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Abstract

This paper considers the problem of the exercise decision of non-exclusive

perpetual American-style real options in a two-player setting. Much of this

literature has applied ideas from deterministic timing games directly to Real

Options Theory, leading to unsatisfactory mathematical foundations. This pa-

per presents a general model of non-exclusive real options. Existence of equi-

librium is proved for the class of games with a first-mover advantage and where

uncertainty is governed by a (possibly multi-dimensional) Markov process. The

method is then applied to explicitly study equilibria in a two-player game where

uncertainty is governed by a two-dimensional, correlated, geometric Brownian

motion.
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1 Introduction

It is common knowledge that games in continuous time are often difficult to analyse.

Especially in so-called preemption games, i.e. situations where players have to decide

on the time at which to take a certain action in the presence a first mover advantage.

A historically interesting example would be a duel between two players walking away

from each other with one bullet each. A more contemporary example considers two

firms, both of which can invest in, for example, a new technology or a new product.

The main reason for analytical difficulties in such games is that in continuous time

the notion of the “time instant immediately after” a point in time is not well-defined

(cf. Simon (1987a), Simon (1987b), and Simon and Stinchcombe (1989)).

In particular, it is difficult to model situations where players need to coordinate

in a situation where it is optimal for one, and only one, player to take action.1

For deterministic preemption games, Fudenberg and Tirole (1985) have presented a

method to solve this problem by borrowing a technique from optimal control theory.2

For two-player preemption games they show that there exists a symmetric mixed

strategy equilibrium that involves rent equalisation. That is, in equilibrium the

expected value of the first mover equals that of the second mover.

The concept of rent-equalisation has also been applied to game-theoretic exten-

sions of real option models. The theory of real options (cf. Brennan and Schwartz

(1985), McDonald and Siegel (1986), and Dixit and Pindyck (1994)) deals with the

problem of the optimal timing of investment decisions in the face of uncertainty.

It views (real) investments as American-style call options and applies standard op-

tion pricing techniques (cf. Merton (1992), Musiela and Rutkowski (2005)) to value

these real options and determine their optimal exercise time. The realisation that

most real options are non-exclusive has led to the application of game theoretic

tools to real option models.3 The technique used in most applications is a direct, or

simplified, application of the concepts of Fudenberg and Tirole (1985).4

By default, however, non-exclusive real option models deal with uncertainty

and, hence, with stopping times, i.e. random variables, instead of deterministic

time. Therefore, much of the analysis in Fudenberg and Tirole (1985) is not directly

1In their analysis of the Smets (1991) model, Dixit and Pindyck (1994, Chapter 9) refer to this

in a footnote as “careful limiting considerations”.
2Argenziano and Schmidt-Dengler (2006) study n-player preemption games, although they do

not analyse the aforementioned coordination problem.
3See, for example, Smets (1991), Grenadier (2000), Huisman (2001), Huisman and Kort (1999),

Weeds (2002), and Thijssen et al. (2006).
4In fact, in many cases the coordination problem is “solved” by simply assuming that players

take action with equal probability and that joint action is impossible.
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applicable to these models. A first step towards a formal analysis of game theoretic

real option models is provided by Murto (2004), who considers exit in a duopoly

with declining profitability. In that paper, however, the coordination problem does

not arise and an equilibrium in pure strategies can be found. Murto (2004) uses the

strategy concept introduced in Dutta and Rustichini (1995). In this framework, the

profitability of each firm depends (deterministically) on how many firms are present

in the industry and a random part, which follows a geometric Brownian motion

(GBM). The firms then each choose a stopping set and exit as soon as the GBM

hits their stopping set.

In this paper, the Dutta and Rustichini (1995) and Murto (2004) framework

is extended in several ways. Firstly, I adapt the method of Fudenberg and Tirole

(1985) to solve the coordination problem that often arises in preemption games.

It is argued that the technique that is used in Fudenberg and Tirole (1985) can

be formulated as a Markov chain in a suitably chosen state space. This makes

the coordination device more intuitively appealing. Secondly, I prove existence of

an equilibrium for general, possibly higher dimensional, Markov processes. This

extends the standard literature, which is based on GBM. It is shown that the rent-

equalisation principle also holds in this more general case. Finally, the equilibrium

results are applied to a situation where two firms can invest in a project. The set-

up is similar to Huisman (2001, Chapter 7), i.e. each firm’s profits consists of a

deterministic part, which depends on the number of firms having invested, and a

random part. The novelty here is that each firm’s profits is subject to different,

but possibly correlated, GBMs. This introduces an asymmetry in an otherwise

symmetric model. It is shown that there are three possible investment scenarios.

Two in which one firm acts as an exogenously determined Stackelberg leader and

the other firm as a Stackelberg follower, and one in which both firms try to preempt

each other. In the latter case it holds that joint investment occurs with probability

zero (like in most preemption models), but the probability with which each firm

invests is not equal almost surely. This result indicates that one has to be careful

with imposing exogenous assumptions on the solution to the coordination problem.

As an example of a model with asymmetric uncertainty one can think of a situation

with a domestic and a foreign firm, where the foreign firm has an additional source

of risk, namely exchange rate risk.

The structure of the paper is as follows. In Section 2 the strategy and equilib-

rium concepts are presented. Existence of equilibrium is proved in Section 3. The

application to asymmetric uncertainty in a duopoly is presented in Section 4 and

Section 5 concludes.
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2 Strategies and Equilibrium

This section introduces the equilibrium notions and accompanying strategy spaces

used to analyse American-type real options. Throughout this section it is assumed

that there are two players, indexed by i ∈ {1, 2}. The two players each hold a

perpetual option of either the call or the put type. The approach advocated here is a

combination of the ideas presented in Fudenberg and Tirole (1985) for deterministic

timing games and Dutta and Rustichini (1995) for a different class of stochastic

games. The aim is to define an equilibrium that is the stochastic continuous time

analogue of a subgame perfect Nash equilibrium. From a game theoretic point of

view, the main problem in continuous time modelling is the absence of a well-defined

notion of “immediately after time t” (cf. Simon and Stinchcombe (1989)). Dutta

and Rustichini (1995) solve this problem by defining time as parameterised by two

variables.

Definition 1 Time is the two-dimensional set T = IR+ × IZ+, endowed with the lex-

icographic ordering and the standard topology induced by the lexicographic ordering.

That is, a typical time element is a duplet (t, s) ∈ T , which consists of a continuous

and a discrete part. In the remainder, t refers to the continuous and s to the discrete

component. The continuous component t can be thought of as “real time”, whereas s

represents “artificial time”, used to model potential coordination problems between

the players.

The underlying asset follows a strong Markov process, (Yt)t≥0, which is assumed

to be a semimartingale5, defined on a filtered probability space Py = (Ω,F , (Ft)t≥0 , Py)

and taking values in (IRd,Bd), where B is the Borel σ-algebra. It is assumed, with-

out loss of generality, that (Ω,F) = (IR[0,∞),B[0,∞)). The process starts at y, i.e.

Py(Y0 = y) = 1, and the sample paths of Y are right-continuous and left-continuous

over stopping times. The sate of the game is completely described by the process Y

and whether or not each player has exercised the option. It is assumed that players

make choices independently. Let Ξ = {0, 1}2 be the set of all possible combinations

of the exercise status of the players. For each t ≥ 0, the exercise status, X, changes

according to a Markov chain on Ξ, (X t
s)s∈ZZ+ , defined on a filtered probability space

Px = (Ω̃, F̃ , (F̃s)s∈ZZ+ , Px), with Xt
0 = x, Px-a.s., as described below. For all y ∈ IR+

and x ∈ Ξ, let Py,x be the product space of Py and Px, with probability measure

Py,x. For further reference, I define Xt := lims→∞ Xt
s.

Let A ⊂ IRd. For further reference, define the stopping time

τy,x(A) = inf{t ≥ 0|Yt ∈ A, (Y0, X0) = (y, x), Py-a.s.}.

5This includes, for example, Poisson processes, Brownian motion and Lévy processes.
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Let y ∈ IR+ and x ∈ Ξ. A strategy for Player i consists of a duplet (S i
y,x, αi

y,x),

where Si
y,x ⊂ IR+, and αi

y,x ∈ (0, 1]. The set Si
y,x is referred to as Player i’s stopping

set, given the initial conditions (y, x). Note that it is not required, a priori, that the

stopping set is connected. Let S i
y,x denote the strategy space of Player i for initial

state (Y0, X0) = (y, x).

At τy,x(Si
y,x), the state of play changes in the following way. Player i starts

playing a game in artificial time against Player j to determine who exercises the

option at time τy,x(Si
y,x). In each round of this play, Player i exercises the option

with probability αi
τy,x(Si

y,x)
, where for all t ∈ IR+,

αi
t =







αi
y,x if t = τy,x(Si

y,x)

0 otherwise

Play continues until at least one player exercises the option. Let τy,x = τy,x(S1
y,x) ∧

τy,x(S2
y,x). For every x ∈ Ξ, this leads to a Markov chain (X

τy,x(Si
y,x)

s )s∈ZZ+ on Px.

For example, if x = (0, 0), this chain has transition probabilities that are given by

Px

(

X
τy,x
s = (0, 0)|X

τy,x

s−1 = (0, 0)
)

= (1 − α1
τy,x

)(1 − α2
τy,x

)

Px

(

X
τy,x
s = (1, 0)|X

τy,x

s−1 = (0, 0)
)

= α1
τy,x

(1 − α2
τy,x

)

Px

(

X
τy,x
s = (0, 1)|X

τy,x

s−1 = (0, 0)
)

= (1 − α1
τy,x

)α2
τy,x

Px

(

X
τy,x
s = (1, 1)|X

τy,x

s−1 = (0, 0)
)

= α1
τy,x

α2
τy,x

Px

(

X
τy,x
s = X

τy,x

s−1 |X
τy,x
s ∈ {(1, 0), (0, 1), (1, 1)}

)

= 1.

(1)

The chain has three absorbing states, (1, 0), (0, 1), and (1, 1). Note that, if αi

somehow depends on Y (as it typically will), then Py and Px are not independent.

From these transition probabilities it follows that

p10 ≡ P
(

Xτy,x = (1, 0)
)

=
α1

τy,x
(1 − α2

τy,x
)

α1
τy,x

+ α2
τy,x

− α1
τy,x

α2
τy,x

p01 ≡ P
(

Xτy,x = (0, 1)
)

=
(1 − α1

τy,x
)α2

τy,x

α1
τy,x

+ α2
τy,x

− α1
τy,x

α2
τy,x

p11 ≡ P
(

Xτy,x = (1, 1)
)

=
α1

τy,x
α2

τy,x

α1
τy,x

+ α2
τy,x

− α1
τy,x

α2
τy,x

.

(2)

Note that Px(X
τy,x
s ∈ {(1, 0), (0, 1), (1, 1)}, s < ∞) = 1, so that play in imaginary

time is finite, Px-a.s. In fact, this construction turns the coordination device into

a game in strategic form with two pure strategies for each player, namely exercise

and don’t exercise. The mixed strategies over these pure strategies are (α, 1 − α),

and the expected payoffs follow from the probability measure in (2).
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For x ∈ {(1, 0), (0, 1)}, one player, say Player i, has already exercised the option.

This implies that τy,x = τy,x(Sj
y,x), and, consequently, that αi

t = 0, for all t ∈ IR+.

The resulting Markov chain has only one absorbing state, namely (1, 1), which is

reached in finite time.

Definition 2 A Markov strategy for Player i, i = 1, 2, specifies for all y ∈ IR+ and

all x ∈ Ξ a duplet σi
y,x = (Si

y,x, αi
y,x), where Si

y,x ⊂ IR+ and αi
y,x ∈ (0, 1], such that

1. Si
y,x = ∅, if xi = 1;

2. αi
y,x = 1, if xj = 1.

The two conditions are merely regularity conditions. The former ensures that a

player can exercise the option only once. The latter condition is a convention. The

possibility of α < 1 is needed to allow for coordination between the players. If the

Player j has already exercised, then Player i faces a decision-theoretic problem and

there is no need for coordination. It is assumed that τy,x(Si
y,x) = ∞, Py-a.s., if

Si
y,x = ∅.

The set of Markov strategies for player i is denoted by Σi. Given the state of

the stochastic processes (Yt, Xt)t∈IR+ the instantaneous payoff to Player i at time t

is given by the mapping V i
Xt

: Yt → IR, which is assumed to be strictly increasing in

Y . Note that the instantaneous payoffs are assumed to be Markovian in the sense

that they only depend on the current state of the processes Y and X. If Player i

exercises the option she incurs a sunk cost I i > 0. It is assumed that players discount

payoffs according to a discount factor
(

Λi
t

)

t≥0
, which is adapted to P and perfectly

correlated with (Yt)t≥0.

Definition 3 A two-player non-exclusive real option game (NERO) is a collection

Γ =
(

(Yt)t≥0 ,
(

Si, V i, I i,
(

Λi
t

)

t≥0

)

i=1,2

)

, with Y0 given and X0
0 = (0, 0).

For further reference, we define the following discounted payoff functions. The

follower value, F i(Yt), for Player i is defined to be the value of the optimal stopping

problem, given that the other player takes action when the value of the process

(Yt)t≥0 equals y. That is,

F i(y) = sup
τ∈M

IEy

[

∫ τ

0
Λi

tV
i
01(Yt)dt +

∫ ∞

τ

Λi
tV

i
11(Yt)dt − Λi

τI
i
]

= sup
τ∈M

IEy

[

∫ τ

0
Λi

tV
i
01(Yt)dt + Λi

τ IEYτ

(

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

)]

.

(3)

where M is the set of Markov times adapted to Py. Let Si
F denote the optimal

stopping set of (3).
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The leader value, Li(y), for Player i is the expected discounted payoff stream if

Player i exercises the option when the process (Yt)t≥0 has the value y, given that

Player j exercises the option at time τy(S
F
j ). That is,

Li(y) = IEy

[

∫ τy(Sj
F

)

0
Λi

tV
i
10(Yt)dt +

∫ ∞

τy(Sj
F

)
Λi

tV
i
11(Yt)dt − I i

]

. (4)

Let Si
P = {y ∈ IRd|Li(y) ≥ F i(y)}. Let Si

L be the optimal stopping set of the

problem

L̄i(y) = sup
τ∈M

IEy

[

∫ τ

0
Λi

tV
i
00(Yt)dt +

∫ τ(Sj
F

)

τ

Λi
tV

i
10(Yt)dt

+

∫ ∞

τ(Sj
F

)
Λi

tV11(Yt)dt − Λi
τI

i
]

= sup
τ∈M

IEy

[

∫ τ

0
Λi

tV
i
00(Yt)dt + Λi

τL
i(Yτ )

]

.

(5)

The optimal stopping time τ is the time at which Player i would exercise the option,

if she knew that Player j could not preempt her. The following assumption is made

on the optimal stopping sets.

Assumption 1 For all players i, the optimal stopping sets S i
F and Si

L are non-

empty.

Thirdly, let M i(y) denote the expected discounted value to Player i if both

players exercise the option at the same time when the process (Yt)t≥0 takes the

value y, i.e.

M i(y) = IEy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

. (6)

Let Si
M = {y ∈ IRd|M i(y) ≥ F i(y)} be the set of payoffs where simultaneous

investment has a higher expected discounted payoff than the follower role. Finally,

let Si
N = (Si

P ∪ Si
L ∪ Si

F )c.

For x = (0, 0), the expected discounted payoff of the strategies (σ1, σ2) ∈ Σ1×Σ2

to Player i, under Py,x is then equal to

V i
y,x(σi

y,x, σj
y,x) = IEy,x

[

∫ τy,x

0
Λi

tV
i
00(Yt)dt

+ 11
τ(Si

y,x)<τ(Sj
y,x)

(

∫ τ(Sj
y,x)

τy,x

Λi
tV

i
10(Yt)dt +

∫ ∞

τ(Sj
y,x)

Λi
tV

i
11(Yt)dt − Λi

τ(Si
y,x)I

i
)

+ 11
τ(Si

y,x)>τ(Sj
y,x)

(

∫ τ(Si
y,x)

τy,x

Λi
tV

i
01(Yt)dt +

∫ ∞

τ(Si
y,x)

Λi
tV

i
11(Yt)dt − Λi

τ(Si
y,x)I

i
)

+ 11
τ(Si

y,x)=τ(Sj
y,x)

W i
Yτy,x

(αi
y,x, αj

y,x),
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where

W i
y,x(σi

y,x,σj
y,x) = p11IEy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

+ p10IEy

[

∫ τ(Sj

y,(1,0)
)

0
Λi

tV
i
10(Yt)dt +

∫ ∞

τ(Sj

y,(1,0)
)
Λi

tV
i
11(Yt)dt − I i

]

+ p01IEy

[

∫ τ(Si
y,(0,1)

)

0
Λi

tV
i
01(Yt)dt +

∫ ∞

τ(Si
y,(0,1)

)
Λi

tV
i
11(Yt)dt − Yτ(Si

y,(0,1)
)I

i
]

.

For x ∈ {(1, 0), (0, 1), (1, 1)}, the expected discounted payoffs are

V i
y,(1,0)(σ

i, σj) =IEy

[

∫ τ(Sj

y,(1,0)
)

0
Λi

tV
i
10(Yt)dt

+

∫ ∞

τ(Sj

y,(1,0)
)
Λi

tV
i
11(Yt)dt − I i

]

V i
y,(0,1)(σ

i, σj) =IEy

[

∫ τ(Si
y,(0,1)

)

0
Λi

tV
i
01(Yt)dt

+

∫ ∞

τ(Si
y,(0,1)

)
Λi

tV
i
11(Yt)dt − Yτ(Si

y,(0,1)
)I

i
]

V i
y,(1,1)(σ

i, σj) =IEy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

,

respectively.

A subgame perfect equilibrium is then defined as follows.

Definition 4 Let Γ be a two-player NERO. A duplet of strategies (σ̄1, σ̄2) ∈ Σ1×Σ2

constitutes a subgame perfect equilibrium (SPE) if it prescribes a Nash equilibrium

for all (y, x) ∈ IR+ × Ξ, i.e.

∀i∈{1,2}∀σi∈Σi∀(y,x)∈IR+×Ξ : V i
y,x(σ̄i, σ̄j) ≥ V i

y,x(σi, σ̄j), Py-a.s.

Note that in standard extensive form games, the notion of subgame perfectness is

defined over time. Due to the strong Markov property of (Yt)t≥0, the definition of

SPE above could equivalently be defined over stopping times.

3 Options with a First Mover Advantage

In this section American-type perpetual non-exclusive call options are studied. The

following assumptions are made with respect to the instantaneous payoff functions

and the optimal stopping sets.

Assumption 2 For every Player i, i ∈ {1, 2}, it holds that
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1. V i
kl : IRd → IR is continuous for all k, l = 0, 1,

2. V i
10(y) ≥ V i

11(y) > V i
00(y) ≥ V i

01(y), for all y ∈ IRd,

3. Si
F ⊂ Si

L.

The second condition ensures that exercising the option is always profitable if there

were no sunk costs. The third condition ensures that, for each player, there are

values for y, where she wants to be leader rather than follower. In other words,

there is a first mover advantage.

Let

Θ = (S1
F ∩ S2

F ) ∪ (S1
L ∩ S2

N ) ∪ (S1
N ∩ S2

L) ∪ (S1
P ∩ S2

P ),

and

ϕi(y) =
Li(y) − F i(y)

Li(y) − M i(y)
,

for all y, such that Li(y) 6= M i(y). Theorem 1 shows that at least one player

exercises the option when the set Θ is entered for the first time.

Theorem 1 Let G be a two-player NERO satisfying Assumptions 1 and 2. Let y ∈

IRd
+ and x ∈ Ξ. Then σ̄ = (σ̄1

y,x, σ̄2
y,x)(y,x)∈IRd×Ξ ∈ S1 × S2, with σ̄i

y,x = (S̄i
y,x, ᾱi

y,x)

constitutes a SPE, where

(S̄i
y,x, ᾱi

y,x) =































(Si
F , 1) if τy,x(Θ) = τy,x

(

(S1
F ∩ S2

F )

∪(Si
N ∩ Sj

L)
)

, Py-a.s.

(Si
L, 1) if τy,x(Θ) = τy,x(Si

L ∩ Sj
N ), Py-a.s.

(

Si
P , ϕj(Yτy,x(Θ))

)

if τy,x(Θ) = τy,x(S1
P ∩ S2

P ), Py-a.s.,

if x = (0, 0),

(S̄i
y,x, ᾱi

y,x) = (Si
F , 1),

if x = (0, 1), and

(S̄i
y,x, ᾱi

y,x) = (∅, 0),

otherwise.

Proof. Let y ∈ IRd. First, consider the case where xj = 1 and xi = 0. Then,

by definition, the optimal stopping set for Player i is Si
F . So, σ̄i

y,x is a dominant

strategy.
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Let x = (0, 0) and for all i ∈ {1, 2}, let S̄i
L = Si

L ∩ (Si
F )c and S̄i

P = Si
P ∩ (Si

L)c.

First, note that, for all y ∈ IRd,

M i(y) = IEy

[

∫ ∞

0
Λi

tV
i
11(Yt)dt − I i

]

≤ sup
τ∈M

IEy

[

∫ τ

0
Λi

tV
i
01(Yt)dt +

∫ ∞

τ

Λi
tV

i
11(Yt)dt − Λi

τI
i
]

= F i(y),

since Player i can always choose τ = 0, Py-a.s. Hence, Si
M ⊂ Si

F and Si
M = {y ∈

IRd|M i(y) = F i(y)}. Consider the following cases.

1. y ∈ S1
F ∩ S2

F

Note that

V i
y,x(σ̄i

y,x, σ̄j
y,x) = M i(y).

If Player i plays σ̃i
y,x 6= σ̄i

y,x, then τy,x(S̃i
y,x) ≥ τy,x = 0, Py-a.s. If the inequality is

strict, Player j exercises immediately and the state of play changes to x = (0, 1).

Therefore,

V i
y,x(σ̃i

y,x, σ̄j
y,x) = F i(y) = M i(y),

which implies that Player i has no incentive to deviate.

2. y ∈ Si
N ∩ S̄j

L

Under σ̄, Player j exercises immediately and Player i then exercises at τy,x(SF
i ),

which is a dominant strategy for x = (0, 1). The only deviation σ̃i
y,x = (S̃y,x, ãy,x)

from σ̄i
y,x which could potentially be profitable has τy,x(S̃y,x) = 0. In that case, we

have

V i
y,x(σ̃y,x, σ̄j

y,x) =W i
y,x(σ̃y,x, σ̄j

y,x)

=(1 − α̃0)F
i(y) + α̃0M

i(y)

≤F i(y) = V i
y,x(σ̄i

y,x, σ̄i
y,x).

3. y ∈ S̄i
L ∩ Sj

N

Note that S̄i
L is a subset of the optimal stopping set of (5). Therefore, given that

Player j exercises the option at τy,x(Sj
F ), there is, by definition, no deviation that

can yield a higher expected discounted payoff.

4. y ∈ S̄1
P ∩ S̄2

P

In this case it holds that τy,x = 0, Py-a.s. The strategies σ̄ lead to an expected

payoff

V i
y,x(σ̄i

y,x, σ̄j
y,x) = W i

y,x(σ̄i
y,x, σ̄j

y,x) = F i(y).

10



Let σ̃i 6= σ̄i be such that τy,x(S̃i
y,x) 6= 0. Then

V i
y,x(σ̃i

y,x, σ̄j
y,x) ≤ V i

y,x

(

(Si
F , 1), σ̄j

)

= F i(y).

On the other hand, if σ̃i
y,x is such that τy,x(S̃i

y,x) = 0, the players are effectively

playing the game depicted in Figure 1. The cell (continue, continue) has no pay-

Exercise Continue

Exercise M i(y), M j(y) Li(y), F j(y)

Continue F i(y), Lj(y)

Figure 1: The coordination game.

off, since this outcome is impossible under the Markov chain (1). When σi
y,x =

(Si
y,x, αi

y,x) and σj
y,x = (Sj

y,x, αj
y,x) are such that τy,x(Si

y,x) = τy,x(Sj
y,x), Py-a.s., then

V i
y,x(σi

y,x, σj
y,x) = W i

y,x(σi, σj). Note that

W i
y,x

(

(Si
y,x, 1), (Sj

y,x, αj
y,x)

)

= (1 − αj
y,x)Li(y) + αj

y,xM i(y),

and

W i
y,x

(

(Si
y,x, 0), (Sj

y,x, αj
y,x)

)

= F i(y),

for all αj
y,x ∈ [0, 1]. We have that W i

y,x

(

(Si
y,x, 1), (Sj

y,x, αj
y,x)

)

> W i
y,x

(

(Si
y,x, 0), (Sj

y,x, αj
y,x)

)

⇐⇒

αj
y,x < ϕi(y). In other words, the best-response functions,

(

Bi(αj
y,x), Bj(αi

y,x)
)

, for

both players can be depicted as in Figure 2. The point
(

ϕj(y), ϕi(y)
)

is the only

-

6

αi
y,x

αj
y,x

1

1

0 ϕj(y)

ϕi(y)

Bj(αi
y,x)

Bi(αj
y,x)

Figure 2: Best response functions.

mixed strategy Nash equilibrium6 and, hence, unilateral deviations do not lead to

higher expected utility.

6Note that there are two pure-strategy equilibria as well; one where Player i becomes leader and

Player j follower with probability one, and the symmetric counter-part.
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5. y ∈ S1
N ∩ S2

N

Note that, in this case τy,x is the first hitting time of Θ. So, what remains to be

shown is that, for all elements of Θ, waiting until Θ is entered is an equilibrium.

Under σ̄, the expected payoff to Player i equals

V i
y,x(σ̄i

y,x, σ̄j
y,x) = IEy

[

∫ τy,x

0
Λi

tV00dt + Λi
τy,x

V i
Yτy,x ,x(σ̄i

y,x, σ̄j
y,x)

]

=



















IEy

[

∫ τy,x

0 Λi
tV00dt + Λi

τy,x
Li(Yτy,x)

]

if τy,x = τy,x(Si
L ∩ Sj

N ),

Py-a.s.

IEy

[

∫ τy,x

0 Λi
tV00dt + Λi

τy,x
F i(Yτy,x)

]

otherwise.

The only deviation σ̃i of σ̄i that could possibly lead to a higher payoff has S̃i
y,x, such

that S̃i
y,x ∩ Si

N 6= ∅ and τy,x( ˜Sy,x
i
) < τy,x(Θ), Py-a.s. But, by definition, τy,x(S̃i

y,x)

does not solve (5). Hence, waiting to exercise the option is weakly dominant. �

Note that in the region S1
P ∩ S2

P , it is not optimal for either player to exercise

the option. Along every equilibrium path, however, at least one player exercises as

soon as this set is hit. Therefore, this set is called the preemption set. Note that, in

equilibrium, expected payoffs in the preemption set are equal to the follower payoffs

for both players. This phenomenon is called rent-equalisation.

As a corollary, suppose that firms are symmetric, i.e. V 1
kl = V 2

kl ≡ Vkl, all

k, l ∈ {0, 1}, and I1 = I2 ≡ I. In that case all stopping regions are the same and

the following result follows immediately from Theorem 1.

Corollary 1 Let G be a symmetric two-player NERO satisfying Assumptions 1

and 2. Let y ∈ IRd
+ and x ∈ Ξ. Then σ̄ = (σ̄1

y,x, σ̄2
y,x)(y,x)∈IRd×Ξ ∈ S1 × S2, with

σ̄i
y,x = (S̄i

y,x, ᾱi
y,x) constitutes a SPE, where

(S̄i
y,x, ᾱi

y,x) =







(SF , 1) if τy,x(Θ) = τy,x(SF ), Py-a.s.
(

SP , ϕ(Yτy,x(Θ))
)

if τy,x(Θ) = τy,x(SP ), Py-a.s.,

if x = (0, 0),

(S̄i
y,x, ᾱi

y,x) = (SF , 1),

if x = (0, 1), and

(S̄i
y,x, ᾱi

y,x) = (∅, 0),

otherwise.
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Figure 3: Payoff functions for a symmetric NERO with a one-dimensional Markov

process.

In the case that (Yt)t≥0 is one-dimensional, a typical plot of the payoff functions is

given in Figure 3, where SF = [YF ,∞), SN = [0, YP ), and SP = [YP , YF ). If y ∈ SN ,

x = (0, 0), and (Yt)t≥0 has continuous sample paths, then τy,x = τy,x(SP ), Py-a.s.

and each player exercises the option at time τy,x with probability p10 = p01 = 1
2 ,

since

ατy,x =
L(YP ) − F (YP )

L(YP ) − M(YP )
= 0.

Note that if (Yt)t≥0 exhibits jumps, there can be a positive probability that both

players exercise simultaneously in the preemption set.

4 An Example with Asymmetric Uncertainty

Consider the following setting where the payoff stream of Player i equals

ui(Y, X) = ΛiDklYi,

for k, l = 0, 1 and uncertainty is driven by a two-dimensional geometric Brownian

motion (GBM),
dY

Y
= µY dt + ΣY dz,

where µ = (µ1, µ2) ≥ 0 is the trend, Σ =

[

σ11 σ12

σ21 σ22

]

is the matrix of instantaneous

volatilities, and dz = (dz1, dz2), where z1 and z2 are independent Wiener processes.

Let σ2
k = σ2

k1 + σ2
k2, k = 1, 2, be the total instantaneous variance of Yk. The

13



instantaneous correlation between Y1 and Y2 is

ρ =
1

dt
IE

(dY1

Y1

dY2

Y2

)

=
σ11σ21 + σ12σ22

σ1σ2
.

The discount factor for Player i is assumed to be equal to

dΛi

Λi
= −µΛidt − σΛi

1
dz1 − σΛi

2
dz2.

The instantaneous payoffs are taken to be linear in Yi, so V i
kl(yi) = Dklyi, for all

yi ∈ IR+, and k, l ∈ {0, 1}. Note that the deterministic parts in the instantaneous

payoffs are equal for both players. It is assumed that

1. D10 > D11 > D00 ≥ D01,

2. D10 − D00 > D11 − D01.

These are standard assumptions to model a game with a first-mover advantage (cf.

Huisman (2001)). Finally, sunk costs are the same for both players and equal to

I > 0. That is, players are symmetric up to the uncertainty that underlies their

payoffs, which, in turn, are correlated. For instance, one could think of a situation

with a domestic and a foreign firm facing a similar domestic investment option. In

such a case, both firms’ profits depend on domestic uncertainty, z1, whereas the

foreign firm also incurs exchange rate risk, z2.

The discounted profit stream to Player i, therefore, follows the SDE

dΛiYi

ΛiYi
=

dYi

Yi
+

dΛi

Λi
+

dYi

Yi

dΛi

Λi

= − (µΛi + σi1σΛi
1
+ σi2σΛi

2
− µi)dt

+ (σi1 − σΛi
1
)dz1 + (σi2 − σΛi

2
)dz2

≡− δiidt + (σi1 − σΛi
1
)dz1 + (σi2 − σΛi

2
)dz2,

(7)

where δii is the convenience yield of Player i with respect to Yi. Also define the

convenience yield of Player i with respect to Yj ,

δij = µΛi + σΛi
1
σj1 + σΛi

2
σj2 − µj .

It is assumed throughout that δii > 0 and δij > 0. From (7) it follows that the value

of simultaneous exercising of the option to Player i equals

M i(Yi) = IEYi

[

∫ ∞

0
Λi

tD11Yitdt
]

=
D11

δii
Yi − I.

14



4.1 Follower Value

First, I derive the follower value, F i(Yi), for Player i. Note that this value does

not depend on Yj , since Player j has already exercised her option. The value of

exercising the option – the option’s “strike price” – at Yi is M i(Yi). Denote the

value the option to exercise at Yi by Ci
F (Yi). Then, the no-arbitrage value (relative

to Λi) of Ci
F (·) should satisfy (cf. Cochrane (2005)),

ΛiD01Yidt + IEYi
[dΛiCi

F ] = 0

⇐⇒ D01Yidt + IEYi
[dCi

F ] + IEYi

[

Ci
F

dΛi

Λi

]

= −IEYi

[dΛi

Λi
dCi

F

]

.
(8)

From Ito’s lemma it follows that

dCi
F =

∂Ci
F

∂Yi
dYi +

1

2

∂2Ci
F

∂Y 2
i

dY 2
i

=
(1

2

∂2Ci
F

∂Y 2
i

σ2
i Y

2
i + µi

∂Ci
F

∂Yi
Yi + D01Yi

)

dt

+
∂Ci

F

∂Yi
Yi(σi1dz1 + σi2dz2).

Substitution in (8) gives a second order PDE with general solution

Ci
F (Yi) = Ai

F Y βii

i + Bi
F Y γii

i +
D01

δii
Yi,

where Ai
F and Bi

F are constants and βii > 1 and γii < 0 are the roots of the equation

Qii(ξ) ≡
1

2
σ2

i ξ(ξ − 1) + (µΛi − δii)ξ − µΛi = 0.

Under the standard boundary condition, limyi↓0 Ci
F (yi) = 0, and the value-matching

and smooth-pasting conditions (cf. Øksendal (2000) and Peskir and Shiryaev (2006))

it is obtained that Si
F = {Y ∈ IR2

+|Yi ∈ [Y i
F ,∞)}, where

Y i
F =

βii

βii − 1

δii

D11 − D01
I.

The follower value is then equal to

F i(Yi) =







1
βiiδii

(Y i
F )1−βiiY βii

i + D01
δii

Yi if Yi < Y i
F

D11
δii

Yi − I if Yi ≥ Y i
F .

4.2 Leader Value

Having established the value for the follower I now turn to the leader value. In

deriving the leader value I assume that Player j cannot invest before Player i.
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Therefore, the leader value for Player i can only be computed when Yj < Y j
F . If

Player i becomes the leader, then, by definition, Player j becomes the follower. The

exercise decision of Player j, which depends on Yj , as we saw, influences the payoff

to Player i. Hence, her leader value depends on Yi and Yj .

The no-arbitrage value of Li(Yi, Yj) follows7

D10Yidt + IEY [dLi] + IEY

[

Li dΛi

Λi

]

= −IEY

[dΛi

Λi
dLi

]

. (9)

From Ito’s lemma it follows that

dLi =Li
idYi + Li

jdYj +
1

2
Li

iidY 2
i +

1

2
Li

jjdY 2
j + Li

ijdYidYj

=
(1

2
σ2

i Y
2
i Li

ii +
1

2
σ2

j Y
2
j Li

jj + ρYiYjL
i
ij + µiYiL

i
i + µjYjL

i
j

)

dt

+ (σi1YiL
i
i + σj1YjL

i
j)dz1 + (σi2YiL

i
i + σj2YjL

i
j)dz2

Substitution in (9) leads to a second order PDE with general solution

Li(Yi, Yj) = AL
iiY

βii

i + BL
iiY

γii

i + AL
ijY

βij

j + BL
ijY

γij

j +
D10

δii
Yi − I,

where AL
ii, AL

i,j , BL
ii , and BL

ij are constants and βij > 1 and γij < 0 are the roots of

the quadratic equation

Qij(ξ) ≡
1

2
σ2

j ξ(ξ − 1) + (µΛi − δij)ξ − µΛi = 0.

If Yj = 0, then the threshold Y j
F will never be reached and, hence, Player i will

receive D10 over the time interval [0,∞). This leads to the boundary condition

limYj↓0 Li(Yi, Yj) = D10
δii

Yi − I. This implies that AL
ii = BL

ij = 0. Also, if Yi = 0,

then Player i only incurs the sunk costs. This leads to the boundary condition

limYi↓0 Li(Yi, Yj) = −I, which implies BL
ii = 0. Finally, if Yj = Y j

F , then both

players exercise simultaneously. Therefore, another boundary condition is given by

Li(Yi, Y
j
F ) = M i(Yi) = D11

δii
Yi − I. Solving for Aij then gives

Li(Yi, Yj) =
D10

δii
Yi −

D10 − D11

δii

( Yj

Y j
F

)βij

Yi − I. (10)

Note that the second term in (10) is a correction for the possibility that Player j

may exercise her option as well at some time.

The value function in (10) is the strike price of the option to Player i of becoming

the leader and can, therefore, be used to derive the optimal stopping set S i
L in the

following way. For Y ∈ Si
N , let Ci(Yi, Yj) denote the option value of Player i of

7For f(x1, x2), let fi(·) = ∂f(·)
∂xi

and fij = ∂2f(·)
∂xi∂xj

.
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exercising the option with strike price governed by (10). The no-arbitrage value of

Ci(Yi, Yj) follows

D00Yidt + IEY [dCi] + IEY

[

Ci dΛi

Λi

]

= −IEY

[dΛi

Λi
dCi

]

. (11)

From Ito’s lemma it follows that

dCi =Ci
idYi + Ci

jdYj +
1

2
Ci

iidY 2
i +

1

2
Ci

jjdY 2
j + Ci

ijdYidYj

=
(1

2
σ2

i Y
2
i Ci

ii +
1

2
σ2

j Y
2
j Ci

jj + ρYiYjC
i
ij + µiYiC

i
i + µjYjC

i
j

)

dt

+ (σi1YiC
i
i + σj1YjC

i
j)dz1 + (σi2YiC

i
i + σj2YjC

i
j)dz2

Substitution in (11) leads to a second order PDE with general solution

Ci(Yi, Yj) = AiiY
βii

i + BiiY
γii

i + AijY
βij

j + BijY
γij

j +
D00

δii
Yi − I,

where Aii, Ai,j , Bii, and Bij are constants. If Y = (0, 0), then the sets Si
L, Sj

L,

Si
F , and Sj

F will never be reached and, hence, Player i will receive D00 over the

time interval [0,∞). This leads to the boundary condition limY ↓(0,0) Ci(Yi, Yj) =
D00
δii

Yi. This implies that Bii = Bij = 0. The value-matching and smooth-pasting

conditions, in this case, are


















Ci(Yi, Yj) = Li(Yi, Yj)

∂Ci(Yi,Yj)
∂Yi

=
∂Li(Yi,Yj)

∂Yi

∂Ci(Yi,Yj)
∂Yj

=
∂Li(Yi,Yj)

∂Yj

Solving this system of equations leads to the optimal stopping set

Si
L = {Y ∈ IR2

+|Yj ≤ Y j
F , Yi ∈ [Y i

L(Yj),∞)}

where

Y i
L(Yj) =

βiiδii

(βii − 1)(D10 − D00) + (D10 − D11)(Yj/Y j
F )βij

I.

The following lemma establishes the existence of a first-mover advantage.

Lemma 1 For i ∈ {1, 2} and Yj ≤ Y j
F , it holds that Si

F ⊂ Si
L(Yj).

Proof. Let Yj = Y j
F . Since D10 ≥ D11, and D10 −D00 > D11 −D01 it immediately

follows that

Y i
L(Y j

F ) =
βiiδii

(βii − 1)(D10 − D00) + (D10 − D00)
I

≤
βii

βii − 1

δii

D10 − D00
I

<
βii

βii − 1

δii

D11 − D01
I = Y i

F .
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Furthermore, it is easy to see that
∂Y i

L(Yj)
∂Yj

≤ 0, for Yj < Y j
F . Hence, for all Yj ≤ Y j

F ,

it holds that Y i
L(Yj) < Y i

F . �

For every Yj ≤ Y j
F , let Y i

P (Yj) be the solution of the equation Li(Y i
P (Yj), Yj) =

F i(Y i
P (Yj)). It is then easy to see that

Si
P = {Y ∈ IR2

+|Yj ≤ Y j
F , Yi ∈ [Y i

P (Yj),∞)}.

By construction of (10) it holds that Y i
P (Yj) ≤ Y i

L(Yj), for all Yj ≤ Y j
F . Therefore,

it holds that Si
P ⊂ Si

L. Let S̄i
P = Si

P \S
i
L be the preemption region, as in the proof

of Theorem 1. The following lemma establishes that this region is non-empty.

Lemma 2 It holds that S̄1
P ∩ S̄2

P 6= ∅.

Proof. Let A = [0, Y 1
L (Y 2

F )]×[0, Y 2
L (Y 1

F )] and define the function f : A → IR2, where,

for i = 1, 2, fi(y) = F i(yi) − Li(y). Note that for i = 1, 2 and Yj ∈ [0, Y 2
L (Y 1

F )], by

Lemma 1, it holds that

fi(Y
i
L(Y j

F ), Yj) < F i(Y i
F ) − Li(Y i

F , Y j) = 0 (12)

fi(0, Yj) = I > 0 (13)

Since A is a convex and compact set, and f is a continuous function, there exists a

stationary point on A (cf. Eaves (1971)), i.e.

∃y∗∈A∀y∈A : yf(y∗) ≤ y∗f(y∗). (14)

Let i ∈ {1, 2}. Suppose that y∗i > 0. Then there exists ε > 0, such that y =

y∗ − εei ∈ A, where ei is the i-th unit vector. From (14) it then follows that

yf(y∗) − y∗f(y∗) = −εfi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≥ 0. (15)

Similarly, if y∗i < Y i
L(Y j

F ), there exists ε > 0, such that y = y∗ + εei ∈ A. Therefore,

yf(y∗) − y∗f(y∗) = εfi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≤ 0. (16)

Hence, from (15) and (16) it follows that f(y∗) = 0, if y∗ ∈ A\∂A.

Suppose that y∗i = 0, and let y ∈ A be such that yj = y∗j . Then (14) implies that

(y − y∗)f(y∗) = yifi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≤ 0, which contradicts (13). Similarly,

supposing that y∗i = Y i
L(Y j

F ), and taking y ∈ A such that yi = y∗i , it is obtained that

(y − y∗)f(y∗) = (yi − y∗i )fi(y
∗) ≤ 0 ⇐⇒ fi(y

∗) ≥ 0, which contradicts (12). Hence,

there exists y∗ ∈ A\∂A, such that Li(y∗) = F i(y∗i ), i = 1, 2. �
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(D10, D11, D00, D01) = (8, 5, 3, 1) I = 100

µΛ = 0.04 σΛ = (0.05, 0.05)

µY = (0.03, 0.03) ΣY =

[

0.1 0

0.1 0.1

]

Table 1: Model characteristics.

4.3 A Numerical Illustration

Consider the case with payoffs, sunk costs, and parameters as given in Table 1. It

is assumed that both players have the same discount factor, Λ1 = Λ2 ≡ Λ. It is,

furthermore, assumed that Player 1 is only influenced by z1, whereas Player 2’s

payoffs are influenced by both shocks. This could correspond to a situation where

Player 1 is a domestic firm, with an option to invest in a new product, and Player 2

is a foreign firm with a similar option. The Wiener process z2 can represent, for

example, exchange rate risk.

Figure 4 shows the regions Si
N , Si

P , and Si
L for both players as well as a simulated

sample path in which Player 2 exercises first at her optimal time. The path was

simulated with Y0 = (0.1, 0.1) ∈ S1
N ∩ S2

N .
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Figure 4: A sample path leading to sequential investment with Player 2 as leader.

Note that, since Y has continuous sample paths, in equilibrium there is always

one player who does not exercise the option at time τY0(Θ), a.s. It is, however, not

the case that in the preemption region both players both exercise with probability

0.5, as is the case in papers where it is assumed that players toss a fair coin to
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determine who exercises first in the preemption region.8 In fact, conditional on

τY0(Θ) = τY0(S̄
1
P ∩ S̄2

P ), the probability that both players exercise with probability

0.5 is equal to 0. This is the case, because P (Xτ = (1, 0)) = P (Xτ = (0, 1))

only if ϕ1(YτY0
(Θ)) = ϕ2(YτY0

(Θ)) = 0, given that there is always one player for

whom ϕi(YτY0
(Θ)) = 0. There is only one point where this happens, namely at the

intersection of Y 1
P (Y2) and Y 2

P (Y1). Due to absolute continuity, this point is reached

with probability 0.

5 Conclusion

In this paper I have introduced a general model for two-player non-exclusive real

option games. The strategy and equilibrium concepts are generalisations of Dutta

and Rustichini (1995) and Fudenberg and Tirole (1985). The advantage of using the

coordination of Fudenberg and Tirole (1985) is that it allows one to endogenously

solve for a coordination problem, which often arises in preemption games. The basic

idea is that if a coordination problem arises, the two players engage in a game in

“artificial time”, which leads to an absorbing Markov chain. The probabilities with

which each player exercises the option is then simply given by the limit distribution

of this chain. The main result of the paper, Theorem 1, proves the validity of the

rent-equalisation principle in NEROs with first-mover advantages, where uncertainty

is governed by a strong Markovian stochastic process.

Most of the present literature on game-theoretic real option models assumes

that uncertainty is represented by a one-dimensional geometric Brownian motion.

This paper shows that the results change significantly if a two-dimensional GBM is

used. In much of the literature the coordination device is not used, but exogenous

assumptions are made on the resolution of the coordination problem. Usually it is

argued that a fair coin is tossed and each player exercises with probability 1/2. I

suspect that such assumptions are based on Fudenberg and Tirole (1985) who show

that this is the case in the particular (deterministic, symmetric players) model they

study. In a purely symmetric model this is indeed true. With a 2-dimensional GBM,

however, the coordination problem arises as well and, in equilibrium, neither player

exercises with probability 1/2, almost surely. Furthermore, both players exercise

with unequal probability, almost surely. It is still the case, however, that both

players do not exercise simultaneously, almost surely, as is a standard assumption

in the literature. This is due to the continuous sample paths of GBM.

The analysis in this paper opens up several avenues for future research. Firstly,

8See, for example, Grenadier (1996) or Weeds (2002)
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the actual behaviour of the model for particular stochastic processes can be exam-

ined. Of particular interest would be the situation where Y follows a jump-diffusion

process. In the models currently studied in the literature the probability of both

players jointly exercising is zero, due to continuity of sample paths. This property

would be lost in jump-diffusion model. This might consequently lead to an additional

value of waiting.

Secondly, the model in Section 4 could be used to analyse specific economic prob-

lems. A straightforward one is the question whether currency unions, or currency

pegging, accelerates investment. In the setting of Section 4 one can think of two

firms, a domestic one (Player 1) and a foreign one (Player 2). The domestic firm

is exposed to one source of risk, say product-market risk due to demand fluctua-

tions, whereas the foreign firm is also exposed to exchange rate risk. A monetary

union would take away the latter source of risk and lead to a duopoly as analysed

in Huisman (2001, Chapter 7). The expected first and second exercise times could

be simulated and a welfare analysis could be made to compare both situations.
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