the population continues to remain in the nutrition trap, but now a large number of individuals have also crossed the income threshold. This stage of development is characterized by the co-existence of low nutritional status, conditional on current income, in one segment of the population and a high prevalence of cardiometabolic disease in a different segment of the population. At later stages of development, most of the population will have escaped the nutrition trap.

At what stage in the development process are Indonesia and Ghana or, equivalently, how does current income in those countries compare with historical income? Although income data from the Madison Project Database for African countries only go back to 1950, adult height is available for many developing countries as far back as the nineteenth century. It is standard practice to use adult height as a proxy for income, and the standard of living, in historical research (Steckel, 1995). Figure 17 thus plots the relationship between current per capita GDP and adult height in 1900 for a number of developing countries, including India, Indonesia, and Ghana.\footnote{We include all countries in South and South East Asia and Sub-Saharan Africa that satisfy the following requirement: their GDP per capita must be less than $12,000, which roughly corresponds to the upper bound for lower-middle income countries set by the World Bank. The same criterion is applied in the cross-country figures that follow.}

The first point to take away from the figure is that there has been a reversal of fortunes over the past century, reflected by the negative relationship between current income and our proxy for historical income. The second point to take away from the figure is that the mismatch between current income and historical income is greater in Asia than in Africa, the two regions that we will focus on in the (CHNS).
macro analysis. Based on these aggregate statistics, a larger fraction of the population is likely to have escaped the nutrition trap in Asian countries relative to African countries. Focusing on specific countries, we would expect the tests of the model to generate similar results for India and Indonesia; indeed, we might expect to find even stronger results for Indonesia given the larger gap between current and historical income. In contrast, we would expect a larger fraction of the population in Ghana to have remained at its set point. If we do locate a threshold in that country, it would be relatively far to the right of the income distribution.

Figure 18a nonparametrically estimates the relationship between children’s nutrition status and household income, separately for kids aged 0-59 months and 5-19 years, using Indonesia Family Life Survey (IFLS)

38 Deaton (2007) and Deaton and Drèze (2009) note that real per capita incomes were historically lower in South Asia than in Africa. However, incomes in South Asia have been growing relatively rapidly since the 1980’s and now exceed those in Africa.
Table 6: Piecewise Linear Equation Estimates: nutritional status and disease (Indonesia)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>BMI (3)</th>
<th>Disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.021 (0.030)</td>
<td>0.027 (0.018)</td>
<td>0.041 (0.054)</td>
<td>-0.002 (0.009)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.127** (0.045)</td>
<td>0.081** (0.019)</td>
<td>0.494** (0.059)</td>
<td>0.019 (0.009)</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.020</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.377</td>
<td>-1.420</td>
<td>23.502</td>
<td>0.163</td>
</tr>
<tr>
<td>N</td>
<td>7771</td>
<td>18375</td>
<td>33219</td>
<td>25422</td>
</tr>
</tbody>
</table>

Source: Indonesia Family Life Survey (IFLS).

Disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.

Logarithm of household income is the independent variable.

* significant at 10%, ** at 5% and *** at 1%.

Data. Figure 18b reports the corresponding nonparametric relationships between adult BMI, the probability of cardiometabolic disease, and household income. The same set of covariates that were included in the estimating equation with Indian data are included here as well and, as usual, are partialled out prior to nonparametric estimation. The IFLS has been conducted in five waves. To be consistent with the analysis using IHDS data in 2005 and 2011, the outcomes with IFLS data are measured in the last two (2007 and 2014) waves. However, household income is averaged over all available waves to span as wide a time-window as possible and to smooth out transitory income shocks. Visual inspection of Figures 18a and 18b indicates that the relationship with Indonesian data look very similar to what we obtained with Indian data; there is a weak or absent relationship between household income and each outcome at low levels of household income and a steeper relationship at higher income levels.

Figure 18c reports the result of Hansen’s threshold test with children’s nutritional status as outcomes, while Figure 18d reports the results of the test with nutritional status and the risk of disease for adults as outcomes. Once again, the results are very similar to what we obtained earlier with Indian data. A threshold is located with a high degree of statistical precision with each outcome. Our best estimate of the threshold location matches almost exactly for the younger and older children and is very close for the two adult outcomes. Table 6 reports coefficient estimates, with bootstrapped standard errors, from a piecewise linear regression with a slope-change at the estimated threshold. As with the IHDS data, we can easily reject the null hypothesis that there is no slope-change with each outcome. In addition, the confidence intervals for the threshold location overlap with each pair of outcomes. The baseline slope coefficients and the slope-change coefficients are broadly the same as what we estimated with Indian data, except that the baseline
Figure 19: Nutritional Status - Household Income Relationships (Ghana)

(a) Nonparametric relationships for children.

(b) Nonparametric relationship for adults.

(c) Threshold tests for children.

(d) Threshold test for adults.

Source: Ghana Socioeconomic Panel Survey (GSPS).
For panels (a) and (b), covariates listed in the text are partialled out prior to nonparametric estimation.
For panels (c) and (d), 5% critical values are used to bound the threshold location.

As noted, the GSPS does not collect data on adverse health outcomes. However, the full set of covariates that were used in the Indian and Indonesian analysis are available and can be partialled out prior to nonparametric estimation. The GSPS was conducted in two waves; 2009-2010 and 2013. As usual, the outcomes are measured in both waves, while household income is averaged over the two waves. In contrast with the nonlinear income effects that we estimated with each outcome using Indian and Indonesian data, nutritional status appears to be increasing continuously (even at lower income levels) in Figure 19a and 19b. Formal statistical support for this observation is provided in Figures 19c and 19d, where the Hansen test is unable to detect an income
Table 7: Nutrition - Income Estimates for Ghana.

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>BMI (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log income</td>
<td>0.033*</td>
<td>0.041***</td>
<td>0.201***</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.009)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.322</td>
<td>-0.919</td>
<td>23.969</td>
</tr>
<tr>
<td>N</td>
<td>3535</td>
<td>9677</td>
<td>11642</td>
</tr>
</tbody>
</table>

Source: Ghana Socioeconomic Panel Survey (GSPS).
* significant at 10%, ** at 5% and *** at 1%.

As reported in Table 7, there is a positive and statistically significant relationship between household income and nutritional status, both for children and adults. Where the Ghana data differ from the Indian and Indonesian data is that there is no slope change. Our interpretation of this finding, which is consistent with the fact that current and historical incomes are relatively close in Africa, is that the bulk of the Ghanaian population remains at its set point.

5.2 Macro Evidence Across Countries

The nutrition-income puzzle that Deaton (2007) uncovered is that nutritional status in South Asia is lower than what would be predicted by GDP per capita, whereas the reverse is true for Africa.39 Recall from Figure 17 that Asian countries have higher current income but lower historical income than African countries. If a substantial fraction of the population continues to remain in the nutrition trap in both regions, then this would explain why nutritional status is higher (lower) in Africa (Asia) relative to what would be predicted by current income. To make this argument more precise, consider a variant of our set point model that is adapted to a cross-country setting with aggregate data. We make the following assumptions: (i) A fixed fraction of the population, π, remains within its set point in each country, j, in the current time period, t. (ii) Log income, $$y_{jt} \sim N(\mu_{jt}, \sigma_t^2)$$. (iii) Each dynasty in country j has the same income, $$y^j_0$$, in the initial period, 0. Given these assumptions, and taking advantage of the properties of the normal distribution, average BMI in country j in the current period, $$z^j_t$$, can be expressed as a weighted average of initial income, $$y^j_0$$, and average

39Deaton considers a number of reasons for this stylized fact: First, he considers the possibility that there may be genetic differences across populations. He rules this out by noting that both South Asians and Africans who migrate to advanced economies quickly converge to the nutritional level of the native population (within a couple of generations). Second, he considers the possibility that the disease environment, associated with diarrheal disease, is especially unfavorable in South Asia. Using child and infant mortality as proxies for diarrheal disease, Deaton finds no evidence in support of this mechanism. Finally, Deaton considers, and rules out, the possibility that Africans have higher caloric intake than South Asians, despite having lower per capita income.
current income, \(\mu_t^j \):

\[
z_t^j = a + b \left[\pi y_0^j + (1 - \pi) \left(\mu_t^j + \sigma_t \phi \left[\Phi^{-1}(\pi; 0, 1); 0, 1 \right] \right) \right]
\]

(11)

Focus attention, to begin with, on the \(y_0^j \) term. Taking expectations with respect to \(\mu_t^j \), \(E(z_t^j | \mu_t^j) \) is increasing in \(E(y_0^j | \mu_t^j) \). Looking back at Figure 17, if we drew a horizontal line through the figure at any level of current (average) income, it is evident that historical heights (which proxy for historical incomes) would be higher for African countries. This implies that current BMI, conditional on current income, should be higher in Africa. Figure 20 tests this hypothesis by plotting average BMI against current GDP per capita. Drawing a vertical line through the figure at any level of current income, BMI is higher in African countries than in Asian countries. The same result (not reported) would be obtained if we replaced adult BMI with the fraction of children that are (not) stunted or with adult height (the measure used by Deaton).

What is driving the preceding result in our framework is the fact that the set point, \(y_0^j \), is higher in Africa than in Asia (conditional on current income). In practice, a larger fraction of the population will have escaped the nutrition trap in Asia than in Africa, weakening the contribution of the historically determined set point to current nutritional status. \(E(z_t^j | \mu_t^j) \) is also increasing in \(\mu_t^j \) (due to the second term on the right hand side of equation (11)). However, as long as the cross-country variation in historical income exceeds the variation in current income, and a sufficiently large fraction of the population remains at its set point in these economies, the cross-regional differences that we document in Figure 20 will continue to be obtained. Our model, based on a biological friction, is able to explain the well documented differences in nutritional status, conditional on income, between South Asia and India. Indeed, it can explain the wider difference between Africa and Asia, not just South Asia, as observed in Figures 17 and 20.

Biological frictions based on a set point also have implications for the emergence of metabolic diseases during the process of economic development. The micro evidence, presented above, indicates that the risk of these diseases increases when (normal weight) individuals escape the nutrition trap. While we expect to observe this phenomenon in any developing economy, the prevalence of cardiometabolic disease at a particular point in time will depend on the fraction of the population that has escaped the nutrition trap, together with the mismatch between current income and historical income for those who have crossed the income threshold. We would naturally expect these conditions to vary across populations, and the diabetes literature has indeed identified large differences in the prevalence of that disease and related metabolic conditions. As with the nutrition literature, South Asians have received disproportionate attention. While diabetes was virtually nonexistent on the South Asian subcontinent until a few decades ago, rapid economic growth in India in

\[\text{Let } y_t^j \text{ denote the income threshold above which households escape their set point. } \pi = Pr[y_t^j \leq y_t^j] = \Phi(y_t^j; \mu_t^j, \sigma_t^2). \] By the property of the normal distribution, \(y_t^j = \Phi^{-1}(\pi; \mu_t^j, \sigma_t^2) = \mu_t^j + \sigma_t \Phi^{-1}(\pi; 0, 1). \) By the property of the normal distribution, once again, and substituting the expression for \(y_t^j \) derived above, average income above the threshold can be expressed as:

\[
E[y_t^j | y_t^j < \infty] = \mu_t^j + \sigma_t \int \frac{\phi \left(\frac{y_t^j - \mu_t^j}{\sigma_t}; 0, 1 \right)}{1 - \Phi \left(\frac{y_t^j - \mu_t^j}{\sigma_t}; 0, 1 \right)} = \mu_t^j + \sigma_t \phi \left[\Phi^{-1}(\pi; 0, 1); 0, 1 \right]
\]
particular has been accompanied by a substantial increase in the prevalence of the disease among normal weight adults (Ramachandran, 2005; Narayan, 2017).

Making the same assumptions as above, the aggregate version of the disease-income relationship specified in equation (3) can be expressed as:

$$D_j^t = \Gamma_1 + \Gamma_2(1 - \pi) \left[\mu_j^t + \sigma_t \frac{\phi \left(\Phi^{-1}(\pi; 0, 1); 0, 1 \right)}{1 - \pi} - y_0^j \right],$$

where D_j^t is the fraction of the population in country j in the current period t that has contracted metabolic disease and $(1 - \pi)$ is the fraction of the population that has escaped the nutrition trap and is at elevated risk of the disease. The term in square brackets in the preceding equation measures the average mismatch between current income and historical income (which determines the set point) for individuals who have escaped the nutrition trap. As in the model, the risk of cardiometabolic disease is increasing in this mismatch, whereas the risk is independent of income below the threshold.

Taking expectations with respect to average BMI, z_t^j, in equation (12), $E(D_j^t | z_t^j)$ is increasing in $E(\mu_j^t - y_0^j | z_t^j)$. Recall from Figure 17 that for any level of average current income, μ_j^t, average historical income, y_0^j, is higher in African countries than in Asian countries. We know from equation (11) that z_t^j is a weighted average of μ_j^t and y_0^j. Thus, if an African and Asian country have the same average BMI, then the Asian country must have higher μ_j^t and lower y_0^j. Based on this argument, $E(\mu_j^t - y_0^j | z_t^j)$ is higher in Asia than in Africa and, hence, $E(D_j^t | z_t^j)$ must be higher as well. Although we assume for simplicity that the fraction of the population that has escaped the nutrition trap is the same in all countries, we noted above that π would be higher in Asia (because $\mu_j^t - y_0^j$ is higher in that region). This adjustment would increase the fraction of the population at risk of cardiometabolic disease in Asian countries and reinforce the prediction that $E(D_j^t | z_t^j)$
Figure 21 tests this prediction by plotting diabetes prevalence against average BMI. Drawing a vertical line through the figure at any BMI level, diabetes is higher in Asian countries than in African countries. Notice that while India is an outlier in the figure, other Asian countries are even bigger outliers and not all of them are South Asian. Although the diabetes literature has tended to focus on South Asians as a particularly vulnerable group, our analysis, as with the analysis of the nutritional status - income relationship, indicates that inter-regional differences in diabetes prevalence extend to the Asian continent as a whole.

6 Conclusion

This paper provides a unified explanation for two stylized facts: (i) the relatively weak relationship between nutritional status and income in developing countries, and (ii) the increased prevalence of cardiometabolic disease (diabetes, hypertension, cardiovascular disease) among normal weight individuals with economic development. Our explanation is based on a set point for body weight or BMI, which is adapted to economic conditions in the pre-modern economy, but which fails to subsequently adjust to rapid economic change. This implies that during the process of development, the population will be divided into two distinct groups: Individuals in the first group remain at their set point BMI, despite the increase in their consumption, and are (partly) responsible for the weak relationship between nutritional status and current income. Individuals in the second group, who have escaped the nutrition trap, but are not necessarily overweight, are the primary contributors to the increased risk of cardiometabolic disease.

To test this theory, we develop a model of nutrition and health in which the presence of an epigenetically determined set point is taken as given. The implications of this model are validated with micro-data from...
multiple countries; India, Indonesia, and Ghana. In addition, we use unique data, recently made available from the South India Community Health Study (SICHS), to verify the structural relationships underlying the model; in particular, we document that adult BMI is determined by ancestral income on the female line alone for households below an estimated income threshold (who are at their set point), whereas adult BMI is determined exclusively by current income for households above the threshold (who have escaped the nutrition trap). To complete the analysis, the model is adapted to aggregate data, allowing us to simultaneously explain why nutritional status in Africa (Asia) is higher (lower) than what would be predicted by current GDP per capita, as well as why there is higher prevalence of diabetes, for given BMI, in Asian versus African countries.

Our structural estimates and accompanying counter-factual simulations for India, a country where both stylized facts have been well documented, indicate that stunting among 5-19 year olds would have declined by 30% and the fraction of underweight adults (with BMI below 18.5) in the population would have declined by 50% in the absence of a threshold. Malnutrition is associated with physical and cognitive under-development among children and physiological and psychological impairment among adults (Dasgupta and Ray, 1986; Dasgupta, 2011). While nutrition programs are an obvious solution to this problem, the insight from our analysis is that such programs will only be successful if they are intense enough and sustained enough to move individuals out of their set point.

Nutritional status will inevitably improve with economic development and an increasing fraction of the population will escape the nutrition trap. Our analysis indicates that these nutritional changes will be accompanied by an increased incidence of cardiometabolic disease. It is imperative that governments in developing countries, which are likely to face an epidemic of cardiometabolic disease in the coming decades, take adequate steps to improve the prevention and treatment of these conditions. Screening will be an important component of these programs, and successful screening requires the at-risk population to be accurately identified. It has been recommended that the lower bound for the overweight range in Asian populations be reduced from 25 to 23, to account for the fact that these populations are at elevated risk of cardiometabolic disease at lower BMI (Deurenberg-Yap et al., 2002; Pan et al., 2004). Our analysis, based on rigorous statistical tests and conducted with representative Indian data, indicates that there is a discontinuous increase in the risk of cardiometabolic disease at a BMI below 22. The estimated threshold is even lower for South India, at a BMI below 21. The public health challenge faced by countries like India, which will need to successfully navigate the nutrition-disease tradeoff over the next couple of generations, may be even greater than what is currently envisaged.
References

Table A1: Piecewise Linear Equation Estimates (period-specific income)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>HFA 0-59</th>
<th>HFA 5-19</th>
<th>BMI</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Baseline slope</td>
<td>-0.032</td>
<td>-0.007</td>
<td>0.183**</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.030)</td>
<td>(0.031)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.334**</td>
<td>0.178**</td>
<td>0.856**</td>
<td>0.030**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.030)</td>
<td>(0.048)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30</td>
<td>1.40</td>
<td>1.80</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>[1.05, 1.80]</td>
<td>[1.25, 1.60]</td>
<td>[1.75, 1.85]</td>
<td>[2.05, 2.35]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.652</td>
<td>21.996</td>
<td>0.067</td>
</tr>
<tr>
<td>N</td>
<td>21534</td>
<td>46545</td>
<td>76189</td>
<td>146287</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.

Table A2: Piecewise Linear Equation Estimates (outcomes restricted to IHDS 2011-2012)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59</th>
<th>HFA 5-19</th>
<th>BMI</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.071</td>
<td>0.045</td>
<td>0.294**</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.034)</td>
<td>(0.062)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.345**</td>
<td>0.188**</td>
<td>0.861**</td>
<td>0.036**</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
<td>(0.035)</td>
<td>(0.074)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30</td>
<td>1.55</td>
<td>1.60</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>[0.75, 1.85]</td>
<td>[1.25, 2.05]</td>
<td>[1.50, 1.75]</td>
<td>[1.70, 2.05]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.900</td>
<td>-1.578</td>
<td>22.190</td>
<td>0.098</td>
</tr>
<tr>
<td>N</td>
<td>10363</td>
<td>35764</td>
<td>53005</td>
<td>74166</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.
Table A3: Piecewise Linear Equation Estimates (household composition included in covariates)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>BMI (3)</th>
<th>Disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.022 (0.072)</td>
<td>0.047 (0.032)</td>
<td>0.348** (0.046)</td>
<td>0.005** (0.002)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.333** (0.070)</td>
<td>0.159** (0.032)</td>
<td>0.597** (0.055)</td>
<td>0.017** (0.003)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.40 [1.15, 2.05]</td>
<td>1.50 [1.20, 1.95]</td>
<td>1.70 [1.55, 1.85]</td>
<td>1.95 [1.80, 2.15]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.649</td>
<td>22.00</td>
<td>0.067</td>
</tr>
<tr>
<td>N</td>
<td>21634</td>
<td>48845</td>
<td>76949</td>
<td>147729</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.

Table A4: Piecewise Linear Equation Estimates (alternative nutritional status measures)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>WFA 0-59 (1)</th>
<th>WFA 5-19 (2)</th>
<th>Height (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.052 (0.055)</td>
<td>-0.004 (0.029)</td>
<td>0.191 (0.111)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.287** (0.055)</td>
<td>0.331** (0.036)</td>
<td>0.836** (0.121)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30 [1.05, 2.20]</td>
<td>1.75 [1.55, 1.95]</td>
<td>1.45 [1.30, 1.65]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.512</td>
<td>-1.635</td>
<td>154.483</td>
</tr>
<tr>
<td>N</td>
<td>24843</td>
<td>23030</td>
<td>77000</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Nutritional status for children is measured by weight-for-age (WFA) and for adults by height.
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.
Table A5: Piecewise Linear Equation Estimates (IHDS South India)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>BMI (3)</th>
<th>Disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.014 (0.065)</td>
<td>0.026 (0.029)</td>
<td>0.200** (0.046)</td>
<td>0.000 (0.003)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.564** (0.065)</td>
<td>0.464* (0.030)</td>
<td>0.961** (0.054)</td>
<td>0.025** (0.005)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>2.60 [1.30, 2.00]</td>
<td>2.90 [2.65, 3.20]</td>
<td>1.70 [1.55, 1.90]</td>
<td>2.00 [1.70, 2.30]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.792</td>
<td>-1.655</td>
<td>22.186</td>
<td>0.066</td>
</tr>
<tr>
<td>N</td>
<td>4291</td>
<td>9934</td>
<td>22316</td>
<td>40869</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS).
Covariates listed in the text are included in the estimating equation.
Bootstrapped standard errors are in parentheses.
Bootstrapped 95% confidence bands for the threshold location are in brackets.
* significant at 10%, ** at 5% and *** at 1%.

Figure A1: BMI - Income Relationship

(a) Nonparametric relationships BMI - Income

Source: South India Community Health Study (SICHS).
Covariates listed in the text are partialled out prior to nonparametric estimation.