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6LQFH�WKH�EUXLVLQJ�ORVVHV�RI�WKH�¿QDQFLDO�FULVLV�RYHU�D�GHFDGH�DJR��
LQYHVWRUV�KDYH� VRXJKW� RXW� QRYHO� DQG� FRPSOH[�ZD\V� WR�³EHDW� WKH�
PDUNHW´��DLPLQJ�WR�PD[LPL]H�UHWXUQV�DQG�PLWLJDWH�ULVN��0DQ\�KDYH�
WXUQHG� WR� FRPSXWHU�GULYHQ� ³V\VWHPDWLF´� LQYHVWPHQW� VWUDWHJLHV��
ZKLFK�DUH�IUHHG�IURP�WKH�VKDFNOHV�RI�KXPDQ�ELDV�DQG�VORZ�UHDFWLRQ��
,Q�WKLV�SDSHU��%UHQGDQ�'RZOLQJ�VXJJHVWV�WKH�YDVW�SRWHQWLDO�RI�QHX�
UDO� QHWZRUNV� WR� SURYLGH� DFFXUDWH� GHULYDWLYH� SULFLQJ�� �'HULYDWLYH�
SULFLQJ�KDV�ORQJ�EHHQ�YLHZHG�DV�RQH�RI�WKH�PRVW�FKDOOHQJLQJ�WDVNV�
ZLWKLQ� ¿QDQFLDO�PDWKHPDWLFV�� EXW� WKLV� SDSHU� ¿QGV� WKDW� DUWL¿FLDO�
QHXUDO�QHWZRUNV�SURYLGH�DQ�H[FHOOHQW�DSSURDFK�WR�WKLV�FKDOOHQJH��
7UDGLWLRQDOO\��YDULDWLRQV�RI�WKH�%ODFN�DQG�6FKROHV�PRGHO�KDYH�EHHQ�
XVHG��EXW�WKHVH�PRGHOV�UHO\�RQ�WKH�XVHU¶V�DELOLW\�WR�DFFXUDWHO\�PRG�
HO�WKH�VWRFKDVWLF�SURFHVV�RI�WKH�VWRFN¶V�SULFH�DQG�DUH�WKXV�V\VWHP�
DWLFDOO\�ÀDZHG�ZKHQ�IDXOW\�DVVXPSWLRQV�DUH�PDGH�RU�WKH�SURFHVV�
LV�PLVVSHFL¿HG��'RZOLQJ�¿QGV�WKDW�WKH�QRQ�OLQHDU�UHODWLRQVKLS�EH�
WZHHQ�DQ�RSWLRQ¶V� VWULNH�� WLPH�WR�H[SLU\��DQG� WKH�XQGHUO\LQJ� VSRW�
DQG�SULFH�RI�D�FDOO�RSWLRQ�LPSOLHG�E\�WKH�%ODFN�6FKROHV�PRGHO�DUH�
DOO�ZHOO�FDSWXUHG�E\�WKH�DUWL¿FLDO�QHXUDO�QHWZRUN�DQG�WKDW�KXPDQ�
HUURU�LV�DYRLGHG��7KH�SDSHU�WKHQ�PDNHV�WKH�FDVH�IRU�WKH�UROH�RI�PD�
FKLQH�OHDUQLQJ�PRUH�EURDGO\�LQ�GHULYDWLYH�SULFLQJ�ZLWKLQ�¿QDQFH��
'RZOLQJ¶V� VXSHUE� XVH� RI� ¿QDQFLDO� HFRQRPLF� WKHRU\�� PDWKHPDW�
LFV��VWDWLVWLFDO�PRGHOOLQJ�DQG�NQRZOHGJH�RI�PDFKLQH�OHDUQLQJ�KDV�
HDUQHG�³1HXUDO�1HWZRUNV�DV�DQ�2SWLRQ�3ULFLQJ�0HWKRG´�WKH�WLWOH�
RI�³%HVW�$SSOLHG�(VVD\´�RI�WKH�6WXGHQW�(FRQRPLF�5HYLHZ�;;;,9�
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I.Introduction

The accurate pricing of derivatives is one of the most complex and 
FKDOOHQJLQJ� WDVNV� LQ� ¿QDQFLDO� PDWKHPDWLFV�� ,Q� ������ %ODFN� DQG�

Scholes published their breakthrough formula for pricing European op-
tions under a certain set of assumptions (Black, 1973). Since then, several 
variations of the Black-Scholes model have been devised and employed 
E\�LQYHVWPHQW�EDQNV�DQG�SURSULHWDU\�WUDGLQJ�¿UPV��7KHVH�YDULDWLRQV�FDQ�
potentially come in the form of incorporating jumps in stock prices (e.g. 
due to earnings releases) or modifying the assumption on the distribution 
of instantaneous stock returns (classically assumed to be log-normally 
distributed) (Wyse, 2019). 

In all cases, however, the pricing formula relies on the paramet-
ric form of the underlying asset’s price dynamics. Should one mis-spec-
ify or make faulty assumptions regarding the stochastic process for the 
underlying’s price, one will yield a model which systematically mispric-
es the contracts of interest. Such models are called parametric.

                    As more complex derivatives emerge and with the tremendous 
progress in computational power over the past few decades, there has 
been a marked increase in interest in using machine learning – data-driv-
en approaches – for pricing such securities. Such models are called “non-
parametric models” since they do not require any assumptions on the 
parametric form of the underlying’s price dynamics. 

                 These models have some key advantages over their parametric 
counterparts. First and foremost, they don’t need to make any restric-
WLYH�SDUDPHWULF�DVVXPSWLRQV�DQG�GRQ¶W�VXIIHU�IURP�PLV�VSHFL¿FDWLRQ�HU-
ror – this can, in theory, make them more accurate in markets for highly 
complex securities with non-closed form pricing formulas or non-stan-
GDUG�XQGHUO\LQJ�G\QDPLFV��6HFRQG�� WKH\� DUH�PRUH�ÀH[LEOH�� EHLQJ� DEOH�
to change how they price a contract in the presence of market structure 
changes. Lastly, they’re relatively trivial to implement and can be readily 
applied to highly differing securities.

                The major drawback to such nonparametric methods is that they 
are extremely data-intensive – they require many months, if not years, of 
historic data in order to be well-trained. They are also computationally 
LQWHQVLYH� DQG� RIWHQ� UHTXLUH� D� VLJQL¿FDQW� WLPH� LQYHVWPHQW� IRU� K\SHUSD-
rameter tuning. Furthermore, naive models which are trained off historic 



189

 economicS of  financial  maRketS   

prices will at best replicate the market’s pricing model, which may itself 
EH�LQDFFXUDWH��$V�VXFK��VLJQL¿FDQW�ZRUN�LQWR�GHWHUPLQLQJ�WKH�³FRUUHFW´�
prices may need to undertaken before training. In addition, if the un-
derlying asset’s price dynamics are well understood and a closed form 
expression for the contract’s price exists, then a parametric method will 
always outperform any nonparametric method. Nevertheless, there are 
FHUWDLQO\�VLWXDWLRQV�ZKHUH�VXFK�PRGHOV�FDQ�EH�PRUH�HI¿FLHQW�RU�EHQH¿-
FLDO��,Q�WKLV�SDSHU��ZH�IRFXV�RQ�DUWL¿FLDO�QHXUDO�QHWZRUNV�±�VSHFL¿FDOO\�
multi-layer perceptrons – but there are several other non-parametric/da-
ta-driven modelling techniques which could similarly be employed.

II. Background
3ULFLQJ�(XURSHDQ�&DOO�2SWLRQV
�����������2QH�RI�WKH�PRVW�LPSRUWDQW�¿QGLQJV�LQ�¿QDQFLDO�PDWKHPDWLFV�LV�WKH�
Black-Scholes equation. This partial differential equation describes the 
evolution of an option’s price, 9� over time (Black, 1973):

           Applying the corresponding terminal and boundary conditions, we 
can yield the value of a European call on a non-dividend-paying stock:

�����������ZKHUH�ĭ�LV�WKH�&')�RI�D�VWDQGDUG�QRUPDO��6t is the spot price of 
the underlying asset, K is the strike price, r LV�WKH�ULVN�IUHH�UDWH��ı�LV�WKH�
volatility of returns of the underlying asset, and T-t is the time to maturity 
(in years).

            The objective of our neural networks will be to recover this 
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pricing formula from MXVW�the data. If they are successful, then this will 
then suggest that neural networks can be used for closely approximating 
similar pricing formulae which mightn’t have an analytic solution but are 
similarly of high non-linearity (Hutchinson et al., 1994: 3). 

$UWL¿FLDO�1HXUDO�1HWZRUNV
�$UWL¿FLDO�QHXUDO�QHWZRUNV��$11��DUH�SUHGLFWLRQ�PRGHOV�EDVHG�

on the trends that have occurred in the past. They are inspired by biolog-
ical neural networks like those found in our brains. They consist of a col-
OHFWLRQ�RI�FRQQHFWHG�³DUWL¿FLDO�QHXURQV´��7KHVH�WDNH�LQSXWV�DQG�SURGXFH�
an output, depending on the node’s activation function. The connections/
edges allow neurons to transmit signals (their outputs) to other neurons in 
other “layers” of the network. Typically, the network is composed of the 
input layer, several “hidden” layers, and the output layer. The nodes and 
edges have weights (and each layer has an added bias constant) which 
are adjusted during the learning process to minimize some loss function.

                 Multilayer perceptrons (MLP) are fully connected ANNs. That 
is, each neuron is connected to every neuron in the previous and subse-
quent layer. There are no “loops” in the network, meaning that the value 
of a neuron does not feed backwards into a neuron of a layer preceding it.

                  When training MLPs, the back-propagation algorithm is typ-
ically used. This uses stochastic gradient descent to recursively optimize 
the weights and biases on each neuron over random subsets of the data 
IRU�HDFK�LWHUDWLRQ��7KH�REMHFWLYH�RI�WKLV�DOJRULWKP�LV�WR�¿QG�WKH�YDOXHV�IRU�
WKH�ZHLJKWV�DQG�ELDVHV�ZKLFK�PLQLPL]H�VRPH�VSHFL¿HG�REMHFWLYH�IXQF-
tion. For regression, the standard is to minimize the root-mean-square-
error (RMSE).

               Typically, when training a model, we normalize the input vari-
ables to be between 0 and 1 or -1 and 1 (depending on the activation 
function). This prevents certain input variables from “dominating” the 
network initially and has been shown to drastically reduce the amount of 
time needed to adequately train the network.

             One important property of neural networks with non-linear ac-
tivation function is the universal approximation result. Cybenko (1988) 
and Hornik (1989) demonstrate that an MLP can represent to arbitrary 
precision almost any linear and nonlinear function with bounded inputs 
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DQG�RXWSXWV��+XWFKLQVRQ��HW�DO�������������$V�VXFK��LW�LV�JHQHUDOO\�VXI¿-
cient to only have one hidden layer in the network. When increasing the 
number of neurons in the hidden layer, there is a (non-linear) tradeoff 
then faced between model accuracy and computational cost (and risk of 
RYHU�¿WWLQJ��

III. Data Set
6LPXODWHG�6WRFN�3ULFHV
�����������)RU�RXU�¿UVW�PRGHO��ZH�VLPXODWH�WZR�VWRFN�SULFHV�LQGHSHQGHQWO\�DF-
cording to the Black-Scholes assumption of geometric Brownian motion:

            

                            

            

          We take the number of trading days per year to be 252 and then 
draw 504 pseudorandom variates Zt where

Then, via Ito’s lemma, we have

         For both simulated stocks, we use a drift parameter of 10% per 
annum, a volatility parameter of 50% annualized, and a starting price of 
2500. The result is two simulated 2-year price sequences, S1 and S2.

+LVWRULF�6	3����,QGH[�3ULFHV
           For our second model, we will use the historic price levels of the 
S&P500 market index. We take two years of historic data between Janu-
ary 1, 2017 and January 1, 2019. The resulting data frame has 502 obser-
YDWLRQV��:H�¿QG�WKDW�WKH�DYHUDJH�DQQXDOL]HG�UHWXUQ�YRODWLOLW\�ZDV�����
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6\QWKHVL]LQJ�2SWLRQ�&KDLQV
                Unfortunately, historic option data is proprietary and expensive. 
So, we generate our own option chains around the price levels of both the 
simulated stocks and the real index. 

            We employ a rolling-window technique whereby for each observa-
tion in the three data sets, we create options at strikes between the current 
price minus 150 and the current price plus 150, in intervals of 10. For 
each strike, we then generate options with time to expiries between 1 and 
50. We then use the Black-Scholes pricing formula to price each option. 
For the two simulated stocks, we just use their volatility parameter of 
����IRU�ı��)RU�WKH�LQGH[��ZH�XVH�WKH�DYHUDJH�DQQXDOL]HG�UHWXUQ�YRODWLOLW\�
RI������ IRU�ı��)RU�ERWK��ZH� WDNH� WKH� ULVN�IUHH� UDWH��r, to be constant at 
����7KLV�JUHDWO\�VLPSOL¿HV�WKH�OHDUQLQJ�SURFHVV�VLQFH�ZH�GRQ¶W�QHHG�WR�
model this as an extra variable. If the models can capture the relationship 
between the Black-Scholes price and the option’s strike, time-to-expiry, 
and the current spot, then learning networks can readily capture the ef-
fects of the risk-free rate on the option’s price 1.

�����������)RU�WKH�¿UVW�PRGHO��RSWLRQV�RQ�S1 will be used for training and a 
random sample of options on S2 will be used for testing. For the second 
model, we use an 80-20 training-test split of the synthesized options on 
the index. This is because we don’t have another independent price series 
for which we can say the price dynamics are exactly equivalent.

            There are several downsides to our methodology. First, while it 
is true that expected future volatility is constant for the simulated stocks, 
it is false for the index. Indeed, the stock market can enter periods of 
extreme turbulence during which expected future volatility until the op-
tion’s maturity will vary wildly. Furthermore, expected future volatility is 
not constant as the time horizon increases. That is, options from the same 
day with the same strike but with differing time to expiries will generally 
not have the same implied volatilities. Summarizing these issues, in the 
real world the “correct” volatility parameter for the Black-Scholes price 
will be neither time-homogeneous nor independent of time to expiry. 

                  In addition, though less important, this approach means that our 
neural networks will be trying to emulate the Black-Scholes model. This 
equivalently relates to our models not being able to capture the implied 
1 See Hutchinson, Lo and Poggio (1994) for more details or note that a call’s rho is a function of all 
variables.
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volatility “smile” we often see from market prices. However, as men-
tioned earlier, if the models are successful, we can comfortably conclude 
that they will generalize to being able to price derivatives which do not 
quite follow the Black-Scholes formula but are likewise non-linear in pa-
rameters. However, it would have been far more desirable to have access 
to many months – or even years – of historical option data so we could 
both analyze the deviations from the Black-Scholes model implied by the 
PDUNHW��DQG�WR�FRQ¿UP�WKH�QRWLRQ�WKDW�WKHVH�PRGHOV�FDQ�EH�PRUH�JHQHUDO�

IV. Methodology
,QGHSHQGHQW�9DULDEOHV
               The key input variables for the models will be the option’s strike, 
spot price and time to expiry. Since, in all three data sets, we generate 
the option prices with constant volatility and risk-free rate parameters, 
we don’t use these as independent variables. We again reiterate that in-
cluding the historic risk-free rate in pricing the contracts at each stage 
RI�RXU�UROOLQJ�ZLQGRZ�SURFHGXUH�ZRXOG�EH�ODUJHO\�VXSHUÀXRXV�LQ�WHVWLQJ�
how well these machine learning techniques can reconstruct the Black-
Scholes formula. However, if we had lots of actual historic RSWLRQ prices, 
we most certainly would have included both variables (using implied 
volatility as our volatility parameter 2) as they are critical in accurately 
pricing the options.

7KH�1HXUDO�1HWZRUN
            We use a standard network type – the multilayer perceptron (MLP) 
with the 3 input nodes, a hidden layer comprising of twelve3� �DUWL¿FLDO�
neurons, and then a single output neuron. Adding additional hidden lay-
HUV� LV� OLNHO\� VXSHUÀXRXV�� DJDLQ� QRWLQJ� WKH� XQLYHUVDO� DSSUR[LPDWLRQ� UH-
sult. Since this paper is concerned with the viability of these models as a 
pricing method, rather than building a functional predictive tool, we did 
not extensively tune the hyperparameters. The two models were trained 
XVLQJ�WKH�7HQVRUÀRZ��OLEUDU\�LQ�5�ZLWK����HSRFKV�
 

2A discussion of how to get an accurate measure for σ independently is beyond the scope of this 
paper.
3 Chosen arbitrarily.
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Our MLP has the following functional form:

where

          We note here that the data (independent and dependent variables) 
was min-max normalized according to the following formula:

             This was done so as to bound the inputs (and output) to be between 
0 and 1 (since we are using logistic transfer function) to help with train-
ing. We convert the model predicted values into “real” prediction values 
by inverting the above process. It is these inverted values that we use in 
assessing model performance.

V. Results
6LPXODWHG�6WRFN�3HUIRUPDQFH

7KH� ¿UVW� QHXUDO� QHWZRUN� SHUIRUPHG� H[FHSWLRQDOO\� ZHOO� DQG�
predicted prices which were largely indistinguishable from the Black-
Scholes prices. The following table gives the two key accuracy measures:

Again, note that this neural network was tested on a data set of 
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options for a different stock to the one on which it was trained. Further-
more, the spot prices of the underlying stock for the test options were 
completely independent of the spot prices of the underlying for the train-
LQJ� RQHV��7KLV�ZRXOG� VXJJHVW� WKDW� RXU� QHXUDO� QHWZRUN� FDQ� EH� ÀH[LEO\�
applied to pricing options on other securities which have the same under-
lying price dynamics. We show here a plot of the Black-Scholes price of 
the synthesized options versus what the model predicted the price to be.

:H� VHH� D� QHDU� SHUIHFW� ¿W�UHSOLFDWLRQ� H[FHSW� IRU� KLJK� SULFHG�
options, for which our model XQGHUYDOXHV them relative to the Black-
Scholes model. The above graph shows that these tend to be options with 
high remaining time to expiries (a similar plot colored by “moneyness” 
showed that these also tend to be those which are deep ITM).

            The most likely explanation for the shortcomings of the model 
DW�WKLV�H[WUHPLW\�LV�WKDW�WKHUH�ZHUH�LQVXI¿FLHQW�RSWLRQV�RI�WKLV�YDULHW\�LQ�
the training set (a byproduct of the option generation procedure). Hence 
at a macro level, the neural network was not able to perfectly `recon-
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struct’ the Black-Scholes formula. However, in neighborhoods for which 
there was a lot of data, the model did perform exceptionally well. This 
indicates that at the micro level, the neural network could near perfectly 
“reconstruct” the formula.

+LVWRULF�,QGH[�3HUIRUPDQFH
        We now look at the second neural network’s performance on the 
historic index derived data set. Again, due to not having a second inde-
pendent price series with identical price dynamics, the test data set here 
was a subset of the synthesized option data. Importantly, the test data was 
not used in any stages of the network’s training, so these performance 
measures are still independent. The following table gives the two key 
accuracy measures:

                

   

����������$JDLQ��ZH�VHH�H[FHOOHQW�¿W�ZLWK�DOPRVW�DOO�YDULDWLRQ�LQ�WKH�RSWLRQ�
prices being explained by the model. The performance – particularly in 
WHUPV�RI�WKH�506(�±�LV�ORZHU�WKDQ�WKH�¿UVW�PRGHO��KRZHYHU��%HIRUH�GUDZ-
LQJ�DQ\�FRQFOXVLRQV��ZH�¿UVW�ORRN�DW�D�VLPLODU�PRGHO�SHUIRUPDQFH�SORW�

This plot is less straightforward. Firstly, we again see the broad 
underpricing of high-priced options. We also see the overpricing of 
cheap options with low time to expiries, followed by the underpricing of 
moderately priced low time to expiry options. To glean some potential 
LQVLJKW��ZH¶OO� SORW� WKH� VDPH�¿JXUH� EXW� FRORU� WKH� SRLQWV� EDVHG� RQ� WKHLU�
“moneyness”.

 



197

 economicS of  financial  maRketS   

                 



198

Student economic Review vol.XXXiv

On its own, this doesn’t really tell us much beyond the obvi-
ous: the most expensive options are the ones which are furthest ITM. 
However, we do not to nearly the same degree pick up on the systematic 
mispricing of options with certain strike/spot ratios like we do in Graph 
2 with certain time to expiries. We can infer, thus, that the neural network 
is not as ideally incorporating the time to expiry variable in its predic-
tions as would be required to perfectly “reconstruct” the Black-Scholes 
formula.

            This deviation could be the result of the more volatile nature of the 
S&P500 stock returns compared to that of the simulated ones. The below 
plot shows the spots of the underlying prices for the simulated training 
stock and the historic S&P500 prices.

 

               We see that the returns are far less smooth with there being many 
more large drops compared to the simulated prices. This perhaps could 
have affected the option generation process. 

              More likely, however, is that the pattern is the result of under-train-
ing or from un-tuned hyperparameters. Had we spent time tuning the 
model’s hyperparameters or given the network more time to learn, then 
we might perhaps achieve a better “global” optimization whereby these 
inconsistencies in the pricing would be smoothed out.
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VI. Conclusion
�7KH�PDMRU�WDNHDZD\�IURP�WKLV�SDSHU�LV�WKDW�DUWL¿FLDO�QHXUDO�QHW-

works can adeptly capture the non-linear relationships between an op-
tion’s strike, time-to-expiry, & the underlying’s spot and the price of a 
call option implied by the Black-Scholes model. There are countless other 
“learning” methods which have similar universal approximation results 
like that of multi-layer perceptrons. Hence, it is reasonable to assume 
that these other methods will perform similarly or perhaps even better. 
Some such examples are epsilon-insensitive support vector regression, 
extreme gradient boosting machines, and projection pursuit regression 
(Hutchinson et al., 1994: 3). We could also introduce some Bayesian 
learning techniques to augment many of these methods (Pires, 2005).

�������������7KH�SHUIRUPDQFH�RI�RXU�¿UVW�QHWZRUN�GHPRQVWUDWHG�WR�XV�WKDW�WKLV�
PHWKRG�LV�ÀH[LEOH�DQG�DSSOLFDEOH�WR�RSWLRQV�RQ�GLIIHUHQW�VHFXULWLHV�ZKLFK�
have similar price dynamics. The performance of our second network 
indicated that our networks might not necessarily be perfect in capturing 
the relationship between the time to expiry and the option’s price implied 
by the Black-Scholes model, though this could have been due to the way 
we synthesized the options. 

           While the accuracy of the predicted prices was the focus of the 
SDSHU��ZH�QRWH�WKDW�WKLV�DORQH�LV�QRW�VXI¿FLHQW�WR�HQVXUH�WKH�SUDFWLFDO�UHOH-
vance of our approach. The ability to hedge an option position is equally 
LPSRUWDQW��6SHFL¿FDOO\��GHOWD�KHGJLQJ�VWUDWHJLHV�UHTXLUH�DQ�DFFXUDWH�DS-
proximation of the partial derivative of the underlying pricing formula 
ZLWK�UHVSHFW�WR�VSRW��7KLV�PLJKW�EH�UHFWL¿HG�E\�LPSRVLQJ�VRPH�VPRRWK-
ness constraint via regularization. MLPs have analytic derivatives (Her-
rmann & Narr, 1997) meaning that we can a SRVWHULRUL always compute 
LW��KHQFH�VXFK�UHJXODUL]DWLRQ�ZRXOG�EH�ODUJHO\�VXSHUÀXRXV�IRU�WKLV�SDSHU�
            An immediate extension to this paper would be to use real historic 
option prices on a variety of assets for training and testing. A comparison 
of the aforementioned machine learning techniques’ performances would 
also be quite interesting. Adding regularization terms to the models 
would be necessary for such a comparison (Hutchinson et al., 1994: 3).
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