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Abstract

This paper presents a continuous time real options model of mergers between

two firms experiencing different, but correlated shocks to their profitability. It

is assumed that mergers do not just lead to efficiency gains, but are also an

act of diversification, leading to a lower volatility for the shocks to the merged

firm. Due to the latter assumption the region where a merger is optimal is a

bounded interval and not a half-space as in standard real options models. It is

shown that if firms can compete in merger activity the option value of mergers

vanishes completely. This can lead to substantial differences in the probability

of mergers occurring in both scenarios.
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1 Introduction

In the standard literature on real options the cash-flows accruing from an investment

project are assumed to be perfectly correlated to one underlying source of uncer-

tainty. Typically, a unique investment threshold is derived above (below) which

investment (scrapping) is optimal. In recent years, however, some papers have ex-

tended this approach to include multiple sources of uncertainty. Notably, Morellec

and Zhdanov (2005) study mergers where the profit flows of both firms are different,

but correlated. They derive a unique threshold for the ratio of both profit streams

above which a merger or acquisition is optimal. These results are then used to

explain excess returns on shares prior to merger and acquisition (M&A) announce-

ments. In this paper we study a model of mergers and acquisitions where the optimal

investment region turns out to be a bounded set instead of a half-space.

The real options approach views the possibility of mergers and acquisitions as an

option comparable to an American call option. The underlying asset in this paper is

a firm’s discounted future profit stream. This profit stream is assumed to be subject

to risk. We consider a two-factor model with two expected profit maximising firms,

which face different, but correlated, risk. A crucial assumption in this paper is that a

merger is seen partly as an act of diversification, which leads to less overall volatility

of the merged firm than the sum of the volatilities of the firms before a merger.

Hence, apart from a (possible) efficiency effect, there is also a diversification effect.

This is the main difference with Morellec and Zhdanov (2005), where the volatility

of the merged firm is a weighted sum of the volatilities of its constituent firms.

Two scenarios related to M&A activity are analysed. In the first scenario it is

assumed that only one firm can engage in M&A activity. That is, a merger is always

the result of one firm taking over the other firm. A takeover takes place as soon as

one firm makes a bid on the other firm which the other firm does not reject. It is

shown that the option value of M&A activity in this case is positive. We find that

M&A activity can take place both during economic expansions and contractions.

The most important factor in determining the optimality of a merger or takeover

decision is the relative profit of a firm vis à vis the other firm.

However, unlike Morellec and Zhdanov (2005), the optimal region can be reached

from above as well as from below in our model. If the ratio of profits1 is very low, a

merger is not profitable for the acquirer, since the stand-alone profits will outweigh

the (possible) synergy effect of the merger. Alternatively, if the ratio is very high, a

merger is not profitable since the shareholders of the target have to be compensated

substantially for their firm. This implies that, in the absence of speculative bubbles,

1The profit of the acquirer (target) in the numerator (denominator).
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the option value of an acquisition converges to zero both if the profit ratio tends

to zero and if it goes to infinity. This happens because the net present value of a

merger is not linear in the ratio of profits, but a polynomial. This, in turns, is a

consequence of the diversification effect of mergers, which reduces the probability of

favourable future profits.

In the second scenario we consider the case where both firms can engage in M&A

activity. A takeover, again, takes place if one firm makes an offer that is accepted

by the other firm. A merger takes place if both firms make a bid simultaneously.

In this case the profit shares are determined by a Nash bargaining procedure. We

show that it is optimal for one firm to make a bid if and only if it is optimal for the

other firm to make a bid as well. This result holds regardless of the relative size of

the firms. Consequently, in equilibrium both firms will always simultaneously make

a bid, i.e. (hostile) takeovers will never take place in equilibrium. Furthermore, the

option value of M&A activity vanishes completely in case both firms can engage in

it. A numerical analysis shows, in addition, that the probability of investment can

be substantially lower in the optimal scenario when compared with the strategic

scenario. Given that in most real markets the second scenario is more appropriate,

this leads to the prediction that the likelihood of a sub-optimal merger decision

is substantial. It is important to note that this sub-optimal decision is in fact

maximising shareholder value. Again, this is a different result than obtained in

Morellec and Zhdanov (2005), where the optimal investment region is different for

both firms and M&A activity depends on the relative strength of firms.

There is a substantial literature that analyses mergers and takeovers as real

options. Margrabe (1978) is the first to recognise that takeovers are exchange options

in a model with exogenous timing. The first real options analysis of mergers is

Lambrecht (2004), who studies a model where the underlying source of uncertainty

is the same for both firms. As a result he finds that mergers only take place during

times of economic expansion. Our paper is most closely related to Morellec and

Zhdanov (2005) who extend Lambrecht (2004) to a situation where the firms face

different, but correlated, sources of uncertainty. The present paper extends Morellec

and Zhdanov (2005) to a situation where a merger is not a pure exchange option

due to a diversification effect. This has important consequences for the the analysis

of mergers and, for example, the probability with which mergers take place.

The paper is organised as follows. In Section 2 the case where only one firm can

engage in M&A activity is analysed. In Section 3 we analyse the case where both

firms can engage in M&A activity. Finally, Section 4 discusses the results.
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2 The Optimal Timing of Acquisitions

Consider two firms, indexed by i ∈ {1, 2}, which operate in separate, but related
markets. Let P = (Ω,F , P ) be a filtered probability space. The profit flow of firm

i at time t ∈ [0,∞), denoted by πi
t, consists of a deterministic part, denoted by

Di > 0, and a stochastic component, denoted by Xit, which is adapted to P. The
deterministic component can be thought of as resulting from competition in the

product market. The stochastic shock is assumed to be multiplicative, that is,

πit = XitDi.

The stochastic shock follows a geometric Brownian motion with trend µi and volatil-

ity σi, i.e.

dXit = µiXitdt+ σiXitdWit, (1)

where Wi is a Wiener process. The instantaneous correlation between W1 and W2

equals ρ ∈ (−1, 1). It is assumed that the discount rate for both firms is constant
and equal to r > 0. Furthermore, in order for the problem to have a finite solution

it is assumed that µi < r, for i ∈ {1, 2}.
Suppose that firm 1 is the larger firm, which has an option to take over firm 2,

leading to a combined deterministic profit flow Dm > 0. For simplicity, it is assumed

that the takeover process does not involve sunk costs.2 After the takeover it is

assumed that the weight of market 1 for the new firm equals γ ∈ (0, 1). Since firm 1
is assumed to be the larger firm it is logical to take γ ≥ 1

2 . Instead of an arithmetic

average of the two sources of uncertainty as in Schleifer and Vishny (2003) and

Morellec and Zhdanov (2005), we take a geometric average of the shocks.3 So, the

stochastic shock that the merged firm faces at time t, denoted by Yt, equals

Yt = Xγ
1tX

1−γ
2t .

For further reference, the process (Zt)0≤t<∞ is defined, where, for all t ≥ 0, Zt =
X1t
X2t
.

The following lemma states that Y and Z follow geometric Brownian motions.

Its proof is an elementary application of Ito’s lemma and is, therefore, omitted.

2Sunk costs of takeovers can be thought of to comprise, for example, the legal costs of the

takeover (including the costs incurred for getting formal approval by competition authorities), the

costs of restructuring the two organisations to facilitate the takeover, etc.
3The rationale for this functional form is best understood by considering the deterministic case,

i.e. σ1 = σ2 = 0. Then it holds that Xi
t = eµit for i = 1, 2. Hence, the growth rate of the profit of

firm i equals µi. The growth rate of the merged firm should then equal γµ1 + (1− γ)µ2. In other

words, Y = eγµ1+(1−γ)µ2 = X
γ
1X

1−γ
2 .
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Lemma 1 There exist Wiener processes
(

W Y
t

)

0≤t<∞
and

(

WZ
t

)

0≤t<∞
, such that

the processes (Yt)0≤t<∞ and (Zt)0≤t<∞ are adapted to P and follow geometric Brow-

nian motions, equal to

dYt = µY Ytdt+ σY YtdW
Y
t , (2)

dZt = µZZtdt+ σZZtdW
Z
t , (3)

respectively, where

µY = γµ1 + (1− γ)µ2 −
1

2
γ(1− γ)

(

(σ1 − σ2)
2 + 2σ1σ2(1− ρ)

)

, (4)

σ2
Y = (γσ1 + (1− γ)σ2)

2 − 2γ(1− γ)σ1σ2(1− ρ), (5)

µZ = µ1 − µ2 + σ2(σ2 − σ1ρ), (6)

σ2
Z = (σ1 + σ2)

2 − 2σ1σ2(1 + ρ). (7)

Note that µY < r. Furthermore, it holds that µY < γµ1+(1−γ)µ2. Hence, the trend

of the uncertainty faced by the merged firm is lower than the weighted average of

the trends of the separate firms. This is offset, though, by a smaller volatility, since

σ2
Y < (γσ1 + (1− γ)σ2)

2. Hence, a takeover can be seen as an act of diversification,

comparable to an investor creating a portfolio with different assets to diversify risk.4

It is assumed throughout that each firm maximises expected discounted profits.

In complete and efficient markets this represents the market value of the firm. Since

we focus on the details of the timing decision, it is assumed that shareholders have

perfect information to simplify the exposition found in Morellec and Zhdanov (2005).

If the acquirer decides to takeover the target at time t, the value to its shareholders

is denoted by V (X1t, X2t).

Suppose that firm 1 decides to take over firm 2 at time τ ≥ 0. Then firm 1 has

to compensate the shareholders of firm 2 for “losing” their firm. The profit stream

of the newly formed firm will be Y Dm, while the stand-alone profit stream of firm 2

equals X2D2. So, the management of firm 1 should offer the shareholders of firm 2

a profit share sτ ∈ [0, 1], such that the expected discounted value of the new firm is
at least as high as the expected discounted stand-alone value. That is, sτ should be

such that

IE
(

∫ ∞

τ
e−rtsτYtDmdt

)

≥ IE
(

∫ ∞

τ
e−rtX2tD2dt

)

. (8)

Since the management of firm 1 maximises its own market value, (8) holds with

equality in an optimum. Standard computations5 show that IE(
∫∞

t e−rsYsds) =

4Note, however, that mergers actually reduce the risk-sharing possibilities of investors. Whether

merger synergies offset this loss to shareholders is an open question.
5See e.g. Huisman (2001).
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Yt
r−µY

. Hence, solving (8) gives

sτ =
D2

Dm

r − µY

r − µ2

X2τ

Yτ

=
D2

Dm

r − µY

r − µ2

(X2τ

X1τ

)γ
.

(9)

The expected discounted value of the acquisition at time t ≥ 0 is, therefore, equal
to

V (X1t, X2t) = IE
(

∫ ∞

τ
e−rt(1− st)YtDmdt

)

=
Dm

r − µY
Yt −

D2

r − µ2

(X1t

X2t

)−γ
Yt

= X2t

[ Dm

r − µY
Zγ
t −

D2

r − µ2

]

.

(10)

Let T denote the set of stopping times for (Xt)t≥0, where Xt = (X1t, X2t), for

all t ≥ 0. The problem for firm 1 is to solve the following optimal stopping problem:
Find G∗(x1, x2) and T ∗ ∈ T such that

G∗(x1, x2) = sup
T∈T

IE
[

∫ T

0
e−rtD1X1tdt+ e−rTV (X1T , X2T )

]

= IE
[

∫ T ∗

0
e−rtD1X1tdt+ e−rT ∗

V (X1T ∗ , X2T ∗)
]

.

(11)

Proposition 1 Let β1 and β2 be the positive and negative root, respectively, of the

quadratic equation

Q(β) ≡ 1

2
σ2
Zβ(β − 1) + (µ1 − µ2)β − (r − µ2) = 0.

Furthermore, suppose that

γ
Dm

r − µY
>

(

D1

r − µ1

)γ ( γ

1− γ

D2

r − µ2

)1−γ

. (12)

Then there exist pairs (A1, Z1) and (A2, Z2) such that the optimal stopping problem

(11) is solved by (G∗(·), T ∗), where

G∗(x1, x2) =























x2

(

A1

(

x1
x2

)β1

+ D1
r−µ1

x1
x2

)

if 0 ≤ x1
x2

< Z1

Dm

r−µY
xγ
1x

1−γ
2 − D2

r−µ2
x2 if Z1 ≤ x1

x2
≤ Z2

x2

(

A2

(

x1
x2

)β2

+ D1
r−µ1

x1
x2

)

if x1
x2

> Z2,

(13)

and

T ∗ = inf{t ≥ 0|Zt ∈ [Z1, Z2]}. (14)
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Proof. Instead of the standard method of solving the optimal stopping problem (11)

via the Bellman equation (cf. Dixit and Pindyck (1996)) we use the fact that (11) is

similar to the Dirichlet problem with free boundary. For details on the mathematical

background, see Appendix A or Øksendal (2000, Chapter 10).

The problem (11) is not time-homogeneous. Consider, therefore, the stochastic

process Bt = (s+ t,X1t, X2t, Pt), defined by

dBt =













1

µ1X1t

µ2X2t

e−rtD1X1t













dt+













0

σ1X1t

σ2X2t

0













dWt,

where Wt is a 4-dimensional Brownian motion. Then

G∗(x1, x2) = sup
T∈T

IE[PT + e−rTV (X1T , X2T )] = sup
T∈T

IE[G(BT )], (15)

with

G(b) = e−rsV (x1, x2) + p.

The optimal stopping problem (15) is a time-homogeneous optimal stopping problem

that is equivalent to (11). Therefore, we can apply Øksendal (2000, Theorem 10.4.1)

(see Appendix A) to problem (15).

Pivotal in the proof is the following lemma, the proof of which can be found in

Appendix B.

Lemma 2 If (12) holds, then the following systems of equations permit a solution

in (A,Z),

A1Z
β1
1 +

D1

r − µ1
Z1 =

Dm

r − µY
Zγ
1 −

D2

r − µ2
(16)

A1β1Z
β1−1
1 +

D1

r − µ1
= γ

Dm

r − µY
Zγ−1
1 , (17)

and

A2Z
β2
2 +

D1

r − µ1
Z2 =

Dm

r − µY
Zγ
2 −

D2

r − µ2
(18)

A2β2Z
β2−1
2 +

D1

r − µ1
= γ

Dm

r − µY
Zγ−1
2 , (19)

where the solutions are such that A1 > 0, A2 > 0, and Z1 < Z2.

Assume that the continuation region is of the form D = {(s, x1, x2)|0 < x1
x2

<

Z1} ∪ {(s, x1, x2)|x1
x2

> Z2}, for some 0 < Z1 < Z2. Define τD := inf{t ≥ 0|Bt 6∈ D}
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and compute F (s, x1, x2, p) = IE[G(τD)] in the following way. From Øksendal (2000,

Theorem 9.2.14) it follows that F solves the Dirichlet problem, i.e. it is the bounded

solution to the boundary value problem










LXF = 0 in D

lim
x1/x2→Z∗

F (s, x1, x2) = g(s, Z∗),

where LX is the partial differential operator,

L(X1,X2)F =
∂F

∂s
+ µ1X1

∂F

∂x1
+ µ2X2

∂F

∂x2
+ e−rsx1D1

∂F

∂p

+
1

2
σ2
1x

2
1

∂2F

∂x21
+
1

2
σ2
2x

2
2

∂2F

∂x22
+ σ1σ2ρx1x2

∂2F

∂x1∂x2
= 0.

(20)

If we impose that F (·) is of the form

F (s, x1, x2, p) = e−rsx2ϕ(z) + p,

with z = x1/x2, the partial derivatives of F (·) become ∂F
∂s = −re−rsx2ϕ(z),

∂F
∂x1

=

e−rsϕ′(z), ∂F
∂x2

= e−rs(ϕ(z) − zϕ′(z)), ∂2F
∂x2

1
= e−rsϕ′′(z)/x2,

∂2F
∂x2

2
= e−rsz2ϕ′′(z)/x2,

∂2F
∂x1∂x2

= −e−rszϕ′′(z)/x2, and
∂F
∂p = 1. Hence, (20) becomes

L(X1,X2)F = e−rsx2

[

− rϕ(z) + µ1zϕ
′(z) + µ2

(

ϕ(z) + zϕ′(z)
)

+ zD1

+
1

2
σ2
1z

2ϕ′′(z) +
1

2
σ2
2z

2ϕ′′(z)− σ1σ2ρz
2ϕ′′(z)

]

= 0

⇐⇒ 1

2
σ2
Zz

2ϕ′′(z) + (µ1 − µ2)zϕ
′(z)− (r − µ2)ϕ(z) + zD1 = 0. (21)

The partial differential equation (21) has the general solution

ϕ(z) = A1z
β1 +A2z

β2 +
D1

r − µ1
z,

where β1 and β2 solve Q(β) = 0, and A1 and A2 are constants. The bounded-

ness condition on the solution implies that it should hold that limz↓0 ϕ(z) = 0 and

limz→∞ ϕ(z) = 0.6 It is easy to see that β1 > 1 and β2 < 0. Therefore, it should

hold that A2 = 0 on [0, Z̄) and A1 = 0 on (Z̄,∞).
If (A1, Z1) and (A2, Z2) satisfy the boundary conditions (16) and (18), respec-

tively, a candidate solution for (11) is obtained:

F (t, x1, x2) =























e−rt
(

x2A1

(

x1
x2

)β1

+ D1
r−µ1

x1

)

if 0 < x1
x2

< Z1

e−rt
(

Dm

r−µY
xγ
1x

1−γ
2 − D2

r−µ2
x2

)

if Z1 ≤ x1
x2
≤ Z2

e−rt
(

x2A2

(

x1
x2

)β2

+ D1
r−µ1

x1

)

if x1
x2

> Z2.

6These conditions also rule out the existence of speculative bubbles. See Dixit and Pindyck

(1996, Section 6.1.C).
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If (A1, Z1) and (A2, Z2) in addition satisfy the smooth pasting conditions (17)

and (19), respectively, it holds that ϕ ∈ C1.

It is easy to see that Bt spends 0 time on ∂D a.s., that ∂D is a Lipschitz surface,

that ϕ ∈ C2(IR\∂D) with locally bounded second order derivatives near ∂D, that

τD < ∞ a.s., and that the family {ϕ(Yτ )|τ < τD} is uniformly integrable for all
y ∈ IR. By construction, it holds that LXϕ = 0 on D. Furthermore, from

L(X1,X2)F =e−rs Dm

r − µY
xγ
1x

1−γ
2

(

− r + γµ1 + (1− γ)µ2

− 1
2
γ(1− γ)(σ2

1 + σ2
2 + 2σ1σ2ρ)

)

=− e−rsx2
D2

r − µ2
(r + µ2)

<− e−rs Dm

r − µY
xγ
1x

1−γ
2 (r − µY )

<0,

it follows that LXϕ ≤ 0, for x1
x2
6∈ D. Finally, we can see that ϕ(·) ≥ V (·), which

follows immediately from the following lemma and is a direct corollary to Lemma 2.

Lemma 3 Define f1(z) = A1z
β1 + D1

r−µ1
z, f2(z) = A2z

β2 + D1
r−µ1

z, and g(z) =
Dm

r−µY
zγ − D2

r−µ2
. It holds that, if 0 ≤ x1/x2 < Z1, then f1(z) > g(z). If x1/x2 > Z2,

then f2(z) > g(z).

Since all conditions of Theorem A.1 are satisfied, the pair (F (·), τD) solves the
optimal stopping problem (11). ¤

From Proposition 1 it becomes clear that not the absolute profitability of firms

is important, but relative profitability. It, therefore, does not follow directly that

takeovers take place during economic booms. This results from the fact that [Z1, Z2]

is reached either from below on [0, Z1), or from above on (Z2,∞). On [0, Z1) a

takeover can take place either if firm 1 experiences a sharper upswing than firm 2,

or a slower downturn. In both cases Z is increasing. On (Z2,∞) a takeover can
take place if firm 1 experiences a sharper downturn than firm 2 or a slower upswing.

In both cases Z is decreasing. Note that Lambrecht (2004) concludes unequivocally

that mergers only take place during economic booms. This happens because in his

model both firms are subject to the same random process from the outset.

An important result of this model is that takeovers can only be optimal if the

synergies are high enough. To see this consider a case where µ1 = µ2 ≡ µ, γ =
D1

D1+D2
, and Dm = (1 + α)(D1 + D2), where α is a synergy parameter. These

synergies can arise from increased production efficiency or a decrease in competition,

or a combination of both. It is easy to see that, in this case, (12) holds iff α >

9



α ≡ r−µY
r−µ − 1.7 Note that the lower bound α ≥ 0 holds for all feasible parameter

configurations.

Furthermore, α is decreasing in ρ, with α = 0 for ρ = 1. In other words, the

higher the degree of diversification (i.e. the smaller ρ) the higher the minimally

required synergies. The intuition behind this result is that due to risk-neutrality the

firm does not care about volatility. The higher ρ, the lower the volatility σY and the

lower the trend µY . In order to offset the reduction in trend and, hence, expected

discounted profits, the higher the synergies need to be. That is, the diversification

argument is not important for a risk neutral firm.

Finally, α is quadratic in γ. For γ ∈ {0, 1}, the minimally required synergies
equal α = 0. The threshold α is maximal for γ = 1

2 . Again, this is due to risk-

neutrality. The diversification effect is maximal for γ = 1
2 , but investors do not

value the diversification. What they do care about is the lower trend resulting from

diversification. Therefore, they need to be compensated with a higher synergy effect.

3 The Strategic Timing of Mergers and Acquisitions

In this section, the model from the previous section is extended to a situation where

both firms can decide to make an acquisition offer. Throughout, it is assumed that

if both firms simultaneously make an offer, a merger is agreed upon. We follow the

basic setup for simple timing games as described in Fudenberg and Tirole (1991,

Section 4.5).

Each firm has the choice to make an acquisition offer at each point in time t. So,

the strategy set for firm i at time t is

Si(t) = {make offer, don’t make offer}.

Suppose that at time t, firm 1 makes an acquisition offer to firm 2. In the terminology

of timing games this makes firm 1 the “leader”. Firm 2 is the “follower” in this case.

The payoff to firms 1 and 2 are (cf. (10))

L1(X1t, X2t) = X2t

[ Dm

r − µY
Zγ
τ −

D2

r − µ2

]

and

F2(X1t, X2t) = X1t

[ D2

r − µ2

1

Zt

]

,

7It holds that if α = α, then Z1 = Z2 = 1.
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respectively. In the case firm 2 makes an acquisition offer, while firm 1 does not,

the payoffs are given by

L2(X1t, X2t) = X1t

[ Dm

r − µY

( 1

Zt

)1−γ
− D1

r − µ1

]

and

F1(X1t, X2t) = X2t

[ D1

r − µ1
Zt

]

,

respectively.

If both firms simultaneously make an acquisition offer at time t it is assumed

that a merger takes place. The firms use the Nash bargaining solution (Nash (1950))

with disagreement point d =
(

D1
r−µ1

X1t,
D2

r−µ2
X2t

)

to determine how to split the value
Dm

r−µY
Yt. The bargaining power of firm 1 is assumed to be equal to its relative market

power, γ. It is easily shown that this leads to the merger payoffs

M1(X1t, X2t) =
Dm

r − µY
Yt +

1

2

( D1

r − µ1
X1t −

D2

r − µ2
X2t

)

= γL1(X1t, X2t) + (1− γ)F1(X1t, X2t),

and

M2(X1t, X2t) =
Dm

r − µY
Yt +

1

2

( D2

r − µ2
X2t −

D1

r − µ1
X1t

)

= (1− γ)L2(X1t, X2t) + γF2(X1t, X2t),

respectively.

The following lemma determines the region where the leader payoff is larger,

respectively smaller, for both firms. The proof can be found in Appendix C.

Lemma 4 Suppose that (12) holds. Then there exists an interval DP = [Z̃1, Z̃2],

for certain Z̃1 and Z̃2, such that

Z ∈ DP ⇐⇒ L1(Z) ≥ F1(Z) and L2(Z) ≥ F2(Z).

Furthermore, it holds that Z̃1 ≤ Z1 ≤ Z2 ≤ Z̃2.

Lemma 4 shows that there exist values of Z where both firms want to be the leader.

Even stronger: Firm 1 wants to acquire firm 2 if and only if firm 2 wants to acquire

firm 1. This result holds irrespective of the relative market power parameter γ.

In the region DP it holds that Li(x1, x2) ≥ Mi(x1, x2) ≥ Fi(x1, x2), with strict

inequalities in the interior. At each point in time both firms basically play the state

game depicted in Figure 1. If z 6∈ DP , not making an offer is a dominant strategy for

11



make offer don’t make offer

make offer
(

M1(X1t, X2t),M2(X1t, X2t)
) (

L1(X1t, X2t), F2(X1t, X2t)
)

don’t make offer
(

F1(X1t, X2t), L2(X1t, X2t)
) (

F1(X1t, X2t), F2(X1t, X2t)
)

Figure 1: The state game.

both firms. For z ∈ DP , making an offer is a (weakly) dominant strategy for both

firms. Let TP = inf{t ≥ 0|Zt ∈ Dp}. Note that TP (ω) ∈ ĪR for all ω ∈ Ω. A strategy
for firm i consists of a distribution function Gi : IR+ → [0, 1], where Gi(t) is the

probability that firm i has invested before time t. It is easily seen that a subgame

perfect equilibrium (in weakly dominant strategies) is given by

Gi(t) =







0 if 0 ≤ t < TP

1 if t ≥ TP .
(22)

From (22) it follows that the option value, which in the one firm case is given

by A1Z
β1 or A2Z

β2 , completely disappears when both firms can acquire each other.

This is contrary to the standard real options literature where competition erodes the

option value, albeit it does not vanish completely (cf. Thijssen (2004, Chapter 4)).

In the case of M&A activity the option value completely vanishes, because it results

from a zero-sum game. In order to acquire the other firm, a firm must pay the

other firm’s shareholders its expected discounted stand-alone value. Furthermore,

it forgoes its own expected stand-alone value. The expected discounted value of the

merged firm offsets this stand-alone value if and only if this holds for the other firm

as well. Therefore, it is optimal for firm 1 to acquire firm 2 if and only if it is optimal

for firm 2 to acquire firm 1. That is, we should only observe friendly mergers in a

market. A hostile takeover is (in this framework) always a dominated strategy.

The fact that (22) holds irrespective of the market power parameter γ is caused

by the assumption that if both firms choose to make a bid in the game depicted

in Figure 1, the division of the profits is given by the asymmetric Nash bargaining

solution, where the bargaining power of firm 1 equals γ, so that the effect of γ

is internalised. Furthermore, the disagreement point is not a credible option in

the region DP , since if firm i is acquired in region DP it gets exactly its expected

discounted stand-alone value, whereas the Nash bargaining solution always gives at

least this value.

12



4 Discussion

The analysis from the previous section shows that mergers are more likely in cases

where both firms can preempt each other. An interesting question is how much more

likely it is that a merger takes place with competition. We consider a situation with

D2 = 100, µ1 = µ2 = 0.03, r = 0.1, σ1 = 0.1, σ2 = 0.15, ρ = 0.8, and synergies

α = 0.1. The deterministic profit stream for firm 1 is taken to be D1 ∈ [D2, 3D2].

That is, γ ∈ [0.5, 0.75]. The values for Z1, Z2, Z̃1, and Z̃2 are depicted in Figure 2.

As one can see, the bounds for the optimal and strategic timing are relatively close.
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Figure 2: Strategic (solid lines) and optimal (dotted lines) investment regions.

This could give the impression that the effect of competition in mergers is not very

big. This would be misleading as follows from Figure 3, which depicts the probability

of investment within T = 50 periods as a function of γ. The investment region can

be reached from below or from above. For Z0 < Z̄ (see Appendix B for a definition

of Z̄), the probability of investment before time T equals (cf. Harrison (1985))

IP
(

sup
0≤t≤T

Zt ≥ Z
∣

∣Z0

)

=N
(− log(Z/Z0) + µ̄T

σV

√
T

)

+
( Z

Z0

)

2µ̄
σ2
V N

(− log(Z/Z0)− µ̄T

σV

√
T

)

,

(23)

for Z ∈ {Z1, Z̃1}, where µ̄ = µZ − 1
2σ

2
Z . For Z0 > Z̄, the probability of investment

before time T is given by

IP
(

inf
0≤t≤T

Zt ≤ Z
∣

∣Z0

)

= IP
(

sup
0≤t≤T

−Zt ≥ −Z
∣

∣Z0

)

,

for Z ∈ {Z2, Z̃2}. For the computations we have taken Z0 = 1/3 when the optimal

region is reached from below, whereas Z0 = 3 is taken when the optimal region is

13



reached from above. As is clear from this figure, a small difference in the bounds can
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Figure 3: Probability of investment within T = 50 periods from below (left-panel)

and above (right-panel).

lead to very different probabilities of investment. This happens, because the trend

and the volatility of Z are quite small, µZ = 0.0105 and σZ = 0.0085, respectively.

Furthermore, it is interesting to see how the probability of investment changes

with the initial value Z0. To analyse this, we take D1 = D2 = 100 (i.e. γ =

1/2), α = 0.08, and a horizon of T = 20. The other parameter values are taken

to be the same as before. This leads to a situation where {Z̃1, Z1, Z2, Z̃2} =
{0.637, 0.667, 1.507, 1.570}. Note that µZ and σZ are the same as before. The

resulting probabilities are depicted in Figure 4. Again, one observes the substantial

difference in the probability of investment at the optimal and the strategic time.

Note, furthermore, that not taking into account the upper bound on the optimal

investment region would lead to the erroneous conclusion that the probability of

investment equals one for all values of Z0 in the right-panel.

Finally, the asymmetry between firms, as measured by γ, also has an influence

on the option value of the merger in the optimal timing scenario. Note that β1

and β2 are independent of γ. It can be seen from (4) that µY and, therefore,

the net present value of the merger is decreasing for γ ∈ [0.5, 1]. As a result one
expects that the option value increases with γ, which is confirmed by Figure 5,

which plots the constants A1 and A2 as defined by (16)–(19) for the same scenario

as described above. This increase in the option value, which has a negative impact

on the probability of a merger taking place, is due to the diversification effect. Risk-

neutrality is a crucial assumption here. It is assumed that investors only care about

expected payoffs. Therefore, the only effect in the valuation of the merger is the
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Figure 4: Probability of investment within 20 periods from below (left-panel) and

above (right-panel).

negative effect of a decreased trend due to to diversification. It is to be expected

that a risk-averse investor would attach positive value to diversification, which might

mitigate the effect obtained in this model.8 On the other hand, one could argue that,

by merging, the firms reduce the possibilities of diversification for shareholders and

should, therefore, not take risk aversion into consideration. As a price for reducing

flexibility for the shareholder they need to establish higher synergies.

To conclude, the main results of this analysis are that, firstly, mergers can take

place both during expansions and contractions, due to the boundedness of the op-

timal investment region and the dependence of the optimal time on the ratio of the

firms’ shocks. Secondly, the option value of a merger completely vanishes if there is

competition for takeovers, due to the threat of preemption. This leads to the predic-

tion that takeovers are likely to take place at suboptimal points in time. Finally, the

probability of investment can be substantially different in both scenarios (optimal

and strategic timing) even if the two investment regions are relatively close.

Therefore, the likelihood that a merger takes place at a sub-optimal time is sub-

stantial in case there is a preemptive threat. This could be considered to hold for

most real-world mergers and takeovers. It is important to note that this sub-optimal

timing takes place due to maximisation of shareholder value. In the language of

modern corporate finance this means that it takes place in the interest of the share-

holder. Most shareholders will, however, hold a well-diversified portfolio and may,

8The shocks Xi, i = 1, 2 are often interpreted as being specified under the equivalent martingale

measure, which is used in defense of the assumption of risk-neutrality. Note that such an argument

cannot be used here.
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Figure 5: Value of the constants A1 (left-panel) and A2 (right-panel).

therefore, hold shares in both firms. As such, a merger reduces the possibilities of

risk-spreading for shareholders. In essence, the firms are diversifying for the share-

holders, who, consequently, lose the flexibility to dynamically update any portfolio

they might have had of the constituent firms. This might have a negative effect

on shareholder wealth and might require even higher synergies to offset this loss of

flexibility. A thorough analysis of this problem is, however, left for future research.

Appendix

A Optimal Stopping Theory

Let (Xt)t≥0 be an Ito diffusion on a domain V ⊂ IRn, defined by

dXt = b(Xt)dt+ σ(Xt)dBt,

with dBidBj = ρijdt and ρii = 1, for all i = 1, . . . , n. A time-homogenous optimal

stopping problem on (Xt)0≤t<∞, with reward function g : V → IR+ and instanta-

neous reward function f : V → IR, is of the form: Find (g∗, τ∗) such that

g∗(x) = sup
τ
IE
[

∫ τ

0
f(Xt)dt+ g(Xτ )

]

= IE
[

∫ τ∗

0
f(Xt)dt+ g(Xτ∗)

]

, (A.1)

the supremum being taken over all stopping times τ for (Xt)0≤t<∞. Define

T = sup{t > 0|Xt 6∈ V }.

Furthermore, define the the partial differential operator LX ,

LX =
n
∑

i=1

bi(x)
∂

∂xi
+
1

2

n
∑

i,j=1

(σσ′)ij(y)ρij
∂2

∂xi∂xj
.
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Consider a function ϕ : V̄ → IR and the set D = {x ∈ V |ϕ(x) > g(x)}. The
following theorem is from Øksendal (2000, p. 213).

Theorem A.1 (Variational inequalities for optimal stopping) If the follow-

ing conditions hold:

1. ϕ ∈ C1(V ) ∩ C(V̄ );

2. ϕ ≥ g on V and ϕ = g on ∂V ;

3. IE
∫ T
0 11∂D(Xt)dt = 0;

4. ∂D is a Lipschitz surface;

5. ϕ ∈ C2(V \∂D) and the second order derivatives of ϕ are locally bounded near

∂D;

6. LXϕ+ f ≤ 0 on V \D̄;

7. LXϕ+ f = 0 on D;

8. τD := inf{t > 0|Xt 6∈ D} <∞ a.s.;

9. the family {ϕ(Xτ )|τ ≤ τD} is uniformly integrable w.r.t. the probability law of

Xt.

Then g∗(x) = ϕ(x) = supτ≤T IE
[

∫ τ
0 f(Xt)dt + g(Xτ )

]

, and τ∗ = τD, solve the

optimal stopping problem (A.1).

B Proof of Lemma 2

Define the functions f1(z) = A1z
β1 , f2(z) = A2z

β2 , and g(z) = Dm

r−µY
zγ − D1

r−µ1
z −

D2
r−µ2

. Applying the first and second order conditions yields that g has a global

maximum at

Z̄ =

(

γ
Dm

D1

r − µ1

r − µY

)

1
1−γ

.

Under condition (12) it holds that g(Z̄) > 0. Given that f ′1(z) > 0 and f ′2(z) < 0

this immediately leads to the desired result. See also Figure 6 . ¤
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Figure 6: Graph of the functions f1, f2, and g.

C Proof of Lemma 4

Note that

L1(x1, x2) ≥ F1(x1, x2) ⇐⇒
Dm

r − µY
zγ − D2

r − µ2
≥ D1

r − µ1
z

⇐⇒ g1(z) ≡
Dm

r − µY
zγ − D1

r − µ1
z − D2

r − µ2
≥ 0.

from the proof of Lemma 2 we know that under (12), the function g1(·) has a global
maximum at, say, z∗, with g1(z

∗) > 0. Since g1(·) is strictly concave, this implies
that there exist Z̃1 and Z̃2 > Z̃1 such that L1(z) ≥ F1(z) ⇐⇒ Z̃1 ≤ z ≤ Z̃2.

Furthermore, it holds that

L2(x1, x2) ≥ F2(x1, x2) ⇐⇒ g2(z) ≡
Dm

r − µY
(1/z)1−γ − D2

r − µ2
(1/z)− D1

r − µ1
≥ 0.

Since g2(z) = zg1(z), it holds that g2(·) has the same zeros as g1(·) on IR++. The

second part of the lemma follows immediately from Figure 6. ¤
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