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Abstract 

What if consumers' actions reveal concern for contributing to an externality,  even without a 

pecuniary incentive? Within a two-level model, a policymaker prices disposal of waste, and a 

representative consumer chooses a consumption level for a dirty good and a division of the 

consequent waste between recycling and disposal; only disposal creates an externality. In the 

special case of rational expectations, each consumer accepts full responsibility for his 

contribution to the externality. A first-best optimum is then achieved by a form of Pigouvian 

pricing, assuming unconstrained income taxes/transfers. Otherwise, Pigouvian pricing is 

second-best, unless individuals disclaim all responsibility for the externality and utility has a 

separable form. The model explains why recycling may occur even with free waste-disposal. 
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1. Introduction 

The essence of Pigouvian pricing is that, in the interest of Pareto efficiency, price should 

reflect external as well as private marginal costs, the element corresponding to external cost 

being a Pigouvian tax. This has been a major theme in the economics of externalities since 

Pigou (1912, pp. 148-171);
1
 it remains influential, and is a major focus of such authorities as, 

for example, Baumol and Oates (1988), Stern (2007) and Fullerton et al. (2008). Coase 

(1960) proposes an alternative approach based on bargaining as a route to efficient allocation, 

but here there will be too many agents here for Coasian bargaining, and we follow Pigou in 

exploring the internalization of externalities through the price system. 

 

Many recent contributions to the literature on Pigouvian taxation of externalities focus on 

second-best policymaking for an economy that has prior tax distortions, and it is typically 

assumed that consumers take the level of an externality as exogenous: for example, see the 

survey by Bovenberg and Goulder (2002), and parts I and II of Goulder (ed.) (2002). The 

research reported here deviates from that mainstream: primarily  in recognizing that 

consumers may accept some responsibility for production of an externality; secondly in being 

concerned with the pricing of unrecycled waste by a policymaker, rather than with the 

taxation of an underlying waste-generating consumption good; and thirdly in allowing waste 

to have alternative destinations: either disposal, with a consequent disposal cost, or 

alternatively recycling or abatement, with a consequent cost. The externality is assumed to 

arise when waste disposal occurs, but is avoided when waste is recycled or abated. 

 

It is certainly the case that many people undertake recycling of waste products, and in other 

ways show an active concern for the environment, even in the absence of pecuniary 

incentives. This paper shows that when consumers recognize some part of their own 

responsibility for an externality we are then in a second-best world, regardless of other 

distortions. A central contribution is to show that Pigouvian pricing satisfies the necessary 

conditions for a first-best social optimum only in either of two limiting cases. In one a very 

strong condition must prevail: specifically, rational expectations on the part of consumers, in 

terms of how they visualize the production of the externality. In that case, the optimal 

Pigouvian tax is zero and waste should be priced at marginal disposal cost. Alternatively, 

when consumers are completely oblivious of the environmental impact of their actions the 

                                            
1 Pigou (1912) is the precursor of Pigou's The Economics of Welfare of 1920. In those works Pigou does not use 
the terms 'externality' or 'external effect'. 
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standard Pigouvian prescription is for the price of waste to equal marginal disposal-plus-

environmental costs, the environmental component being the Pigouvian tax; however, this is  

first-best optimal only if the externality is weakly separable from the consumption goods in 

the utility function  hereinafter referred to as 'the separability condition'. Between these 

limiting cases we are in a world of second-best optima in which the tax should reflect the 

proportion of their own environmental impact for which consumers do not recognize liability.  

 

Given its objectives, this paper avoids consideration of general equilibrium and of pre-

existing distortions. A two-level optimizing procedure is adopted, embracing individual 

consumers and a policymaker who all utilize asymmetrically-held information. At the lower 

level, consumers respond to price signals, as modified by the policymaker. At the upper level, 

the policymaker determines an optimal policy, given his knowledge of lower-level responses. 

A maintained assumption is that social objectives are based on individual utility, using a 

representative agent approach. This is potentially controversial. In fact, individuals may differ 

in terms of how an external effect affects utility: for example, the impact of noise may 

depend on one's acuteness of hearing. Some externalities may cause problems that are 

uncertain and may only develop fully in the long run, and people may differ in the extent to 

which they believe that the effects will arise and in their discounting of the welfare of future 

generations: climate change is an obvious example. 

  

We explore the following questions for a world in which waste may be abated or recycled (at 

a cost) or alternatively disposed of directly (also at a cost):   

What may be concluded about the optimal pricing of waste, and the optimal mix of recycling 

and waste?  

How does the outcome of two-level decision compare with the true social optimum?  

Why do consumers undertake recycling even when waste disposal is free?  

What is the significance of the extent to which the consumer recognizes his own contribution 

to environmental degradation?  

What if unrestricted income taxes and transfers are not available to the policymaker? 

 

Section 2. sets out a framework for two-level optimization. Section 3. introduces the 

externality problem and establishes a benchmark first-best optimum. Section 4. deals with the 

consumer. Section 5. covers the policy-level part of the process. In Section 6., the core of the 
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paper, the results of Sections 4. and 5. are brought together and conclusions are drawn. 

Section 7. presents comparative static results, and concluding remarks are in Section 8. 

 

2. Two-level optimization: general principles 

Before addressing the externality problem itself, we begin with a demonstration that a 

formalization of the two-level optimization procedure that was introduced in Section 1. is 

capable of achieving optimality. Consider the general problem for a consumer: 
x

Max  u(x), 

subject to a set of constraints, where u(x) is a continuous utility function and x is a vector of 

instruments. A vector  of parameters bears on the consumer and may be varied by the 

policymaker, and the consumer maximizes u with  taken as given. Other parameters are 

exogenous for all parties and may be ignored. The feasible set for the economy is the set X, 

which is assumed to be compact. 

 

In the two-level problem, X( ) (a subset of X) is the feasible set for x, given , and  is the 

feasible set for . Assume that  and each X( ) are all compact. Then the objectives are: 

 for the individual: 
x

Max  u(x) subject to x X( ), given a vector , 

 with at least one solution x( ); 

 and for the policymaker: 
π

Maxu(x( )) subject to , with at least one solution *. 

Define XU = 
Ππ

X
all

( ), and then: 

(1) u(x( *)) u(x) for any x  XU.  

 

On the other hand, consider the single-level constrained maximization problem:  

 for the policymaker:  
x

Maxu(x) subject to x X with at least one solution  ˜ x .  

In this problem we have 

(2) u( ˜ x ) u(x) for any x  X. 

If XU=X, then clearly u( ˜ x )=u(x( *)). Now let us assume that u is a strictly quasi-concave 

function of x, and that X is a convex set. In that case both problems have unique solutions so 

that we now have: 
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Lemma 1. Assume that the consumer and the policymaker have the same continuous and 

strictly quasi-concave utility function u(x),
2
 that the opportunity sets X, X( ) and  are 

compact, that X is convex, and that 
Ππ

X
all

( ) = X. Then  ˜ x and x( *) are identical, where 

these are the solutions to the one- and two-level problems, respectively. 

 

The Lemma requires that the function u(x) be the same for all parties, or at least that the 

condition stated in note 2 holds. A crucial departure from this will arise in following sections, 

where consumer and policymaker may take different views about the extent to which the 

consumer's actions bear on the production of the external good. In that case, views will differ 

on the manner in which individual production of waste affects individual utility: consequently 

policymaker and consumer will not share a common perception of the true objective function, 

and it will then not generally be true that single- and two-level optimization will have 

identical outcomes, ceteris paribus. A similar consequence follows when constraints on 

income taxes and transfers drive a wedge between X and XU. 

 

3. The problem described formally 

3.1 Preliminaries 

This paper uses the simplest possible approach, based on an exchange economy in which 

there are two consumption goods: a 'dirty' good d that produces a negative externality, and a 

'clean' good c. All the functions introduced in the following paragraphs (i.e. g, u, C, D and f) 

are assumed to be continuously twice differentiable. 

 

The individual agent is a price-taking consumer whose net income is m after any direct taxes. 

He chooses quantities xd and xc, where d and c are assumed to be in infinitely elastic supply at 

positive market prices pd and pc respectively. Consumption of d produces waste according to 

a convex function g(xd) that satisfies g(0) 0, and g'(xd) 0 for all xd 0.
3
 Individual utility is a 

function of xd and xc and also of the total quantity E of a negative externality that results 

ultimately from the total (market) consumption of the dirty good, by way of the impact of 

                                            
2 Or at least that the policymaker maximizes v(x) where v= (u) and  is a strictly  increasing transformation, 

because in that case if u(x( )) u(x) then v(x( )) v(x), (1) and (2) above are still satisfied if we replace u with v, 
and the stated conclusions stand.  
3
 Primes denote derivatives of this and other functions of a single variable. Convexity of g allows for two 

possibilities at the margin. In one case g may be linear (or more generally affine), when a change in xd has a 

constant marginal impact on waste production. In the other case, where g is strictly convex, the marginal impact 
rises with xd. 
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unrecycled waste. We assume the utility function u(E, xd, xc) to be strictly quasi-concave. 

Using subscripts to u to denote partial derivatives, we assume that uE 0, ud 0, and uc 0. 

 

Examples of the externality are: smoke produced by domestic heating, resulting in air 

pollution; and pollution resulting from the use of landfill sites or incinerators to dispose of 

domestic waste. The analysis may also be applied to more global and long-run effects such as 

climate-change caused by the burning of fossil fuels, where the waste in that case is the 

discharge of carbon dioxide.  

 

The output of waste generated by the dirty good may be disposed of or may alternatively be 

recycled by the consumer, the respective quantities being w and R. Conceptually, recycling 

may be interpreted broadly to include all actions that achieve the consumption objective at a 

reduced discharge of waste, and the term 'recycling' will cover all such actions, including 

abatement: thus, carbon dioxide discharged into the atmosphere is clearly waste, whereas 

carbon capture and storage fall within the definition of recycling. Total recycling costs are 

C(R), which is assumed to be a convex function with C' 0 and C" 0. 

 

Disposal of unrecycled waste is charged for at a nonnegative price q per unit: for example, q 

might be a carbon tax, or it might be a charge for disposal of domestic garbage. Its value is 

parametric for the consumer and is determined by a policymaker, along with that of a second 

policy variable, a tax (or transfer) T on gross income M. Ultimately, disposal of unrecycled 

waste is a responsibility of the policymaker, and D( wh) gives the cost of waste disposal, 

where h indexes consumers. It is assumed to be a convex function with D' 0 and D" 0. 

 

There are n identical consumers, and the total quantity of unrecycled waste determines the 

level of the externality, so E = f( wh). Initially we make no assumption about the form of f, 

other than that f' 0. The individual impact on E of a marginal change in wh is given by 
E

wh

  

=f'( wh) 0, whereas if all consumers behave identically then E = f(nw) and the total impact is 

given by 
E

w
 = nf'(nw). 

 

3.2 The benchmark: optimal pricing of waste in a first-best 'planning' context 

Our central concern is with a world in which outcomes depend on interactions between a 
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policymaker and individual agents. We need criteria of optimality, so before proceeding 

further we explore a benchmark where outcomes are determined by a hypothetical planner. 

 

Consider the single-level planning problem in which the Lagrangian is 

(3) L=u(f(nw), xd, xc)+ 1[n[M pdxd pcxc C(R)] D(nw)] + 2[n[R+w g(xd)]] 

where M is the consumer's gross income and 1 and 2 are Lagrange multipliers. The planner 

chooses xd, xc, w and R to maximize the utility of the representative consumer, subject to 

aggregate income equalling expenditure, and to total waste generation equalling the amount 

recycled plus the amount discharged. Assuming that all instruments are positive at the unique 

optimum, the first-order conditions (FOCs) with respect to them may be combined to give:  

(4) ud   =  n 1[pd +C'g'] = 
uc[pd +C'g']

pc
 

or equivalently, writing M for the marginal rate of substitution 
ud

uc
 ,

4
 

(4') Mcd   =   
pd +C'g'

pc
  with 

(5) nuEf'  =   n 1[C' D']   =  nuc[C' D']/pc  or equivalently 

(5')  C'  D'  =    
nuEf'pc

uc
  

to which we shall return in due course. 

 

4. Private optimality 

4.1 Externality seen as exogenous 

In Section 2. a general structure was set out that is now applied to the externality problem, 

focusing in this sub-section on a consumer who regards the level of externality as exogenous 

to his actions: i.e., from the individual's perspective, E is a datum and individual actions are 

not seen individually as influencing E. 

  

The Lagrangian for the consumer is 

(6)  L =u(E, xd, xc)+ 1[m pdxd pcxc C(R) qw] + 2[R+w g(xd)] 

where 1 and 2 are Lagrange multipliers. The first constraint is the budget, and the second 

relates the total of recycled plus unrecycled waste to the amount generated. The consumer's 

                                            
4 Marginal rates of substitution are defined to be positive throughout this paper. 
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decision variables are xd, xc, w and R, but not (at least in this section) E. Both constraint-sets 

are convex in the decision variables, in view of the convexity of the functions C() and g(). 

 

Using subscripts to L to denote partial derivatives, the first-order conditions include the 

following, assuming that xd 0 and xc 0: 

(7)  Lw  =    1q + 2    0; 

(8)  Ld  = ud  1pd 2g'  = 0; 

(9)  Lc  =  uc  1pc   = 0; 

(10)  LR  =    1C'+ 2    0. 

Given uc 0 it follows from (9) that 1 0 at the optimum: therefore the budget constraint 

binds. Moreover at least one of (7) and (10) must be satisfied as a strict equality at the 

optimum, otherwise w=R=0, which would violate the second constraint. 

 

If (10) is satisfied as a strict inequality, then R=0. In that case q C'(0), from (7) and (10), and 

it is cheaper to pay for disposal of the entire quantity of waste g(xd). A particular, and 

important, case is where q=0, when it is clear from (7) that 2 = 0 also; from the conditions 

on C, (10) is then satisfied as a strict inequality and R=0. Thus when q=0 there is no 

recycling, and all of g(xd) is disposed of at zero private cost. In fact, individuals do not always 

behave like this: some show a concern for environmental effects, and bear the private cost of 

recycling and waste avoidance even without a pecuniary incentive. Section 4.2 explores this, 

but clearly, according to the model as it stands, q 0 is a necessary condition for R 0. 

 

If (7) is satisfied as a strict inequality at the optimum, then w=0. Using (10), which must then 

be satisfied as an equality, we have q C': the disposal charge exceeds C'(g(xd)) and the 

optimal choice is to recycle all of the quantity g(xd). 

 

The final possibility to consider is a solution at which w 0 and R 0. In such a case we have 

C'=q: i.e. the optimal choice is to recycle up to the point at which the marginal recycling cost 

equals q, and to dispose of the balance of the quantity g(xd) at the price q. 

 

From (7), (8), (9) and (10) we have for the marginal rate of substitution (M) at the optimum: 

(11) Mcd= 
ud

uc
 = 

pd

pc
 + 

g'

pc
 

2

1

= 
pd

pc
 + 

g'

pc
.min{q, C'} 
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with q=C' if w and R are both positive at the optimum. When marginal recycling costs are 

non-zero, then levying a charge for disposal in effect raises the relative price of good d. We 

may interpret this as incorporating some part of the environmental cost of consuming good d 

into its price, thus forcing the consumer to bear part of the environmental impact of his 

actions: part of the externality is internalized. If good c is a gross substitute for good d, the 

effect of a higher relative price of good d is to shift the balance of consumption towards c, in 

the sense that the ratios pcxc/m and xc/xd will both rise. The ratio pcxc/m obviously rises, since 

xc rises in this case; the second ratio certainly rises also if xc rises and xd falls. We explore 

comparative static effects of parameter changes in some detail in Section 7. below. 

 

The Pigouvian price of discharged waste is given by q = D   '  
nuE  f'  pc

 uc 
 , i.e. the sum of marginal 

disposal cost and marginal environmental cost, the latter being the Pigouvian tax. The tildes 

indicate functions evaluated at first-best optimal values of the relevant variables, consistent 

with (4) and (5) in Section 3.2. Focusing for clarity on the case where all variables take 

positive values at the optimum with all FOCs satisfied as equalities, then with Pigouvian 

pricing , (7) and (10) now imply C'= D   '  
nuE  f'  pc

 uc 
. Comparing this with (5') we see that this 

value for q induces individual decision to arrive at the first-best value for C' and hence for R. 

 

 However, the Pigouvian price does not in general induce the first-best optimal values of all 

variables unless we assume that the utility function satisfies the separability condition. This 

may be seen by returning to (11), written as Mcd = 
pd

pc
 + 

g'

pc
C   '. If we substitute the first-best 

values  x̃d and  x̃c into this, then the right-hand side will be the same as in (4') but without 

separability the left-hand side will differ from (4'), in general, unless the individual expects E 

to have its first-best optimal value. Therefore in general, without separability,  x̃d, x̃c and R    

cannot satisfy (11), and these values cannot be induced by Pigouvian pricing  which must 

therefore produce a second-best result when the individual expectation for E differs from the 

first-best value. However, if the separability condition holds, then these considerations do not 

apply. The values of E and of Mcd are then independent; by setting q as above we ensure that 

the FOCs of the consumer are identical with those of the planner, in particular in containing 

identical functions, so that they have the same solution. 
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We may set this in the framework of Section 2. In general, the planner's and consumer's 

objective functions differ, being u(f(nw), xd, xc) and u(E, xd, xc) respectively, and we may not 

apply Lemma 1. except in the special case where E is set equal to the (first-best) optimal 

value f(nw̃). However, notwithstanding the different objective functions, it is the case that 

when Mcd is independent of E then, by setting q appropriately, the FOCs for the consumer can 

be made identical with those for the planner and the two sets of solutions will be identical. It 

should be apparent that outcomes depend in part on consumers' expectations concerning the 

generation of the externality, and the analysis from this point allows for that dependence. 

 

4.2 Green consumers 

We now suppose that consumers recognize that their own actions influence the level E of the 

externality: without such an assumption it is impossible to explain the observable fact that 

many people voluntarily bear the costs of recycling waste and of mitigating the effects of 

residual waste, even without a pecuniary incentive. We write the production function for the 

externality as seen by consumer h as: E=f( hwh+
¯¯

  Wh ), h 0. The consumer assesses total 

waste output by all other consumers as 
¯¯

 Wh, or forms this expectation, and the nonnegative 

psychological parameter h reflects his beliefs about the environmental effect of his own 

actions. In principle 
¯¯

 Wh=
hk

kw , but the consumer only needs to evaluate the aggregate
¯¯

 Wh. 

 

Subjectively, 
uh

wh

  = h 
uh

E
f'( hwh+

¯¯
  Wh ). If consumer h has h =0 as in Section 4.1, then he 

sees the externality as everyone else's fault. If h=1, he fully recognizes his own contribution 

and 
uh

wh

  = 
uh

E
f'. Beyond this there is the further possibility that the representative consumer 

holds a rational expectation and believes not merely that h=1 but also that he is 

representative, in which case from his perspective E=f(nw), and 
uh

wh

  =n
uh

E
f': then, in effect, it 

as if h=n with other consumers' waste output (
¯¯

  Wh ) internalized through h. This is the 

rational expectation because if h=n then consumer h's decisions are based on the correct 

economic model in a world in which he is representative: when he changes his production of 

waste by w in response to some event, that event causes everyone else to behave identically; 

agent h recognizes this, and believes correctly that the total amount will change by n w. 
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Suppressing the h subscripts for clarity, the Lagrangian for consumer h is now  

(6') L = u(f( w+
¯¯
W), xd, xc)+ 1[m pdxd pcxc C(R) qw] + 2[R+w g(xd)] 

and the first-order conditions are (8), (9), (10) and 

(7') Lw  =  uEf' 1q + 2 0. 

If =0, (7') reduces to (7) and the results of Section 4.1 stand. Here we suppose that  0. If 

w 0 and R 0, then from (7'), (8), (9) and (10) we have 

(12) ud  =  1[pd + C'g']   = uc[pd + C'g']/pc   and 

(13)    uEf' =  1[C'  q]   = uc[C'  q]/pc    or 

(13') C'  q  =   
uEf'

1

 =   
uEf'pc

 uc
. 

With uE 0 it follows that C' q at the optimum:
5
 facing q as a parameter, the internalization of 

the externality pushes the consumer to recycle beyond the point at which the marginal cost of 

recycling equals q: given q, the amount of recycling exceeds the level identified in Section 

4.1, where with =0 we had C'=q optimally, when R and w were both positive.
6
 Here, from 

(13'), recycling is pushed to the point where its marginal cost equals the sum of the pecuniary 

cost plus the internalized portion of the external cost of waste discharge, so that even if q=0, 

an optimal programme may include positive recycling. The consumer recognizes some part 

of his responsibility for the external cost of his production of waste, and this is sufficient to 

provoke some recycling even when disposal is free. The term 1 is the marginal utility of $1 

from the consumer's budget constraint. Thus 
1

1
 is the optimal dollar price of a marginal util, 

so that the excess of C' over q at the optimum is just the value, at that price, of the marginal 

disutility of the externality as perceived by the consumer. The full extent of the marginal 

disutility of a unit of individually-generated waste is uEf', but the individual only perceives a 

responsibility for the fraction   of this. 

 

Equation (11) now becomes 

(11')  Mcd= 
ud

uc
 = 

pd

pc
 + 

g'

pc
 

2

1

= 
pd

pc
 + 

g'

pc
.min{q  

uEf'

1

, C'}. 

                                            
5 Here and later we draw inferences from expressions containing uE. Such expressions always contain uE in the 

format uE/uc: i.e. the (negative of the) marginal rate of substitution, which is independent of the particular utility 

function that is used to represent the underlying preference ordering. 

6 Just as in Section 4.1, so also here we could have a solution with R=0, when C'(0) q uEf'
1

1
. Alternatively, we 

could have C'(g(xd))  q uEf' 
1

1
, in which case R= g(xd) and w=0. The second case may possibly arise even if 

q=0, provided ≠0. 
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When w and R are both positive, q 
uEf'

1

 =C' from (13'). 

 

The Pigouvian price that was introduced in Section 4.1 becomes 

(14) q = D   '   (
n

n
)(

nuE  f'  pc

 uc 
 ) where the tilde indicates first-best optimal values. 

The absolute value of the marginal externality expressed in monetary units is  
nuE  f'  pc

 uc 
 , the 

fraction of this that is not internalized by the representative consumer is 
n

n
, and their 

product is the optimal value of the Pigouvian tax, to be levied on top of the marginal disposal 

cost. Further consideration of this may conveniently be deferred until Section 6.4, where it is 

discussed in the context of two-stage optimization. 

 

5. Conditions for socially optimal pricing given individual behaviour, when w  0, R 0 

Consider a single representative consumer. Given any values for prices and net income m, the 

consumer chooses w, xd, xc and R to maximize individual utility, and at any prices the indirect 

utility function, giving the consumer's maximized utility, is 

V(q, pd, pc, m) u(f( w(q, pd, pc, m)+
¯¯
W), xd(q, pd, pc, m), xc(q, pd, pc, m)).  

 

However, these individual actions relate to a belief that E=f( w+
¯¯
W), whereas the 

policymaker knows that this should be E= f(nw), where in either case the utility-maximizing 

value of w is a function of q, pd, pc and m. We take the social objective function to be  

V ^(q, pd, pc, m) u(f(nw(q, pd, pc, m)), xd(q, pd, pc, m), xc(q, pd, pc, m)) where w, xd and xc are 

the utility-maximizing demands as derived in Section 4., which respect the first-order 

conditions (7'), (8), (9) and (10). In general V and V ^ differ, and a modified version of Roy's 

identity is valid for V ^. We confine attention to the case where w 0 and R 0 at the consumer's 

optimum, in which case  

V ^

q
 =(n )uEf'

w

q
  1w(q, pd, pd, m) and 

V ^

m
 =(n )uEf'

w

m
 + 1. These expressions are derived 

in Appendix A., but the intuition is obvious. They are the familiar expressions for Roy's 

identity, modified respectively by terms (n )uEf'
w

q
 and (n )uEf'

w

m
  that correct for the 
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extent (n ) to which the individual fails to take full account of the external effect of his 

actions.
7
 Obviously these terms vanish if  = n or uE f'=0. 

 

The problem is to find values for q and an income tax T (which, paid out of gross income M, 

determines m) that maximize maximized utility V ^, subject to three constraints: total disposal 

costs D(nw) must be covered by revenue from both sources, tax and charge, and the tax is 

subject to upper and lower bounds T ¯and T where T ¯  T. Unless we specify T 0, the optimal 

value of T may be negative, i.e. a subsidy. We could in addition or alternatively consider 

levying a sales tax on the dirty good, but we focus on an income tax alone, for the familiar 

reason that such a tax raises a given amount of revenue more efficiently than a sales tax. 

 

Because we are interested in the case E 0, we assume that w 0. Writing the Lagrange 

multipliers as 1, 2 and 3, the Lagrangian is:
8
 

 (15) L = V ^(q, pd, pc, m(T))  

  + 1[nqw(q,m(T),...) + nT  D(nw(q,m(T),...))] + 2[T ¯ T] + 3[T T]. 

The first-order conditions, using the modified version of Roy's identity and assuming nonzero 

optimal values for q and T, are: 

(16) Lq =  (n )uE f' 
w

q
   1w + n 1[w + q

w

q
  D' 

w

q
 ]  = 0; 

(17) LT  =  (n )uEf'
w

m
   1 + n 1[ q

w

m
 + 1+ D' 

w

m
 ] 2 + 3 = 0, using 

dm

dT
 = 1. 

Combining (16) and (17),
9
 we have 

((n )uEf' +n 1[q D'])(
w

q
  + w

w

m
 ) + ( 2 3)w  = 0 so that 

(18) ((n )uEf' + n 1[q D'])
w

q
  + ( 2 3)w  = 0, 

writing 
w

q
  for the substitution term, after using the Slutsky equation. Throughout the 

following we take it that 
w

q
 0.

10
 

                                            
7 A similar modification of Roy's identity is implicit in Atkinson and Stiglitz (1980, p. 452). 
8
 Note that this Lagrangian does not satisfy the concavity/convexity requirements for an application of Kuhn-

Tucker: V ^ is quasi-convex in its arguments, and the shape of the constraint-set depends inter alia on the 

function w(), which is not necessarily concave. 
9 Multiply (17) by w, subtract from (16), and collect terms. 
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It makes no qualitative difference to the conclusions drawn above if we replace the tax T with 

a proportionate tax t[M A], where t is the tax rate, M is gross income and A is a tax-free 

allowance, where M A 0. Where m is net income we then have 
dm

dt
 =A M, and equation (18) 

is replaced by 

(19) ((n )uEf' + 1(q D'))
w

q
   ( 2 3)w/(A M) = 0. 

Because A M 0, the qualitative conclusions to be drawn from (18) would be unaltered; 

however, replacing the lump-sum tax with an income tax, or altering an existing income tax, 

would have distortionary implications that could not be neglected. 

 

6. Two-level optimality 

We now explore the interaction between the set of optimality conditions derived in Sections 

4.2 (for the green consumer) and 5. (for the policymaker), in the case where w and R are both 

positive. The externality is significant at the margin if uEf' 0, which is the case unless we 

alter one of the assumptions uE 0, f' 0, to permit a zero value. 

 

The consumer pays q for discharge of waste and bears the cost of recycling, the policymaker 

receives the revenue from waste and bears the cost of disposal, and income taxes or transfers 

will be required for budget-balance at each level. To see this, note that for the first constraints 

in the Lagrangians (6') and (3) both to be satisfied, it must be that D(nw)=n[qw+T], where 

T=M m, and T may be positive, negative or zero. There are three possibilities to consider, 

according as the tax constraints are slack or binding at the optimum. We assume that 1 0 

always, in order to rule out an excess of revenue over disposal costs; at most one of 2 and 3 

may be nonzero.  

 

6.1 Slack tax constraints 

If both constraints on the tax T are slack, then 2= 3=0. Equation (18) is a necessary 

condition for social optimality, based on a given pattern of consumption behaviour at the 

individual level. When there is no effective constraint on the tax levied then (18) becomes 

                                                                                                                                        
10 

w

q
 ≤ 0 from the standard property of a compensated demand function; a sufficient condition to exclude 

w

q
 = 0 

is that the indifference surfaces be differentiable. See Somerville (2007). 
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(18') (n )uEf' + n 1[q D'] = 0, assuming that 
w

q
   0, which may be written 

q = D'  (
n

n
)( 

nuEf'

 n 1

) 

However, (16) may be written: 

(16') w[n 1 1] + ((n )uE f'+n 1[q  D'])
w

q
 = 0,  

which together with (18') implies that n 1 1=0: because T is effectively unconstrained, it 

takes a value that ensures that the public and private marginal utilities of $1 are equated. 

Therefore: 

(14')  q=D' (
n

n
)(

nuEf'pc

uc
) =D'  (

n

n
)(

nuEf'

1

)= D'  (
n

n
)(

nuEf'

n 1

), 

which differs from (14) in that (14) is evaluated at the first-best optimum.  

 

If the externality is significant (i.e. uEf' 0) and if also n  then q D' 0 is a necessary 

condition for optimality. Alternatively, if the externality is insignificant, or if =n, or both, 

then the necessary condition is q D'=0. These possibilities are summarized in Table 1. 

 

Table 1. Optimal price q of waste relative to marginal disposal cost D', when the tax 

constraints are both slack so that 2= 3=0. 

 If 0   n: If  = n: 

Externality significant,  i.e. uEf' 0: q  D' q = D'  

Externality insignificant, i.e. uEf' =0: q = D'  q = D' 

 

Possibly the optimal solution for T may be negative, i.e. T may be a subsidy. The rationale for 

this may be explored by combining the first constraint in (15) with the constraint in the 

individual problem to obtain: M pdxd pcxc C= D/n= qw+T. In the case where optimal 

recycling costs are relatively large and disposal costs are relatively small, it may be optimal 

in effect to repay to the consumer part of the revenue qw. As an example suppose that 

optimality involves q=D', and consider the case where D has the form, or is approximated by, 

D(w)= 1w+½ 2w
2
, where the i are constants and 2 0. Without loss of generality let n=1. 

Then D' = 1+ 2w so that qw D when q=D'(w), and optimally T 0. However if the total cost 

function D(w) is modified to contain a positive element 0 of fixed costs, then for 0 

sufficiently large, T will be positive optimally. 
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We bring in recycling costs by combining (18') with the individual condition (13'), 

eliminating q and using n 1= 1 to obtain 

 (20) C' D' =  
nuEf'

1

 =  
nuEf'pc

uc
 

so that if uE f' 0, then C' D' 0. 

This has the same structure as first-order condition (5') in the planning problem of section 

3.2, but is identical with it only in the case of =n and rational expectations, when the 

consumer and the policymaker have the same objective function u(.). In that special case the 

first-best optimum may be reached by the two-level route, provided that unrestricted taxes or 

transfers are possible. Otherwise, if (0, n), the two-level procedure has a second-best 

outcome because the objective functions differ at each level. 

 

The three equations that characterize the optimum are (20), (14'), and (13') written as 

 C'  q = nuEf' 
n

 
1

1

, which give us the optimal relationships between q, D' and C' that are set 

out in Figure 1. 

Figure 1. here  see page 30 

 

While the value of  does not directly enter the optimal relationship between D' and C', it 

directly determines where q lies in the interval [D', C'], so that the excess of q over D', i.e. the 

Pigouvian tax, is the non-internalized portion 
n

n
 of marginal external cost, 

nuEf'

 1

. If 

expectations are rational and =n, then q=D': the optimal price of waste is just the marginal 

disposal cost, and the Pigouvian tax is zero. The smaller   is, the larger q needs to be relative 

to D' and C', and in the limiting case =0 we have q=C' where the Pigouvian tax is the full 

marginal environmental cost of the externality; strictly speaking it is only in the case =0 that 

the full Pigouvian tax is appropriate. However, remarkably, this case for the full Pigouvian 

tax is approximated in the important case  =1: then with n large, n  n and 
n

n
1, with 

equality in the limit. Such an individual may be characterized as 'socially responsible': he 

recognizes his own contribution to the externality, but does not hold a rational expectation 

and recognize his representativeness. 
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6.2 Binding upper constraint on T 

The second possibility is that 2 0 at the optimum so that the upper constraint on the tax T 

binds, and therefore 3=0. Since w 0 by assumption and 
w

q
 0, condition (18) becomes: 

(18") (n )uEf' + n 1[q D'] 0 

so that whether the externality is significant (uEf' 0) or not (uEf'=0), and whether  is equal to 

or less than n, a necessary condition for optimality is q D' 0, with q D' exceeding the non-

internalized part of external cost. We have a requirement to price waste-disposal above 

marginal cost even if the externality is 'insignificant': but of course it is only privately 

insignificant at the private margin in the sense that uEf'=0. The policymaker knows that 

aggregate waste must be disposed of, and because the required revenue cannot be raised 

entirely by the income tax, the shortfall must be made up via appropriate pricing. 

 

The first-best optimum of Section 3.2 is not achievable: combining (18") with (13') we obtain 

(20')  C' D'  nuEf'[
n

 
1

1

 + 
n

n
 

1

n 1

]. 

Again we have C' D' 0, but the gap exceeds the value of the external cost. 

 

Moreover if =n, C' D'   
nuEf'

1

 =  
nuEf'pc

uc
 so that (5') is not satisfied and the outcome is 

second-best even in this rational expectations case, unlike the case of slack tax constraints 

where T was able to adjust to equate private and social marginal utility. Here the upper 

constraint on T binds: private expenditures (C and C') are higher than otherwise while those 

of the public sector (D and D') are lower, so that C' D' exceeds the value of the externality 

nuEf'[
n

 
1

1

 + 
n

n
 

1

n 1

], taken as a weighted average over public and private valuations. The 

social marginal utility of $1 exceeds the private value, i.e. 1 n 1, so that 
1

1

  
1

n 1

,
11

 and if 

 0    n, then 
1

1

  
n

 
1

1

 + 
n

n
 

1

n 1

  
1

n 1

.  

 

                                            
11

 From (16') and (18") it follows that n 1 1 0, if we assume (reasonably) that the uncompensated term 
w

q
  is 

negative. Therefore 
1

1
  

1

n 1
, and a weighted average of these lies between them. The inequalities should be 

reversed to cover Section 6.3, but the conclusion is the same. 
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In Section 6.1 (using equation (14')) we concluded that when 2 = 3 =0 then q=D' is 

necessary for optimality when  = n, with the condition becoming q D' when   n. Here, we 

require q D' for optimality for all  [0, n], as is clear from (18"). 

 

6.3 Binding lower constraint on T 

The final possibility is that 3 0 at the optimum so that the lower constraint on the tax binds, 

and therefore 2=0. In this case the optimality condition is.  

(18"') (n )uEf' + n 1[q D']  0. 

If =n then q D': here T is constrained to be above its first-best optimal level, and to offset 

this q is depressed below the value of D'. However if  n, we have the interaction of two 

effects: one (binding constraint on T from below) tending to reduce q, and the other 

(departure from rational expectations) tending to raise it, and the solution could have q above, 

or below, or equal to D'. 

 

Combining (18"') with (13') gives 

(20")   C' D'  nuEf'[
n

 
1

1

 + 
n

n
 

1

n 1

] 

so that C' D' is below the value nuEf'[
n

 
1

1

 + 
n

n
 

1

n 1

] of the externality, again taking a 

weighted average over private and public valuations. Here T hits its lower bound and the 

second-best optimum has less private expenditure (lower C and C') and more public 

expenditure (higher D and D') than if T were unconstrained. 

 

6.4 Necessary condition for optimality: conclusions, when w 0 and R 0 

From the discussion in Section 6.1, a necessary condition for optimality if the tax constraints 

are slack is (20): 

C' D' =  
nuEf'

1
 =  

nuEf'

n 1
 =  

nuEf'pc

uc
, whether or not expectations are rational: i.e., independent 

of the value of . For optimality in this case, marginal recycling costs should equal the sum of 

marginal waste-disposal costs plus the dollar-equivalent of the externality at the margin: 

recycling is pushed to the point at which its marginal cost just equals the full marginal 

opportunity cost of waste, including disposal and external costs. The price q of waste should 

exceed D' by the uninternalized fraction 
n

n
 of the gap between D' and C'. The policymaker's 
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and consumer's objective functions differ unless =n, being respectively u(f(nw),...) for the 

policymaker, and u(f( w+ 
¯¯

 W ),...) for the consumer. It is only when =n, where the consumer 

has a rational expectation, that these functions coincide. It is easy to show that the constraint-

set for the single-level planning problem is the union of all possible constraint sets in the two-

level problem (see Appendix B.), provided that the upper and lower tax constraints do not 

bind at the solution and may therefore be ignored; moreover the constraint set is convex.
12

 

Consequently, Lemma 1. may be applied to conclude that the two-level outcome is first-best 

when =n. The maximized value of u is the same, whether it is maximized on two levels, or 

directly. The optimal values of w, xd, xc and R will be the same under either mode of 

optimization, so it must be that 
1

n 1

 = 
1

1

 (= 
1

n 1

), and the social and private prices of a 

marginal util are equated. 

 

Because the objective functions differ when n, we should expect that in general the two- 

level procedure would not lead to the first-best outcome, because a condition for Lemma 1. is 

not satisfied. We may confirm this by repeating and appealing to the FOCs:
13

 

(13') C'  q  =   
uEf'pc

 uc
 = 

n
nf'pcMcE and 

 (11')  Mcd  =  
pd

pc
 + 

g'

pc
. C' 

which must be satisfied by the solution to the consumer's optimization problem. The 

Pigouvian value of q is given by (14) 

q = D   '   (
n

n
)(

nuE  f'  pc

 uc 
 ) = D   '  + (

n

n
)(npc f'  M   cE), and with this value of q (13') becomes 

(13") C'   D   '  =  
n
(npcf'McE) + (

n

n
)(npc f'  M   cE). 

Bearing in mind that the vector (w̃,  x̃d,  x̃c, R  ) satisfies (5'), it follows that it satisfies (13") if 

and only if f'( w+ 
¯¯

 W )McE = f'(nw̃)M   cE at that point. A sufficient condition for this is that  

w̃+ 
¯¯

 W =nw̃, i.e.  
¯¯

 W = (n )w̃, so that the representative consumer expects E to have its first- 

best optimal value Ẽ. Given that  
¯¯

 W  is an ex ante parameter for the consumer, this is 

extremely unlikely to hold. The sufficient condition is also necessary if f' is constant. 

Otherwise, it is conceivable that f'( w̃+ 
¯¯

 W )McE = f'(nw̃)M   cE without w̃+ 
¯¯

 W = nw̃, so (13") 

                                            
12

 Given the assumptions that C, D and g are convex functions, and given that the instruments otherwise enter 

the constraints linearly.  
13 The marginal rates of substitution are defined as absolute values of ratios of marginal utilities. Because uE 0, 

McE is defined as uE/uc. The sign adjustment is unnecessary for Mcd. 
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would be satisfied at (w̃,  x̃d,  x̃c, R  ); but then (11') would be satisfied only if utility satisfied 

the separability condition. Thus, we conclude that in general the first-best optimum is not 

achieved by Pigouvian pricing when (0, n). 

 

In the particular case =0, policymaker and consumer have differing objective functions, and 

(as in section 4.1) we may appeal to (11') to conclude that the first-best optimum is not in 

general a solution to the problem when q is assigned its Pigouvian value. However, under the 

separability condition the lack of congruence between the two objective functions becomes 

irrelevant when =0 because the consumer's utility is then in effect a function of two rather 

than three variables. The consumer's FOCs then coincide with those of the policymaker, and 

the two-level solution is first-best in this special case. 

 

When 2  0, so that the upper tax constraint binds, we have condition (20') whereby 

recycling is pushed beyond the point at which its marginal cost equals the full marginal cost 

of waste, including disposal and external costs. Finally that inequality is reversed according 

to (20") when 3  0 so that the lower tax constraint binds. In either case we have a solution 

that does not satisfy the first-best condition (5'). 

 

Because 
n

 
1

1

 + 
n

n
 

1

n 1

 is in effect the optimal dollar price of a unit of utility at the margin, 

the expression nuEf'[
n

 
1

1

 + 
n

n
 

1

n 1

] is the dollar-equivalent of the externality at the margin, 

and it becomes nuEf'
1

1

 either if both tax constraints are slack (when 1=n 1) or if 

expectations are rational (when =n). A binding tax constraint prevents the equalization of 1 

and n 1, and the marginal util is then valued at the average 
n

 
1

1

 + 
n

n
 

1

n 1

 unless =n. 

 

The smaller the value of , the larger q must be in the second-best optimum (see Figure 1.), 

and the smaller in consequence will be the consumer's own perception of maximized utility, 

given 
V

q
 = 1w 0. This failure of the two-level procedure occurs even if each individual 

fully recognizes the significance of his own actions but ignores the fact that he is 

'representative': i.e. if  =1. This case approximates to the case  = 0 for large n.  
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We have seen how the value of   determines the optimal location of q in the interval [D', 

C'].14
 Under rational expectations ( =n) and effectively unconstrained taxes we have q=D'. 

For lower values of , the individual does not take full account of the implications of his 

actions, and q needs to be correspondingly further above D' and closer to C' in order to 

achieve the correct balance of waste and recycling. If additionally a tax constraint binds, then 

q≠D' even if =n. In the extreme case (corresponding to Section 4.1) where  =0, then the 

optimum has q = C' (from (13')) whether or not the tax is effectively constrained. 

 

6.5 The cases where w=0 or R=0 

So far in Section 6. we have focused on solutions where w and R are both positive, and we 

have found that optimality requires a division of g(xd) between disposal and recycling such 

that C'=D'  
nuEf'

1

. The parameters of the problem may preclude such a solution, as Figure 2. 

illustrates for a given value of xd in the case 2= 3=0 (i.e. ineffective tax constraints). 

Figure 2. here  see page 30 

 

Depending on the configuration of the functions D' and C', there are three possible cases. 

First we may have an all-disposal solution, when C'(0)  D'1(g(xd))  
nuEf'

1

, and replacing some 

disposal of g(xd) by recycling would raise total social cost. Secondly, we may have an all-

recycling solution, when D'2(0)  
nuEf'

1

 C'(g(xd)), and replacing some recycling of g(xd) by 

disposal would raise total social cost. In the intermediate case when the C' and D' curves 

intersect as indicated along D'3(w), we have a solution where disposal and recycling both take 

place, and C' exceeds D'3 by exactly the amount of the marginal social external cost of waste. 

 

6.6 Prices versus quantities as policy instruments 

We have seen that, given unrestricted taxes or transfers, optimality could in principle be 

achieved using price (i.e. q) as the policy instrument; in certain circumstances, optimality 

achieved in this way would be first-best. Alternatively, quantity (i.e. the solution (w, xd, xc, R) 

to the problem posed in Section 3.2) could be used, and the policymaker would need the same 

information set in either case (Weitzman, 1974, p. 478): that point is visible above, in that to 

compute q from equation (14), Section 4.2, for example, knowledge of socially optimal 

                                            
14 See Figure 1. 



 21 

quantities would be necessary. In either case computation will be problematical, given the 

asymmetry of information between policymaker and consumer, and this provides the 

rationale for explicitly developing a two-level approach to optimizing, whereby policymaker 

and consumer each uses his own particular information-set.  

 

The preceding sections have explored a procedure in which price is used as the policy 

instrument, for two reasons. The first is that instruments in price-domain (e.g. carbon taxes) 

have for long been receiving considerable attention as possible mechanisms for controlling 

externalities (for example, Weitzman, 1974, p. 477). Secondly, there are general arguments in 

favour of price. Compared with a quantity target, the use of price may be more practical and 

cheaper, with lower enforcement costs, when the number of consumers is large and (relaxing 

an assumption made earlier) have heterogeneous preferences. However, a reading of 

Weitzman (1974, p. 479) indicates that caution is appropriate. For further support for the use 

of prices see Kaplow and Shavell (2002). 

 

7. Comparative static analysis 

We may use standard comparative static analysis to explore the effects of varying the 

parameters: in particular , but also pd and q. Most of the required analysis is fairly technical: 

much of it is set out in Appendix C., and only a summary is presented in this section. 

 

The comparative statics are most easily handled by reducing the dimension of the green 

consumer's problem. As it stands there are four instruments (w, xd, xc, R) and two constraints, 

which generate a 6 6 bordered Hessian matrix. However, from the constraints we may write 

R =g(xd) w and xc =[m  pd xd C(g(xd) w) qw]/pc  (w, xd)/pc, 

and then we have a simpler unconstrained problem of maximizing  

u(E, xd, xc) u(f( w+
¯¯
W), xd, (w, xd)/pc), with respect to two instruments w and xd. The 

Hessian matrix H derived from the two first-order conditions is now 2 2. From quasi-

concavity of u, we have Hdd 0 and also, assuming f" to be negligible, Hww 0.
15

 

 

The sign of Hwd depends on the compensated cross-price effects between E and d. The case 

being analysed has two goods and one bad. In the absence of c the compensated cross-price 

                                            
15 We must also appeal to assumptions made about the signs of certain other functions and parameters: see 

Appendix C. The condition on f" is only needed if f" 0. 
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effects between E and d would have unambiguous signs (see Appendix C. and in particular 

Figure C.1.), and the sign of Hwd would be known. If we assume that the signs of the 

compensated cross-price effects are the same when the total number of goods and bads N=3 

as when N=2, then Hwd 0. Finally, we assume that the second-order conditions for a 

maximum are satisfied so that H 0 in the reduced optimizing problem. 

 

The expression from which we derive the comparative static results is 

(21) 
dddwd

wdww

dx

dw

HH

HH
= 

d

w

r

r
d  = r d  

where  denotes one of the parameters , q and pd, and the vector r  depends on which one of 

these is to be varied. We obtain expressions for dw and dxd as 
Hi 

H 

d , i=1, 2, respectively, 

where Hi is the matrix formed by replacing the ith column of H with the vector r . 

 

For  = , and writing Mij for the absolute value of the marginal rate of substitution, we have 

the following, where the s are positive functions: 

rw = 1

McE

 E
 + 2, neglecting a term in f", and rd =  3

Mcd

 E
,  

For variations in q and pd we have right-hand-side vectors r  with components: 

for  = q:  rw
q
=  4

McE

 xc

 + 5 and rd
q
 = 6

Mcd

 xc

;  

for  = pd: rw
d
 =  7

McE

 xc

  and rd
d
 = 8

Mcd

 xc

 + 5. 

The signs of these depend on the signs of the partial derivatives of the Mij, all the  terms 

being positive. A discussion of this is set out in Appendix C., where it is argued that it is 

reasonable to assume that 
McE

 E
 0, 

Mcd

 E
 0, 

McE

 xc

 0 and 
Mcd

 xc

0. In that case r i 0, all = , q, 

pd and i=w, d, except that rd  0. 

 

We may now explore the differentials for the comparative static effects: 

(22) dw = 
(Hdd rw  Hwd rd

 
)

H
 d  and  dxd = 

(Hww r d
 

  Hwd rw
 

)

H
 d  

for  specified to be  or q or pd. Given our assumptions about the nature of compensated 

substitution between E and d, and about the reactions of marginal rates of substitution to 
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ceteris paribus changes in consumption levels of individual goods, the sign pattern in 

equation (21) is 

 
ddx

dw
= d  except for the possibility that rd = 0. We conclude from (22) 

that changes in , q or pd, ceteris paribus, all have unambiguously negative impacts on the 

consumption of the dirty good and the output of unrecycled waste. The 'greener' the consumer 

is, and the higher the prices that he faces for waste-disposal and for the dirty good, the 

cleaner will his behaviour be. The impact on recycling levels cannot be established at this 

level of generality: a movement in either direction is consistent with the predictable 

movements of w and xd in response to parameter changes. 

 

8. Concluding remarks 

Detailed conclusions have been presented already, in particular in Section 6.4, so these final 

remarks will be confined to observations concerning the most important results. The 

contribution of this paper is to bring out the significance of the fact that many individuals 

reveal a concern for the environment even when pecuniary incentives are absent. A crucial 

element  is the parameter , which measures the extent to which the consumer recognizes his 

own responsibility for the externality; with full recognition by the consumer of this and also 

of the fact that he is representative, then =n and we have the extreme case in which 

expectations are said to be rational. By allowing the consumer to exhibit some recognition of 

his responsibility for the consequences of his actions (i.e. letting  0), we explain the 

phenomenon of voluntary recycling even when waste discharge is unpriced. This result is 

interesting in itself, and it also provides a support for the assumption that  0. Changes in  

or the price of waste q or the price pd of the dirty good all have an unambiguously negative 

effect on consumption xd of the dirty good and the discharge w of unrecycled waste, under 

reasonable assumptions concerning preferences. Thus, the 'greener' the consumer is, and the 

higher the prices that he faces, the cleaner will be his behaviour.  

 

The two-stage process will achieve the benchmark first-best outcome in the extreme case of 

rational expectations, provided that unrestricted income taxes and transfers are possible. 

Otherwise, the outcome will be second-best unless =0 and the externality is weakly 

separable from the set of consumption goods in the utility function. When =1 the consumer 

is 'socially responsible' in that he recognizes his own contribution to the externality, without 
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recognizing his representativeness. As the number of consumers increases, optimal pricing of 

waste in this case converges to that for =0. 

 

The first-best optimum involves marginal recycling costs C' exceeding marginal waste-

disposal costs D' by the marginal disutility of the externality (in absolute value), aggregated 

over consumers, that is, the absolute amount  
nuEf'pc

uc
 . This condition also appears in the two-

stage procedure with slack tax/transfer constraints; the optimal price of waste q then lies 

between D' and C' and exceeds D' by the uninternalized portion of the marginal disutility of 

the externality, aggregated over consumers: i.e.  
n

n
 
nuEf'

1

, which is the Pigouvian tax. In the 

case =n, the tax should be zero, with waste priced at marginal disposal cost D'. This 

provides a general prescription for policy, i.e. that the Pigouvian tax should be inversely 

related to the extent to which consumers accept their own responsibility for the externality. 

With a binding constraint on taxes and transfers, the condition C' D' =  
nuEf'

1

 is replaced by 

an inequality, and it is no longer the case in general that the (second-best) optimal value of q 

exceeds D' by the uninternalized portion of the marginal disutility of the externality. 

 

The one-stage planning model of Section 3.2 is to be seen as a benchmark, and not as the 

basis of practical policy-implementation. However, moving closer to practicality, the two-

stage procedure still places considerable demands on the policymaker, in terms of the 

assembly and utilization of information concerning consumers' responses to price signals. A 

further development of this research might explore how the policymaker might develop 

optimal values of policy instruments through successive approximations in an iterative 

process. It could also explore how the consumer might revise unfulfilled expectations of the 

level of the externality, this being an important question when the externality is not separable 

from other goods in the utility function. 
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Appendix A. The modified indirect utility function when w and R are positive 

Let V(q, pd, pd, m) be the indirect utility function derived from individual optimization, where 

the Lagrangian is L=u(f( w+ 
¯¯

 W ), xd, xc)+ 1[m pdxd pcxc C(R) qw] + 2[R+w g(xd)]. 

By Roy's identity, 
V

q
 =  

V

m
 w(q, pd, pc, m). This takes account of the dependence of 

maximized utility on w. However, from the policymaker's perspective, the utility function is 

u(f(nw), xd, xc). Define V ^= u(f(nw(q, pd, pc, m)), xd(q, pd, pc, m), xc(q, pd, pc, m)) where w, xd 

and xc satisfy the individual first-order conditions for the Lagrangian set out above. Then 

  
V ^

q
  =  nuEf' 

w

q
 +ud

xd

q
 + uc

xc

q
  

  =  ((n )+ )uEf' 
w

q
 +ud

xd

q
 + uc

xc

q
  

  = (n )uEf' 
w

q
 + uEf'

w

q
 +ud

xd

q
 + uc

xc

q
  

  = (n )uEf' 
w

q
 +( 1q 2)

w

q
 +( 1pd + 2g')

xd

q
 + 1pc

xc

q
  

from the FOCs (7'), (8) and (9)). Using FOC (10) we then have 

(A.1)  
V ^

q
  =  (n )uEf' 

w

q
 + 1[q  C']

w

q
 + 1[pd +C'g']

xd

q
 + 1pc

xc

q
 . 

We have assumed that all these FOCs hold as strict equalities. 

Now differentiate across the constraints with respect to q: 

  pd 
xd

q
  pc

xc

q
  C'

R

q
  q

w

q
 w= 0 and 

R

q
 +

w

q
 g'

xd

q
 = 0. 

Multiplying the second by C' and adding the first to it, 

  pd 
xd

q
  pc

xc

q
  q

w

q
 w+ C'[

w

q
 g'

xd

q
 ]  = 0 or  

 (pd+C'g') 
xd

q
 + pc

xc

q
 + (q C')

w

q
  =  w 

and then from (A.1) above,  
V ^

q
  =  (n )uEf' 

w

q
  1w 

In a similar fashion it may be shown that  
V ^

m
  = (n )uEf'

w

m
 + 1. 

We briefly consider the cases of boundary solutions for w or R. If (7') is a strict inequality at 

the optimum, then w=0. In that case small changes in parameters will not move the solution 

off the boundary so that 
w

q
 =

w

m
 =0. Then, 

V ^

q
 = 

V

q
 =0 and 

V ^

m
 =

V

m
 = 1. If (10) is a strict 

inequality at the optimum, then R=0 and the expressions for 
V ^

q
 and 

V ^

m
  include additional   
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terms, ( 1C' 2)(
w

q
  g'

xd

q
 ) and ( 1C' 2)(

w

m
  g'

xd

m
 ) respectively, where 1C' 2 0. 

 

Appendix B. The identity of the constraint sets for the two- and one-level problems 

For the two-level problem the constraint sets are defined: 

 for the consumer, by: m pdxd pcxc C(R) qw=0 and R+w g(xd)=0,  

 assuming binding constraints, which combined are M T pdxd pcxc C(g(xd)  w) qw=0; 

  for the policymaker, by: nqw(q,m(T),...) + nT  D(nw(q,m(T),...))=0. 

Combining these gives the union of all possible constraint-sets for the consumer: 

 M T pdxd pcxc C(g(xd)  w)  (D(nw)/n  T) = 0,  

 i.e.  n(M pdxd pcxc C(g(xd)  w)  D(nw)  = 0, 

which defines the constraint-set for the one-stage problem. 

 

Appendix C. Comparative static analysis 

Having reduced the four-instrument two-constraint problem to an unconstrained one with two 

instruments (see Section 7.), we have a 2 2 Hessian H, derived from the two FOCs, where  

Hww   = (  
2
f'

2
/uc

2
)[ uc

2
uEE 2 uc

 
uE

 
ucE +uE

2
ucc] +  

2
uEf"  ucC"/pc; 

Hwd = Hdw  = ( f'/uc
2
)[ uc

2
uEd  uc

 
ud

 
ucE  uc

 
uE

 
ucd + ud

 
uE

 
ucc] + ucC"g'/pc; 

Hdd   = (1/uc
2
)[ uc

2
udd 2 ud

 
uc

 
ucd +ud

2
ucc]  (C"g'

2
 + C'g")uc /pc. 

When signing these, we use uE 0, uc/pc 0, C" 0, f' 0, g' 0, C' 0, and g" 0. 

 

If we define the bordered Hessian matrix relating to the utility function as 

B =
uu

u
2

'0
 = 

ccdcEcc

dcddEdd

EcEdEEE

cdE

uuuu

uuuu

uuuu

uuu0

, then for the terms in [square] brackets in Hww, Hdd 

and Hwd we have respectively: 

in Hww:  [ uc
2
uEE 2 ucuEuEc +uE

2
ucc]  =  Bdd; 

in Hdd:  [ uc
2
udd 2 ud

 
uc

 
ucd +ud

2
ucc] =  BEE; 

in Hwd: [ uc
2
uEd  ucuducE  ucuE

 
ucd + uduEucc]  =  BEd; 

where Bij, is the (signed) cofactor determinant of the element subscripted i, j in B.
 
 

Because u is assumed quasi-concave, then that BEE 0 and Bdd 0 (Berck and Sydsæter, 1991, 

p. 63) so that Hdd 0, and if we assume that f" is either nonnegative or negligible, Hww 0 also.
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The sign of BEd depends on the compensated cross-price effects between E and d. If we 

conceptualize the standard problem of maximizing u(.) subject to a budget constraint as 

reflecting a payment to the consumer of a price pE per unit of E consumed, then we have 

xd(p,u)

 pE
 = 

E(p,u)

 pd
 = BEd / B  where  is a Lagrange multiplier, assumed positive, and B  

0 for the total number of goods and bads N=3.
16

 The modified version of Slutsky symmetry 

should be noted: the negative sign on 
E(p,u)

 pd
 arises because E is a bad, and the consumer pays 

to avoid it or is paid to consume it. If N=2 and i=E, d, then it is clear from Figure C.1. that 

xd(p,u)

 pE
  0 and 

E(p,u)

 pd
0 (it is advisable to avoid the terminology of substitute and 

complement in this context). We assume that the partial derivatives have these signs 

respectively in the case N=3, in which case BEd / B  0, so that BEd  0, from which it 

follows that Hwd 0.  

Figure C.1. here  see page 31 

 

Finally we derive and discuss the components of the vector r  (see equations (21) and (22)). 

For  = , we have 

rw = wf'
2
[ucuEE  uE

 
ucE]/uc uE(f'+ wf") = wf'

2
[ucuEE  uE

 
ucE]/uc uEf' 

 = uc wf'
2 McE

E
 uEf' = 1

McE

E
 + 2, neglecting the term in f", and noting that 

  the marginal rate of substitution McE is defined as uE/uc 0 (see note 13). 

rd =   wf'[ucudE  ud
 
ucE]/uc  = ucwf' 

Mcd

E
  =  3

Mcd

E
. 

For variations in pc and q we have: 

rw
q
 = 

w

pcuc
 f'[ucuEc  uE

 
ucc] +

uc

pc
  =  (

ucw

pc
 f')

McE

xc
 + 

uc

pc
  =  4

McE

xc
  + 5; 

rd
q
 = 

w

pcuc
 [ucudc  ud

 
ucc]  =    ( 

ucw

pc
)

Mcd

xc
 =      6

Mcd

xc
; 

rw
d
 = 

xd

pcuc
 f'[ucuEc  uE

 
ucc]  =   (

ucxd

pc
 f')

McE

xc
  =    7

McE

xc
; 

rd
d
 = 

xd

pcuc
 [ucudc  ud

 
ucc] + 

uc

pc
  =     ( 

ucxd

pc
)

Mcd

xc
 + 

uc

pc
  =      8

Mcd

xc
  + 5. 

                                            
16 Along with the expressions for the cross-price effects, for each i it is the case that the own-price substitution 

effect for good i is a multiple of Bii/ B . (Strict) quasi-concavity of u implies that B 0 for n=3, but the 

case B =0 is clearly pathological for the values of these price effects so we assume that B  0. 
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The signs of the r i  terms depend on the signs of the partial derivatives of the Mij, all the   

terms being positive. 

 

As regards 
McE

E
 we assume that as E rises, making c relatively scarce, the more c one would 

want at the margin to compensate for a unit rise in E, so 
McE

E
 0. As regards 

Mcd

E
 one might 

assume that E is separable from the group {d, c}, so that 
Mcd

E
 =0. Alternatively, the 

externality might have a strong locational connection with consuming d, rather than being 

widely dispersed: for example, driving on a congested motorway is less pleasant at the 

margin when the externality rises, so that one requires less of c at the margin to compensate 

for xd, so 
Mcd

E
 0. As regards 

McE

xc
, we assume that the larger is xc, the less will be required of 

c at the margin to compensate for a unit of E, so 
McE

xc
 0. Finally, as regards 

Mcd

xc
 we assume 

that as xc rises, and consumption of d becomes smaller relatively, then the more of c one 

would forego for a unit rise in d: 
Mcd

xc
 0. 

 

Making these assumptions about the signs of the partial derivatives of the Mij, we have r i 0, 

all = , q, pd and i=w, d, except that rd  0. Then from equation (22), for all  we have dw 0 

and dxd 0. Even if rd =0, these qualitative conclusions are unaltered. 

 

The signs of the partial derivative of the Mij depend only on the underlying preference 

ordering, and not on the particular representation by a utility function, being invariant to a 

monotone increasing transformation of u. The assumptions that have been made concerning 

these signs are similar to assumptions about the signs of income or substitution effects. In the 

case N=2, there is a one-to-one relationship between income effects and the two expressions 

of the form uiuji ujuii, because these are the cofactors B1 and B2. For example, in the case 

where d and c are the only goods, with no externality, there is an equivalence between the 

assumption that 
Mcd

xc
 0 and the assumption that good d is normal with respect to income 

changes. For N 3, groups of such expressions turn up in a more complicated manner in the 

cofactors Bj, Bij, i, j =1..., and consequently in the expressions for substitution and income 

effects. 
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Figure 1. Optimal configuration of marginal costs D' and C', and price q, 

  with w 0 and R 0, assuming uE 0; 

  case of slack tax-constraints. a 

    w         R=0, w=g(xd)                          Optimal division of                w=0, R=g(xd)          R 
                                                  of g(xd) into R, w, given D'3(w) 

 
Given D'1(w), R=0: there will be no recycling, because C'(0)  D'1(g(xd))  nuEf' 

1

1
. b 

Given D'2(w), w=0: there will be no disposal, because D'2(0)  nuEf' 
1

1
  C'(g(xd)).

 c 

Given D'3(w): optimally w 0, R 0 at the point indicated. 

a  so that 2= 3=0. 
b For this case, a necessary but not sufficient condition is that C'(R) should intersect the left-hand 

vertical axis above D'1(w). Here the vertical distance C'  D'1 is assumed to exceed  nuEf'
1

1

. 

c For this case, a sufficient but not necessary condition is that D'2(w) should intersect the right-
hand vertical axis above C'(R), as depicted. 
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 C' D' 

Figure 2. Optimal disposal and recycling at a given value of xd 

   for various functions D'(w) (right axis), given C'(R) (left axis); 

   case of slack tax constraints.a 

g(xd) 
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Figure C.1. Indifference map for N=2: one good, one bad, 

 assuming strictly convex preferences. 


