War and Individual Creativity: Tentative Evidence in Relation to Composers

Karol Jan Borowiecki and John W. O’Hagan

TEP Working Paper No. 1711

October 2011

Trinity Economics Papers
Department of Economics
Trinity College Dublin
War and Individual Creativity: Tentative Evidence in Relation to Composers

Karol J. Borowiecki and John W. O’Hagan

Department of Economics
Trinity College
Dublin Ireland

Abstract
The relationship between conflict and individual artistic output is ambiguous, both a priori and in terms of the evidence. To address this question in relation to composers, we employ a sample of 115 prominent classical composers born after 1800 and attempt to link their annual productivity with the incidence of wars. While the sample is small and the measure of creative productivity limited, we find evidence that the impact of wars on individual creative production is significant and negative, in keeping with the evidence on the impact of wars on overall societal creative output.

Keywords: productivity, conflict, war, composer

JEL Classifications: D24, D74, J24, F51, O31, N40, Z10
1 Introduction
In relation to a larger project details on the movements of over 500 prominent composers in different time periods were collected. This meant that there was information then on where they were during years of war. Information on wars and their duration are available. This led to the interesting question of whether or not we could link the output of individual composers to wars and in what way.

To examine this topic one crucial further bit of information was required, namely some measure of the creative output of composers. Measures were sought and the only one we could find, even as a very crude proxy, covered 115 of the composers for which we had detailed information on their whereabouts throughout their lives. Nonetheless, this we feel is a start at attempting to provide some empirical evidence on a topic that has interested social scientists, psychologists and historians (see references).

Section 2 of the paper will examine the a priori links, if any, between individual creative output and wars. Section 3 will outline the source, and construction, of the three large data sets used in this paper. Section 4 will provide a summary of the key descriptive statistics arising from these data as well as specify the model to be used and outline the main econometric results. Section 6 will conclude the paper.

2 Possible Link between Individual Creativity and War
There are two aspects to this debate. The first is the impact of war on total creative output; the second is its impact on the life-cycle output of existing artists. It is the latter question that is addressed in this paper although one might expect the two to be linked. In relation to the first of these questions, several scholars have provided qualitative discussions of history and claim that war and internal unrest have a negative impact on artistic creativity and artists.\(^1\) This should impact of course on individual productivity: if the general conditions of war are not positive for overall creative activity it is highly unlikely that the work of existing established composers will prosper.\(^2\)

Creativity for our purposes may be defined as ‘the achievement of something remarkable and new, something which transforms a field of endeavour in a significant way’

\(^1\) See for example, Simonton (1980) and Wright (1942).
\(^2\) The only evidence that we know of about the impact of wars on individual artistic output, and in a circuitous way, is Hellmanzik (2010): she studied clustering premiums for visual artists and regressed prices of paintings on artist’s age and several control variables, including dummies for both World Wars. The results indicate that artworks painted during World War I and World War II are valued higher.
(Feldman et al, 1994, p. 2). They then provide a useful framework for the study of creativity. Of particular interest for our purposes are those factors that concentrate on individual-oriented approaches and especially those theories that attempt to link an individual’s state of mind at a particular time to wider conditions and hence to creative output.

Much has been written on the links between trauma and creative output, the links between mental illness and creative output being an extreme version of this. Andreasen (2005) diagnosed the relationship between creativity and psychopathology in living writers. She argued that mood disorders could possibly be productive and in some instances may provide powerful material upon which the creative person could draw. For example, T.S. Eliot did his best work apparently under mental stress and Einstein also recognised the necessity of the acceptance of lows and highs in his search for scientific breakthrough.

One key issue is whether or not mood changes lead to a greater output, or perhaps a lesser but higher-quality output. Slater and Meyer (1959) with this in mind analysed the output of Robert Schumann. The average number of his works over parts of his life was tracked and it was found that in his years of hypomania his output was five times the average number in his years of depression. They then adjusted for the quality of this output, using the number of recordings for each composition as an indicator of quality. The number of recordings though could simply be a measure of popularity and not quality, although the two can be highly correlated. When this adjustment is made, they find that that while the number of works increased in Schumann’s manic years there was no apparent increase in the quality of his creativity in these years.

Emery (1993) attempted to explain the links between artistic activity and inner resistance to group regression and tyranny, where the creative self can for example be influenced by the corruption of the surrounding social order or as a check on the tendency to conformity of mass society. His essential argument is that psychologically people respond to trauma through creative production. And it could be argued that war certainly provides trauma and/or a threatening situation, in some cases in extremis (see Sidmonton, 1980). As Jamison (1989) says, ‘creative work can act not only as a means of escape from pain, but also as a way of structuring chaotic emotions and thoughts, numbing pain through abstraction and the rigors of disciplined thought’ (p. 123).

Another possible positive link between creative quality and war is that artistic output inspired by war often deals with the topic of war and this subject may have a broad appeal, thereby leading to more monies being provided for artistic activity, especially by established creative artists. Such works though might just be for mass consumption, with huge popular
appeal. Our key data source though does not include major works simply because of mass appeal but only ones that are based on professional assessment of their creative merit (see later). As such, in this study works that were simply ‘popular’ rather than musically important are not included.

The above might suggest that the experience of war for some composers could actually increase creative output. The opposite effect though could be postulated. Cerulo (1984) talks about three possible links between war and individual creativity: direct exposure to the war, destruction of communication networks and social-psychological processes. War generates large-scale disruption and instability of the social fabric. Physical threat, destruction and direct attack are highly counterproductive to creative output. As she points out, Vaughan Williams was a fire-fighter during the bombing of London, often being forced to write with his helmet, bucket and pump close at hand. Shostakovich composed right through the air raids on Leningrad, leaving his desk only when on shift duty in the rescue brigade.

Communication networks also break down in war time and many composers would not have any foreign works available to them because of censorship and broadcasting blackouts. Besides, the adverse effects of war on the music publishing industry cause a decline in the exchange of written material. On top of this all interpersonal contact, especially with colleagues in the non-war zone, may end, thereby depriving composers of a supportive system and the enforcement by contemporaries of peer review and standards. Cerulo (1984) on the basis of a small and selective sample does find a significant impact of war on the structure of music composition but does not indicate in a musical sense whether or not this led to a higher-quality output.

There are other reasons why war might have had a negative impact on composition. It is possible that wars disrupt the creative output of composers, either in terms of access to instruments/concert venues or players to ‘test’ their material. This is less likely to happen to established major creative figures, such as the 115 composers being examined in this paper.

3 Two possible examples of this are the following. First, is the ‘Wellington’s Victory’ - an orchestral work that was composed in 1813 by Beethoven to commemorate the Duke of Wellington’s victory over Bonaparte’s forces at the Battle of Vitoria in Spain. The piece, with its fanfares, cannonades and themes from British patriotic songs was thunderously acclaimed, especially in England. Critics regard the composition to be ‘tailored for popular success’, one of the first mass productions that appeared at the ‘dawn of the age [of] modern commercial propaganda’ (Kinderman, 2009). A second influential composition, ‘Symphony No. 7’ (also ‘Leningrad Symphony’) was composed by Shostakovich within a month after the Nazis invaded Russia in the year 1941. The composer described the work to be ‘about terror, slavery, and oppression of the spirit’ and the composition became an icon of the resistance, suffering and hopes of the Russian people. Shostakovich’s work received hundreds of performances, both in Russia and abroad.
but as noted above if there is direct exposure to war, communications and interpersonal networks break down which could affect all composers, no matter how important.

3 Data Sources
Three major data sources were used for this study and each will now be outlined in turn.

O’Hagan and Borowiecki (2010) documents how the data on the yearly geographic locations of the 522 most important composers were obtained. Their sample was taken from Murray (2003) who used 17 different reference works and histories to calibrate eminence, and in at least one of these sources 2,508 composers were listed. He then reduced this to 1,571 composers who were mentioned in at least two sources, one of which was a non encyclopaedic source. In examining these composers, he used the 13 most relevant sources, relevant being defined as one that contained 18 percent of the 1,571 composers. He then reduced this to 522 “significant” composers, namely those mentioned in at least half of the 13 sources used. This was the group of composers then for which O’Hagan and Borowiecki sought location data.

The key data source on the location and migration patterns of the 522 composers is the Grove Music Online (2009). This large multivolume dictionary is detailed enough to track the movements of all 522 composers, especially work-related migration, and in fact covers around 15,000 composers in all. It is “a critically organized repository of historically significant information” (Sadie, Grove Music, 1980 edition, xii) and hence was an ideal source, especially as it is also available online. For contemporary composers, 1950 was the year adopted as the cut-off point by Murray (2003), with no composers born after this year included: thus twentieth century from here on refers to composers born in the first half of that century only. The important work of composers though occurs many decades after year of birth, with, for example, the main work of many composers for example born between 1850 and 1899 taking place in fact in the first half of the twentieth century.

What results is a unique data series that records the country of residence for each composer in every year of his life. In this study we focus only on the periods of a composer’s

4 For example, would Richard Wagner’s output have been richer if he had not emigrated because of a civil war - the May Uprising of 1849 - from Dresden to an exile in Zurich, where he spent 12 years in isolation from the German musical environment and lived mostly without any notable income? How would the career of Carl Orff have developed if he were not drafted into the army in 1917, when he got severely wounded at the front and almost died due to his injuries? We will never know the answers to these specific questions.

5 See also Borowiecki and O’Hagan (2012) on their attempts to build a data source on a much larger group of composers, namely the 15,000+ listed in Grove Music Online (2009), but not including detailed migration and work patterns. See also Borowiecki (2012) for a study of the impact of war on migration patterns of composers.
life when music-related work was predominant, i.e. when a composer was composing, giving
tours, conducting philharmonics, teaching at music schools, managing music institutions, or
travelling in search of inspiration. The aim of this restriction is to analyze the life period in
which an individual from the sample was in fact a composer. Hence the infancy, education
and retirement life periods are excluded as well as periods in which only other professions
were practised.

The most common method for the measurement of creative product is based on an
assessment of expert judges (Plucker and Renzulli, 1999). In this research then we defer to
the opinion of experts and obtain the underlying output database from Gilder and Port (1978),
in which a qualitative selection of the most important works for 275 prominent classical
composers born between 1500 and 1949 is provided. Their work aims to provide a dictionary
“of lasting value as a permanent reference (...) [that contains] (...) complete factual
information about who wrote what and when” (Gilder and Port, 1978, Preface). The
selection is intended to include “every work of importance” that “may be heard in the concert
hall, the opera or ballet house, and the church”. For each composition, Gilder and Port
provide the associated date of production, and full and type of work.\footnote{This authoritative
source has also been used by Cerulo (1984) and Sidmonton (1991).}

The war data set is based on the Correlates of War (COW), a commonly-used
database introduced and described by Sarkees (2000). The COW data set identifies conflicts
within states and between states that occurred between 1816 and 1997,\footnote{The COW
database covers also extra-state wars, i.e. wars between a state and a non-state entity. However, as
none of these wars occurred within the boundaries of any of the countries analyzed, we do not include extra-
state wars in our study.} and lists a number of
records for each war. The available information enables one to take account of war
heterogeneity and to conduct distinctions between various types of war. The composer and
war data sets are linked through the country where a composer was located in a given year.\footnote{Note that for 1816-1918 (for the duration of the Austria-Hungary Union) the COW database aggregates wars
in Austria and Hungary. To maintain consistency we also aggregate composers in that two countries for that
time period. Analogous to the COW records we also aggregate composers for Germany and Italy for the period
before the unification in 1871 and during the XIX century, respectively.}

Thus for the purposes of this study only the composers who lived during the wars
identified in Sarkees (2000), and covered by both Gilder and Port (1975) and O’Hagan and
Borowiecki (2010) could be included. This reduced the total that could be studied to 115: a
relatively good sample size nonetheless that should allow of reliable estimation.
4 Results

Descriptive Statistics

For the composers included in this study we present a summary of the data in Table 1. The data set encompasses composers who were engaged in music-related work during most of their lives (around 46 out of 68 years). France and the Germanic countries (i.e. Germany, Austria and Switzerland) accounted for the highest share of births of important composers – approximately 20 per cent each, followed by Russia with 14 per cent of births, Italy and Easter European countries each with around 10 per cent of births. One third of the composers were born in the first half of the 19th century, around 58 per cent were born in the second part of the 19th century, and the remaining artists were born in the early 20th century. On average the total yearly output is equal to 0.73 and suggests that an artist during his career was composing two important classical works in less than three years.

The average composer was located in a country that has been engaged during 1.1 years in intra-state wars and around 8.2 years in inter-state wars. The duration of defensive and offensive international conflict faced by the country of composers’ residence was approximately 4.9 and 3.4 years, respectively. The wars in which composers’ country of residence was victorious or that ended with a tie lasted 2.5 years and the conflicts lost had a duration of 5.8 years. The wars analyzed were fought either on the continent of the participating country (2.4 years) or on other continents (5.8 years).

In Table 2 we summarize composers’ annual creative production outcomes, measured as the number of written works, for years of peace as well as for the periods when war lasted. It can be observed that while productivity in the absence of any war is equal to around 0.74 works, it drops to 0.69 works if war occurs. The difference is however marginally outside the usual confidence intervals (p-value equal to 0.12). We find here a first indication of the existence of differences in artistic production depending on the presence of peace or war.

Model Specification

The aim of the econometric analysis is to estimate the impact of war on composers’ productivity. Formally, the specification is given by:

9 See Table 1 for details on grouping of countries.
\[\text{composition}_{it} = \beta_1 + \beta_2 \text{War}_{it} + \beta_3 \text{YearFE}_{it} + \beta_4 \text{AgeFE}_{it} + \beta_5 \text{ComposerFE}_{it} + \beta_6 \text{CountryFE}_{it} + \varepsilon_{it}, \]

where \(\text{composition}_{it} \) denotes the number of important works written by composer \(i \) in year \(t \) and \(\text{war}_{it} \) is an indicator function that is equal to one for war that occurred in the country of residence of composer \(i \) in year \(t \), and zero otherwise. Furthermore, the specification contains a set of control variables. To control for factors that influence composers’ productivity in a given year we include a full set of year dummies. In order to account for varying productivity levels over composer’s lifetime we include a quadratic age polynomial (i.e. \(\text{age}_{it} \) and \(\text{age}_{it}^2 \)). Taking account of unobserved heterogeneity of composers we include indicator functions for each composer. We further control for country-level factors that affect composers’ productivity and are constant over time by including a full set of country fixed effects. In some specifications reported below we also control for composers’ location by including a set of dummy variables. The effect of the war is likely to be correlated within a country, therefore we account for any dependence between observations within composers located in a country by clustering all regression results at the country level.

The main coefficient of interest is \(\beta_2 \), indicating how the incidence of war affects composers productivity. The direction of a relationship between war and productivity, if any, seems to be clear: war impacts individual’s productivity. There is hardly any reason why a composer’s annual productivity would affect the incidence of war.

Econometric Estimates

Estimations based on the model above are presented in Columns 1 to 4 of Table 3. In the first column we report a specification that contains only year fixed effects, we then add age fixed effects in Column 2, composer fixed effects in Column 3 and country fixed effects in Column 4. The point estimates in all four specifications indicate a negative association between the incidence of war and creative production. The relationship is significant at the 10 per cent significance levels and at the 5 per cent level for the full specification, and implies that the incidence of war is associated with an annual decrease in composers’ productivity of up to around 0.12 works. Given composers’ creative output productivity of around 0.73 works per annum (see Table 1), the results imply a productivity decrease of roughly 16 per cent.

We have also conducted a number of robustness tests that suggest the results – as can be viewed in Table 4 - are consistent. First, we included a set of control variables that account for the exact location where a composer was present in a given year (e.g. Paris). In some cases the exact location is however not known and only the country is given.
Furthermore, the estimation would not be possible if indicator functions for each observed location were included as their number is simply too great. Therefore, we included a large set of dummy variables accounting for the thirty most important cities and have recorded the locations of minor importance or which are unknown as the rest of a country (e.g. Rest of France). Despite this approximation the estimation contains a set of meaningful controls for important cities and hence to some extent accounts for the specific local demand and cultural infrastructure that in turn, could determine composers’ productivity. The point estimate is presented in Column 2. In accordance with the baseline results, which are reported in Column 1, the point estimate implies a strong, negative and significant impact of war on composers’ productivity.

Some composers have composed very little or have experienced almost no war during their lifetime. It is quite unlikely that individuals with very few positive observations lead to any spurious results, as we have already included composer fixed effects which should prevent any such bias. Nonetheless, we investigate this possibility and exclude composers who experienced less than two years of war or composed less than ten works during their life. The war coefficient for the restricted sample is reported in Column 3: the point estimate remains consistent with the baseline specification. One might further suspect that the results are driven by extreme observations, for example, by exceptionally productive composers. The bias would be present if wars were not evenly spread across all composers and if the most productive artists experienced more wars than the average creative individual. We investigated this possibility by dropping the most productive 10, 20 and 30 per cent of composers. The results again confirm the robustness of the main findings.

Finally, one might worry that ordinary least squares estimation techniques might lead to some bias, as the dependent variable takes only non-negative integer values. For this reason we estimate an additional regression employing a negative binomial model. The results are reported in Column 4. It can be concluded that the war impact remains once again unchanging.

10 The specific local demand and cultural infrastructure could lead, for example, to the composition of predominantly chamber works in Vienna, concert works in London or theatre works in Italian cities. Note that composers also often specialised in a certain type of composition (e.g. Georges Bizet in opera works), hence including composer fixed-effects already takes account to some extent of the heterogeneity of compositions.
6 Conclusion

The findings of this short study are quite conclusive. War, perhaps not unexpectedly, impact negatively on individual creative output, despite some claims to the contrary. Perhaps the negative impact is not as large as one might expect though, thereby lending credence to the theories that link the stress and trauma of events such as war to an enhanced creative output.

As mentioned previously, the study was limited by the data available, not just on the locations of the composers for each year of their lives but also by data on creative output and wars. The sample of composers looked at then was 115, a quite sizeable number for work of this nature.

The biggest qualification must attach to the measure of creative output. Only ‘important’ works (as judged by the experts) were included but these cover many different forms of music and all were amalgamated into a single number. Is for example one important symphony comparable to one important piano sonata or an opera or a church choral work? We attempted to check for this by including additional control variables, such as location fixed effects. Another difficulty was that some composers had only a small number of important works over their life time and hence no meaningful comparison it might be argued can be made between war and non-war years given the small number of observations. Again we tried to address this by omitting composers with less than 10, 20 and 30 important works and the impact of war was the same, suggesting that yet again the results are robust to various specifications.

References

11 There is no distinction made either between ‘important’ and ‘masterpiece’ but even if there was how would these be weighted?

Tables

Table 1. Composers’ Summary (n=115).

<table>
<thead>
<tr>
<th></th>
<th>Mean (1)</th>
<th>Standard Deviation (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life-span (years)</td>
<td>68.42</td>
<td>14.50</td>
</tr>
<tr>
<td>Duration of Career (years)</td>
<td>45.68</td>
<td>14.29</td>
</tr>
<tr>
<td>B. Birth country</td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Isles</td>
<td>0.087</td>
<td>0.283</td>
</tr>
<tr>
<td>France</td>
<td>0.217</td>
<td>0.414</td>
</tr>
<tr>
<td>Germanic Countries</td>
<td>0.191</td>
<td>0.395</td>
</tr>
<tr>
<td>Italy</td>
<td>0.096</td>
<td>0.295</td>
</tr>
<tr>
<td>Russia</td>
<td>0.139</td>
<td>0.348</td>
</tr>
<tr>
<td>Spain</td>
<td>0.026</td>
<td>0.16</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>0.096</td>
<td>0.295</td>
</tr>
<tr>
<td>Rest of Europe</td>
<td>0.043</td>
<td>0.205</td>
</tr>
<tr>
<td>USA</td>
<td>0.087</td>
<td>0.283</td>
</tr>
<tr>
<td>Rest of World</td>
<td>0.017</td>
<td>0.131</td>
</tr>
<tr>
<td>C. Birth period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Born 1800-1849</td>
<td>0.339</td>
<td>0.475</td>
</tr>
<tr>
<td>Born 1850-1899</td>
<td>0.583</td>
<td>0.495</td>
</tr>
<tr>
<td>Born 1900-1949</td>
<td>0.078</td>
<td>0.270</td>
</tr>
<tr>
<td>D. Total works per annum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>0.731</td>
<td>0.731</td>
</tr>
<tr>
<td>E. Wars experienced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any war (years)</td>
<td>9.38</td>
<td>6.46</td>
</tr>
</tbody>
</table>

SOURCES: Data on composers are obtained from Grove Music Online (2009). Number of important compositions is taken from Gilder and Port (1978). War data is employed from the Correlates of War data set (Sarkees 2000).

NOTE: The British Isles include composers from England, Scotland, Ireland and Wales. Eastern Europe relates to composers born in any of the Eastern Europe countries as classified by United Nations Statistical Division, with the exclusion of Russia. The Germanic Countries relate to the three German-speaking countries of Germany, Austria and Switzerland. Rest of Europe covers composers from all other European countries. World relates to composers that do not fit in any of the other categories.

Table 2. Descriptive Evidence. Composers’ Productivity and Wars.

<table>
<thead>
<tr>
<th></th>
<th>Total compositions per annum (1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peace</td>
<td>4,213</td>
<td>0.739</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.085)</td>
</tr>
<tr>
<td>Wartime</td>
<td>1,040</td>
<td>0.696</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.324)</td>
</tr>
<tr>
<td>Difference (Wartime – Lifetime)</td>
<td>-0.044</td>
<td>(0.037)</td>
</tr>
</tbody>
</table>

SOURCES: See Table 1.
Table 3. Composers’ Productivity and Wars: Dependent Variable, Composer’s Output

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) OLS</th>
<th>(4) OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>War</td>
<td>-0.128**</td>
<td>-0.110*</td>
<td>-0.0943*</td>
<td>-0.115**</td>
</tr>
<tr>
<td></td>
<td>(0.0579)</td>
<td>(0.0566)</td>
<td>(0.0482)</td>
<td>(0.0501)</td>
</tr>
<tr>
<td>Year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Age FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Composer FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Observations | 5,253 | 5,253 | 5,253 | 5,253 |
| R-squared | 0.044 | 0.076 | 0.291 | 0.297 |

NOTE: Standard errors are clustered at the country level and reported in parentheses. All specifications contain a constant and are estimated with ordinary least squares. ***/**/* indicate estimates that are significantly different from zero at 99/95/90 percent confidence.

Table 4. Robustness Tests. Composers’ Productivity and Wars; Dependent Variable, Composer’s Output

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS Full Sample</th>
<th>(2) OLS Full Sample</th>
<th>(3) OLS Restricted Sample</th>
<th>(4) Negative Binomial Full Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>War</td>
<td>-0.115** (0.0501)</td>
<td>-0.126** (0.0489)</td>
<td>-0.159*** (0.0549)</td>
<td>-0.145** (0.0652)</td>
</tr>
<tr>
<td>Year FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Age FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Composer FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Location FE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Observations | 5,253 | 5,253 | 4,310 | 5,253 |
| R-squared | 0.297 | 0.310 | 0.268 | N/A |

NOTE: Standard errors are clustered at the country level and reported in parentheses. Column 3 reports a specification which excludes composers who experienced less than two years of war or produced less than ten works. All specifications contain a constant and are estimated with ordinary least squares, except specification in Column 4, which is estimated with a negative binomial regression model. ***/**/* indicate estimates that are significantly different from zero at 99/95/90 percent confidence.