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     1 The idea that deterministic demand cycles drive pricing in the Joint Executive 
Committee (1880-1886) was first introduced by Lobato and Walsh (1994). Andrew 
Coleman (2004) has kindly given us the weekly transportation price data for the Great 
Lakes and Canals that he put together from “The Aldrich Report”. This allows us to give 
more direct and formal evidence that deterministic demand cycles did drive the general 
pattern of price and quantity movements in the JEC.  This paper was presented at the IOS 
conference in Boston 2006, CEPR/IIIS productivity workshop in Dublin 2006 and to 
EARIE 2006 in Amsterdam. We thank Gregory Crawford, Peter Davis, Joseph 
Harrington, John Haltiwanger, Robert Porter, John Sutton and Chad Syverson for detailed 
comments.  
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Abstract 
 

We incorporate, a previously omitted variable, the weekly transportation prices of grain 

over the Great Lakes and Canals from the Aldrich Report (1893), into an analysis of the 

JEC railroad cartel. Within the structural model of equilibrium pricing in Porter (1983), 

we incorporate pricing over the Great Lakes and Canals into our modeling of industry 

demand, conduct and stability. Replacing structure with data generates clear deterministic 

mark-up cycles for the Railroad during periods of cartel stability. Periods of cartel 

instability are explained by the presence of unusually low seasonal pricing on the Great 

Lakes and Canals, amongst other factors. 

   

Keywords: Deterministic Demand Cycles, JEC Railroad Cartel Pricing, stuctural 

modeling versus new data on transportation prices of grain over the Great Lakes and 

Canals. 

JEL Classification: L92 & L10. 
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Introduction 

 Porter (1983), in a structural model of equilibrium, using railroad cartel price data 

from the Joint Executive Committee (1880–1886), estimates the following generalised 

first order condition for dynamic pricing in an imperfectly competitive homogenous good 

industry,  

    ttt
t

t
t MCQ

dQ
dPP =+ θ      

 Porter (1983) estimates the unobservable theta, consistent with the theory of 

Green and Porter (1984), as a hidden regime that switches between finite periods of 

collusive and non-collusive pricing2. Such temporary periods of cartel breakdown have 

lead several theoretical papers to discuss the problem of cartel breakdown in the JEC, 

both from traditional and game theoretic frameworks. The focus of this work has been on 

the apparent causes of ‘price wars’ identified by Porter (1983) [ Ulen (1983), Porter 

(1985), Ellison (1994), Rotemberg and Saloner (1986) and Vasconcelos (2004)].  Work 

on the JEC to date seems to provide empirical support for many opposing theoretical 

viewpoints on the reasons for cartel breakdown with little insight into the factors that 

affect the general run of pricing during periods of cartel stability. 

                                                 
2 Theory based on repeated games suggests that the Bresnahan (1989) theta is not static, 
but rather the intensity of price competition (market share rivalry) can vary overtime. The 
way one models demand impacts the trade-off between one shot gains and discounted 
losses in Incentive Compatibility Constraints (ICC) in repeated games. This has been 
shown to generate very different time paths of theta and equilibrium price cost mark-ups 
(see for example Green and Porter (1984), Rotemberg and Saloner (1986), Haltwanger 
and Harrington (1991) and Fabra (2006)). Genesove and Mullin (1998) provides us with 
a nice overview and application of the empirical issues surrounding the estimation of the 
generalised first order condition for pricing in homogenous good industries. 
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 One major drawback of all work on the JEC to date is the absence of weekly 

transportation prices of grain over the Great Lakes and Canal. This data has since been 

compiled by Coleman (2004) from the Aldrich Report (1893).  Porter (1983) allowed for 

the dates of lakes opening and closing to affect demand but not industry conduct.  We 

wish to investigate whether industry conduct did reponse to external pricing over on the 

Great Lakes and Canals and the changes in expected demand in the weeks coming up to 

the date of  lakes opening and closing.  

 Our strategy is to estimate the structural model of equilibrium pricing in Porter 

(1983) while allowing pricing over the Great Lakes and Canals to affect industry demand, 

conduct and periods of cartel instability. We work with precisely the same functional 

form for cost, but model the Porter (1983) unobservable (mark-up) with observables in a 

non-parametric and not as a hidden regime.3 Our strategy for modelling the unobservable 

(mark-up) is similar to Appelbaum (1982) but we model the relationship betweeen our 

exogenous variables and the unobservable in non-parametric form4. Our objective is to 

show that the inclusion of previously omitted data outperforms structural approaches 

when dealing with the unobservable. For this reason we provide a direct comparison of 

                                                 
3 Ellison (1994) takes this further by imposing more structure on the omitted variable,  a 
first order Markov process, modelled with various proxies for demand shocks. However 
we prefer to model our unobservable with less structure using our proxies for current and 
expected demand shocks.  
4Our philosophy is similar to Olley and Pakes (1986) who motivate the use of an 
investment proxy, alongside exogenous variables, in a non-parametric form to control for 
unobservable productivity. Here we estimate the parameters of a specific cost function in 
an equilibrium Lerner index controlling for our unobservable (mark-up) in a non-
parametric, identified with exogenous demand (Lake and Canal prices) and expected 
demand movements. We then back out our unobservable as a deterministic residual. 
Appelbaum (1982) explicitly writes down the form of the unobservable and cost function 
in an equilibrium Lerner index at the industry level and estimates the parameters of the 
system parametrically.  
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results with Porter (1983), and hence make no attempt to separate out the unobservable in 

pricing from costs using the techniques found in Berry, Levinsohn and Pakes (1995).  

 Our strategy is dependent on price setting on the Great Lakes and Canals being 

independent of the rate set in the JEC cartel. Lakes and Canals were the dominant mode 

of grain transportation between Chicago and New York. Coleman (2004) using data on 

inventories, transportation prices and spot prices for grain in Chicago and New York, 

estimates that spot price differences in Chicago and New York were driven by Lake and 

Canal transportation prices plus storage cost. This highlights the dominance of 

transportation over the Lakes and Canals. New York did not accept high winter transport 

costs, but rather used inventories to benefit from the low transportations costs in the open 

season.   

 Coleman’s (2004) results suggest that inventory and pricing on the Lakes and 

Canal route imposed exogenous but predictable changes in demand on the JEC railroad 

cartel.  In particular, using data before, during and after the JEC, we see that Great Lakes 

and Canals transportation prices tended to start low but were gradually increased every 

week between July and the end of the shipping season. This was due to pressures created 

from harvesting in August and the need to manage inventories before the lakes closed. 

The expectation of such low and high pricing cycles during lakes opening and the use of 

inventories during lakes closed should have an interesting impact on railroad pricing.  

 We include the following observables into the nonparametric modeling of the 

Porter (1983) unobservable: Exogenous seasonal pricing cycles over the Great Lakes and 

Canals, a measure of endogenous cartel instability and movements in expected future 

demand, as motivated by Haltiwanger and Harrington (1991).  We capture the latter with 
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counts on the number of weeks that lakes are opened (closed). We use duration (weeks 

into the season) to proxy for expections of increasing (decreasing) demand as we move 

along the weeks in lake open season (closed). We control for exogenous movements in 

current demand using the prices of the Lakes and Canals, month dummies and 

endogenous movements in current demand through cost. Could duration just reflect week 

effects in current demand rather than expectations of demand? Maybe but we show that 

for the same level of current demand, in either lakes open or closed, mark-ups are higher 

coming into a period of growing demand and lower coming into a slump period. We feel 

duration is at least consistent with and does control for the effects of expected demand.     

  Our results provide us with a very interesting deterministic cycle in the mark-up 

of the JEC. In the weeks before lakes closing the volume of trade presented to the 

Railroad increased during harvesting alongside price increases on the lakes (inventory 

management). This pushed Railroad mark-ups to rise consistently over the lakes open 

period. Indeed estimated profits for the Railroad were higher coming into the lakes closed 

regime when compared to those coming into the lakes opening season. We see an 

independent effect created by our proxy for expected demand,  as we control for changes 

in current demand, the count on the number of weeks that lakes are opened has an 

increasingly upward effect on the Railroad mark-up. Conversely, controlling for changes 

in current demand, a count on the number of weeks that lakes are closed decreases the 

Railroad mark-up as time to an anticipated slump approaches. These results emulate 

those in Borenstein and Shepard (1996).  

 Unlike the earlier literature, having controlled effectively for the omitted variable, 

we now observe economies of scale in marginal cost. While Fabra (2006) show us that 
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the results of Haltiwanger and Harrington’s (1991) would be less likely to hold in 

industries with capacity constraints, economies of scale theoretically reinforces the 

mechanisms in Haltiwanger and Harrington (1991).5  Such anticpicated movements in 

current costs would also reinforces the mechanisms in  Rotemberg and Saloner (1986). 

 Within our structural model of equilibrium pricing, we allow for the periods of 

cartel instability, as documented in Porter (1983), but we model them to be driven by 

unexpected low seasonal pricing by the Great Lakes and Canals, among other factors.  As 

Ulen (1983) stresses, factors such as export demand had a big impact on transportation 

prices across the Great Lakes and hence on the volume of trade presented to the Cartel, 

making cartel enforcement difficult.   

 Overall this paper provides evidence that inventory and pricing cycles over the 

Great Lakes and Canals induced systematic mark-up cycles for the Cartel. It would seem 

that unexpected seasonal pricing over the Great Lakes and Canals were responsible for 

cartel breakdown.  

 In section I, we describe the industry and data. In section II, we replicate Porter 

(1983). In section III we outline our extension of Porter (1983) and provide results. 

Finally, we make some conclusions. 

                                                 
5 When demand is expected to be high, then costs are expected to be low. A threat of a 
revision to a zero profit becomes more binding as expected demand rises and less binding 
as expected demand falls.   
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Section I:   

  In the years before the formation of the Inter-State Commerce Commission 

(1887) and the passing of the Sherman Act (1890), the JEC managed a railroad cartel. 

Regulatory and common law restraints on collusion were minimal. The committee 

controlled east-bound freight shipments of grain, flour and provisions from Chicago to 

the Atlantic Coast. The JEC set official rates, market share allotments and managed 

clearing arrangements for those above and below their allocated tonnage for traffic out of 

Chicago. All members had full information on official rates, tonnage of traffic by each 

company and any deviations between allocated and actual tonnage. These statistics were 

published in weekly reports in the Railway Review and the Chicago Tribune.  

 

Data from  Porter (1983): Week 1 in 1880 to Week 16 in 1886                                                                         

 

gr    The official grain rate, in dollars per 100 lbs 

tqg   Total quantity of grain shipped, in tons. 

po    Cheating reported in the Railway Review and the Chicago Tribune 

pn   Estimated cheating dummy estimated in Porter (1983). 

Lakes (l)   Lakes reported open =1, otherwise zero 

S1     = 1 from week 28 in 1880 to week 10 in 1883; = 0 otherwise;  

   Reflecting entry by the Grand Trunk Railway. 

S2   = 1 from week 26 in 1883 to week 11 in 1886; = 0 otherwise;  

   Reflecting entry by the Chicago and Atlantic Railway. 

S3   = 1 from week 26 in 1883 to week 11 in 1886; = 0 otherwise;  

   Reflecting entry by Chicago and Atlantic Railway. 

S4   = 1 from week 12 in 1886 to week 16 in 1886; = 0 otherwise;  

              Reflecting the departure of Chicago and Atlantic Railway. 
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 We have observations on the above variables for 328 weeks between January 1, 

1880 and April 18, 1886. The focus of most analysis is on the shipments of grain, 

justified on the grounds that through-shipments of grain accounted for 73% per cent of all 

dead freight tonnage handled by the JEC. A key feature of the industry was the seasonal 

pattern of demand faced by the railroad industry. The Lake Steamers and Sail Ships, 

which operated during the spring, summer and fall, but not during the winter season, 

were the principal source of competition for this railroad cartel. All the studies to date 

suggest that competition from the Great Lakes had little effect on industry conduct. 

Andrew Coleman’s (2004) excellent analysis of the late nineteenth century corn markets 

in Chicago and New York suggest that this may not be the case.  

 In what follows we summarize some of Coleman’s (2004) key insights into the 

late nineteenth century transportation of grain between Chicago and New York to 

facilitate the export of grain from the Great Plains to Europe. The slowest and least 

expensive method was to send grain to Buffalo by ship via the Great Lakes, and then to 

forward it to New York along the Erie Canal. This method took approximately three 

weeks. A faster and more expensive method, taking ten days, was to ship grain over the 

Great Lakes to Buffalo and then send it by rail to New York. Transportation over the 

Great Lakes was not available between November and late April, however, as both the 

canal and the Great Lakes were frozen. The fastest and most expensive method, available 

all year round,  was to send grain over three or fours days by rail to New York. 

 During the period 1878 and 1890 Coleman (2004) estimates that 95 per cent of 

corn that was transported in the open water season was shipped by lake and 78 per cent of 

that arrived in New York by canal rather than by the lake and rail route.  We have no 
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doubt that the Lakes and Canal route was by far the dominant player.  Coleman’s (2004) 

dataset includes weekly data on spot and future prices, storage quantities and the cost of 

different modes of transport for a fourteen year period. The focus of his paper is on the 

difference between the Chicago and New York spot prices for grain. The main point that 

emerges from the paper is how inventories were used to smooth price fluctuations over 

the lake opening and closing seasons.  New York did not accept high winter transport 

costs, but used inventories to benefit from the low transportations costs of the Great 

Lakes and Canals in open season. Our focus is clearly to model the transportation prices 

of the railroad cartel. It is  a maintained assumption that price setting on the Lakes and 

Canal route could not be influenced by the Railroad, but pricing and inventory 

management on the lakes could impose exogenous demand cycles on the Railroad.  

Weekly Data, the Aldrich Report (1893), 1878-91                                                                                               

gr_l&c:   Aldridge p521,  weekly rates, corn and wheat by Lake and Canal,   1878 –  

  1891,  in dollars per 100 lbs 

l&c:    Lakes and Canal open dummy  = 1 if  gr_l&c    > 0 , otherwise zero.    

ponew:   Aldridge pp514-15  has the rates for all classes of Rail transport from  

  1871– 1891. ponew =1 if the JEC grain rate was equal to the Chicago- 

  New York grain rate that Railroads, including the JEC, tried to peg to,  

  zero otherwise.    

nwo:   Count on the number of weeks lakes are open.  

nwc:   Count on the number of weeks  lakes are closed. 

 

 The data from the Aldrich Report (1893) was put together by Coleman (2004). 

Transport prices between Chicago and New York had a marked seasonal pattern in 

shipping costs. Figure 1 (a) to (c) indicates the seasonal pattern of the two types of 

weekly shipment prices, Rail and Lake & Canal transportation, during 1878-1891. It is 
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interesting to look at the prices before (1878-79), during (1880-85) and after the Cartel 

years (1886-1891). In Figure 1 (a) and (b) rail rates varied seasonally between winter and 

summer, prior to 1886. In Figure 1 (c) the seasonal pattern in rail prices declined after the 

passing of the Interstate Commerce Act 1887, which regulated rail transport.  

 Lake and Canal prices were typically low at the opening of the Lakes season, but 

increased towards the closing of the season. Clearly, when New York was building up 

inventories during harvesting for the winter, the price rise benefited the railroad as well 

as the dominant mode of transportation. An exception to this trend is found in 1881 and 

1885 when prices did not rise in the latter half of the summer. This may have resulted 

from low export demand or other external factors. One argument given for the presense 

of internal conflict was that the Railroad had low and high prices within Lakes closed and 

open periods. Here we see that Lakes and Canal prices where also low and high in the 

Lakes open season  which could have an important impact on the Railroad in Lakes open 

periods and because of inventory management in Lakes closed periods. During 1878-

1886, we also see downward revisions on Railroad rates in the weeks before lakes 

opening. The opening up of the Lakes seems to be affecting behaviour during the lakes 

closed season. 

 Compared to Porter (1983), the price data on the Great Lakes and Canals suggest 

differences on the timing of the lakes opening and closing. We work with Lakes and 

Canal prices as a way to define opening and closing.  Figure 2 (a) we plot Porter’s (1983) 

lakes dummy against that constructed by us. They are very close, but not an exact match. 

In addition, Porter’s (1983) po variable, like the lakes dummy, is also constructed on the 

basis of reports of internal reports of “price wars” within the Cartel. We work with a 
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ponew variable, which is equal to one when the JEC grain rate was equal to the Chicago-

New York grain rate from the Aldrich report that Railroads, including the JEC, tried to 

peg to. In Figure 2b we plot this ponew against po variable in Porter (1983). In addition, 

we plot Porter’s (1983) pn (endogenous switching estimate) variable, to be estimated in 

Table 1a. All are correlated. It is interesting that the pn and ponew are very close.  

Porter’s (1983) techniques pinned down the periods of instability extremely well. 

 
Section II:  Porters Structural Model of Pricing 

 We follow the Porter model closely,   

Demand Equation 

(1)    ln tqgt  = α0 + α1 ln grt + α2 Lakest + µ1t      

 grt is the grain rate per bushel shipped. tqgt is total quantity of grain shipped. 

Lakest  = 1, when the great lakes are open to shipping (all seasons, save winter), otherwise 

= 0.  

Pricing Equation  

 We have N firms asymmetric with respect to costs 

(2)    cit(tqgit) = ait(tqgit) δ + Fi          i = 1,….,N 

 Thus, Marginal Revenue for firm i:  

(3)    1

1

)(1 −==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= δδ
α
θ

ititit
it

tit tqgaMCgrMR  

 For homogenous goods, the grt is same for each firm. Define the market-share, sit, 

weighted Conduct parameter as,   
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 Conduct will be allowed to vary over time to represent the predictions of the 

Green-Porter model, finite switches between collusive and reversionary pricing 

behaviour. Aggregating over the N firms we obtain the industry marginal revenue and 

cost conditions:  

(5)   
ttt

t
tt MCtqgDgrMR ==⎟⎟
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Where             ( )
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 The implied structural model of pricing is therefore:  

(6)   ln grt = -ln (1+θt /α1) + ln Dt + (δ -1)ln tqgt 

 We identify θt by putting some structure about how it varies.  Porter assumes 

there are only two regimes: one that is collusive and one that is reversionary. He 

estimates the following:  

(7)   ln grt = β0 + β1 ln tqgt +β2 St + β3 It + µ2t 

 Marginal cost is estimated as β0 + β1 log tqgt +β2 St , where St is the set of 

structural dummies that accommodate entry/exit and β0 is augmented with month 

dummies.  It = 1 during collusive regime and zero otherwise. Theory predicts that θt is 

higher during collusive regimes and therefore β3 should be positive (since α1 is negative),  

β3  =  -ln (1+θt /α1). When It is known, he estimates equation (1) and (7) using 2SLS. 

Identification comes from the fact that we have an explicit functional form for marginal 
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cost. When It is not known, it is estimated using a straight maximum likelihood or an 

endogenous switching (hidden) regime model. 

 Results I: Original Porter 

 We first replicate the results of Porter (1983) outlined in Table 1 (a) & (b)  

(Tables  3 and 4 in Porter (1983), respectively) and Figures 3 (a)-(c).  Figure 3(b) is our 

focal point, which depicts the mark-up, θt /α1, computed from β3 = -ln (1+θt /α1), but 

not reported, by Porter (1983). Collusive mark-ups price were a little over 40% higher 

than those in the punishment phase. Cooperative prices seem to be less than joint-profit 

maximising prices (as the absolute value of industry price elasticity of demand <  1). In 

addition, revisions to price wars happened more regularly in later periods. Green and 

Porter’s (1984) prediction that price wars should occur sometimes is verified, but there is 

no explanation about why price wars start, how long they last or vary in duration and 

magnitude. This type of analysis is undertaken in Porter (1985). No evidence of an 

external impact on conduct from the seasonal opening and closing of the Lakes are found. 

Finally, we note that output is not significant in the pricing equation. No scale economies 

or diseconomies are found. 

 Results II: Original Porter with Year Dummies  

 We now include time dummies in Porter’s (1983) demand and pricing equations, 

and report our findings in Tables 2(a) and (b) and Figures 4(a) and (b). Time dummies 

increase the predictive power of the equations quite a bit. In addition we see that the 

industry price elasticity falls in the demand equations, while the structural dummies are 

not significant in the pricing equation in either our 2SLS or ML estimations. Yet, in 

Table 2 (b) and Figure 4(b) we see that estimates of pn (set equal to 1 if above 0.5 and 
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equal to zero if below 0.5) and the mark-up,  θt /α1 [computed from β3 = -ln (1+θt /α1) 

], are not so different. In the next section we simply ask what difference does the price 

data from the Lakes and Canals make when using the same structural model of pricing as  

Porter (1983) with time dummies.  

Section III. Our Structural Estimation 

 Our empirical strategy is to estimate the structural model of equilibrium pricing in 

Porter (1983) while allowing pricing over the Great Lakes and Canals to affect industry 

demand, conduct and periods of cartel instability. We rewrite equation (6) as the 

following, the Porter (1983) pricing equation,      

(8)   ln grt = Ωt(.)  + ln Dt + (δ -1)ln tqgt  + εst   

 where we allow Ωt(.) = -ln (1+θt /ηt), ηt is the industry elasticity of demand 

which is the sum of the own and cross price when lakes are open and is just an own price 

during lakes closed. The term lnD-t + (δ -1)lntqgt, as in Porter (1983), is taken as 

marginal cost. We augment the constant with month and time dummies.  

 We model the Porter (1983) unobservable, Ωt(.), with observables in a non-

parametric, and not as a hidden one-zero regime. The observables used control for the 

exogenous pricing cycles over the Great Lakes and Canals, lgr_l&ct, the effect of 

endogenous cartel instability, ponewt,and the effect of movements in expected future 

demand as motivated by Haltiwanger and Harrington (1991). We use duration (counts on 

weeks into the season, nwct, & nwot) to proxy for the expections of increasing 

(decreasing) demand as we move along the weeks in lake open season (closed). We 

control for exogenous movements in current demand using the prices of the Lakes and 
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Canals, month dummies and endogenous movements in current demand through cost. 

Duration could reflect week effects in current demand but is consistent with and does 

control for the effects of expected demand.     

 We do not know the functional form but allow a Kernel Density Function (KDF) 

in the above variables to track it. We also report a polynomial series of order one (linear 

function) as a proxy for the KDF to see parametrically the independent impact of the 

various current and expected demand pressures on sustaining a mark-up. Our focus is on 

estimating equation (8) in the following reduced form equilibrium pricing equation ,  

Reduced Form Pricing Equation 

(9)  lngrt = Ωt(lgr_l&ct, ponewt, nwct, nwot) + β0 + β1 ln tqgt  + εst   

 As in Porter (1983), we model marginal cost as the sum of β0 + β1 ln tqgt .  The 

intercept, β0, is augmented by month and year dummies. We include them as a control 

for marginal cost, but clearly this could be part of the mark-up. Hence we have to be 

careful about the interpretation of the level of the mark-up. Note in the Porter (1983) 

framework that β1 = (δ - 1) < 0, which indicates the presence of economies of scale.  

Having the estimates of marginal cost we back-out the mark-up, θt /ηt, from the above 

equation as Ωt ( . )  = -ln (1+θt /ηt).  Clearly, ponewt  and tqgt  are endogenous and we 

will model the two auxiliary regressions as follows:  

Auxiliary Demand Equation 

(10)  lntqgt = α0 +α1 lngrt +α2 ln lgr_l&ct
 
 +Ω*

t(SD’s, nwot, nwct ) +εdt   

 The demand equation is a function of the own price and the price of the dominant 

substitute. Our instruments allow for a possible error in the pricing variable as the official 
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rate may not reflect company level discounts. Such differences are more likely during 

periods of structural change (Structural Dummies and the Lakes and Canal Dummy) and 

different points on the deterministic cycle (changes in expected demand as represented by 

nwot, and nwct). We use a KDF function to proxy Ω* 
t(⋅) Also we report a polynomial of 

order one to separate out the individual effects of the instruments parametrically. 

Auxiliary Probit   

  ponewt = β0 +β1nwct +β2nwot + βln ln lgr_l&ct
 
 *Years +εwt   

 Cartel instability is allowed to be driven by expected demand cycles proxied by 

duration (counts on weeks into the season, nwct, & nwot), and we also interact the prices 

of the Lakes and Canals with year dummies to capture different yearly effects or in 

particular the usually low seasonal pricing on the Great Lakes and Canals in 1881 and 

1885.   

 Results III: Original Porter with Lakes and Canal Prices   

 The results from the above specifications of pricing, demand, and cartel 

breakdown are reported in Table 3 and Figures 4 (a) – (d). We employ our Kernel 

Density Functions in pricing and demand, reported in columns three and four, which 

control for the omitted variables in a general way, but we do not see the role of the 

individual effects. We use the same semi-parametric estimation techniques as outlined in  

Olley and Pakes (1986). Our model explains 77 per cent of pricing and 57 per cent of 

demand movements at the industry level. We have evidence of economies of scale as the 

parameter on output in the pricing equation is negative and significant. In addition we 

observe that the own- price elasticity of demand (which is greater than one) and the cross 

price is positive are significant.  
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 The non-parametric functions hide the individual effects of our exogenous 

demand and expected demand variables on the mark-up. In first two columns, we use a 

polynomial of order one to proxy Ωt (⋅) in the pricing equation and Ω*
t (⋅) in the demand 

equation to get a feel for the individual effects. This reduces to a very simple 2SLS 

approach, which is comparable to that in the first two columns of Table 1 (a), the original 

Porter (1983) 2SLS results. Our 2SLS model now explains 64 per cent of pricing, rather 

than 36 per cent, as our additional variables are having an effect. The exogenous price of 

lakes and canals has a positive effect on the mark-up.  Internal endogenous “price wars” 

reduce the mark-up. Duration, ‘number of weeks into lakes closed’ has a downward 

effect on the mark-up and the ‘number of weeks into lakes opened’ has an upward effect 

on the mark-up. The later represent independent effects of our control for expected future 

demand as outlined in Haltiwanger and Harrington (1991).  When we put all these factors 

in a non-parametric we can explain 77 per cent of pricing movements.  

 The demand equation (the IV regression for output in the price (official rate) 

setting equation) is different to Porter (1983). We include the price of the Lakes and 

Canals, which is clearly important. The instrumental variables used are in the KDF in Ω*
t 

(⋅). The idea here is that the actual prices may not be the same as the official rate. The 

times, when the Incentive Compatibility Constraint at the company level is coming under 

pressure, when temptations to have prices departing from the official rate, is when we 

have changes in the numbers of companies and deterministic cycles. Hence, we use errors 

in the reporting of price as our instrument for output.  We should recall that the structural 

dummies are not significant in the pricing equation in the presence of time dummies. We 

also include a one zero dummy to indicate that lakes and canals are open or closed. This 
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is where the identification of output in the pricing equation comes from which is 

independent of the error structure in the pricing equation. We note that the own price 

elasticity of demand is greater than one and the cross price elasticity of demand of 

industry demand is positive and significant.   

 Finally, Porter’s (1983) price revisions (the IV regression for ponewt in the 

pricing equation) are explained nicely by our interaction of time with the prices on the 

lakes and canals. We have usually low seasonal pricing over the Lakes and Canals in 

1881 and 1885.  From Figure I (a)-(c) we see that from 1878 prices usually increased 

coming to the end of the season, but not in 1881 and 1885. When the the Lakes and 

Canals where pricing around 5 cent a bushel for transportation, it was hard for the 

Railroads to make profits. This is our key instrumental variable for ponewt in the pricing 

equation.   

 In Figure 5 (a) we plot the mark-up, constructed from our deterministic residual 

that comes out of our structural model of equilibrium pricing based on using polynomials 

of order one, proxy for Ωt =  -ln (1+θt /ηt).  The term β0 + β1 ln tqgt  is taken as 

marginal cost where the constant is augmented with month and time dummies.  The 

estimates of the mark-up, θt /ηt,   ratio of predicted prices over marginal cost,  are plotted 

over the lakes opening and closing periods, against periods of cartel instability as defined 

by our ponew and against the log of sales, to be aware of the volume of sales over the 328 

weeks.  

 The mark-up drops over the lakes closed period and consistently rises over the 

lakes open period. In addition, we see the negative mark-ups during the periods of cartel 

instability plotted against the one and zero ponew variable, as documented in Porter 
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(1983). Do these mark-up cycles reflect current or expected demand? Are they  

Rotemberg and Saloner (1986) or Haltwanger and Harrington (1991) cycles? For the 

same level of sales, in lakes open season, the mark-up is higher as we approach lakes 

closing than just coming out of a period of lakes closed.  Conversely, we can see that for 

the same level of sales, in lakes closed season, the mark-up is lower as we approach lakes 

opening than just coming out of a period of lakes opened. Obviously current demand 

cycles and economies of scale reinforce this, yet there are clear signs in the econometrics 

(significant duration effects) and in the plot of the mark-up, θt /ηt, in Figure 5 (a) that the 

Haltwanger and Harrington (1991) expected demand effect plays a role. 

 In Figure 5 (b), we plot the estimated Cartel profit, the mark-up times output. 

Railroad made losses over the period when ponew was zero. More importantly, the 

periods coming to the end of lakes opening normally generated the highest weekly profits 

for the Cartel. Harvesting and the race against the clock in inventory management 

normally induced price increases on the Great Lakes and Canals that increased the 

volume of trade for the Railroad. This rise in current and expected demand allowed the 

Cartel to sustain a higher price and exploit economies of scales leading to a surge in 

profits. Given that it was a monopoly during lakes closed, it is interesting to see that 

profits peaked at the end of the lakes open period. This highlights the external pressure 

that came from inventory management and pricing over the lakes and canals on the 

Railroad. 

 In Figures 5 (c) and 5 (d), the mark-up, θt /ηt , constructed from Ωt =  -ln (1+θt 

/ηt), and estimates of profits, respectively, based on employing KDFs in our structural 

model of equilibrium pricing,  are plotted over the lakes opening and closing. The effect 
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of current and expected deterministic cycles and periods of cartel breakdown on the 

mark-up and profit cycles are still clear.  Competition from the Great Lakes and Canals 

created ongoing external pressure on industry conduct that induced interesting mark-up 

and profit cycles during periods of Cartel Stability. In addition, unexpected slumps in the 

prices of the Great Lakes and Canals (reflecting export demand or some other factor) lead 

the Railroad to losses in periods that normally gave the Cartel its highest profit.   

 Results IV: Dynamic Adjustment   

 The error structure in the demand equation suggests that we do not control for 

differences in actual prices (change daily) and the official rate (set weekly) well enough 

and we should allow for a one week partial adjustment model by including a lagged 

dependent variable. We report adjusted coefficients and standard errors. The results from 

the specifications of pricing demand with a lagged dependent variable, and cartel 

breakdown are reported in Table 4 and Figures 6 (a)–(d). Our semi-parametric approach 

now explains 78 per cent of pricing and 65 per cent of Demand. The own- and cross-price 

elasticity’s of demand are slightly higher and we still see the presence of economies of 

scale. 

 In Figure 6 (a) and 6(c) the mark-up (constructed from our deterministic residual) 

coming out of our structural model of equilibrium pricing based on polynomials of order 

one and based on employing KDFs, respectively, are  plotted as before. The effect of 

deterministic cycles and periods of cartel breakdown on the mark-up and profit cycles are 

even clearer when we allow for partial adjustment in demand.   
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Conclusions 

 The inclusion of additional data, pricing on Lakes and Canals, has a tremendous 

impact on the results of one of the best know pieces of applied work in Industrial 

Organisation. Modeling price and quantity movements without knowing the 

transportation prices of grain over the Great Lakes and Canals from the dominant 

competitor was always going to be problematic, particularly since harvesting and 

inventory management over the Great Lakes and Canals induced distinctive deterministic 

demand cycles for the Railroad to set prices against.  In addition, identifying an 

unobservable (omitted variable) theta with a hidden switching regime was less than 

perfect, paarticularly during periods of cartel stability. We estimate the relationship 

between pricing and marginal cost, controlling for the omitted time varying mark-up, 

identified with exogenous current and expected demand movements, in a non-parametric. 

Good estimates of the parameters of the marginal cost function allow us to back-out 

estimates of the mark-up from a deterministic residual.  

 External pressure from activity on the Great Lakes and Canals give us interesting 

deterministic mark-up cycles during periods of Cartel Stability. Our estimated mark-up 

cycles reflect the role of expected demand movements. For the same volume of sales, the 

mark-up in earlier weeks of lakes open, when compared to later weeks, are lower. 

Conversely, for the same volume of sales, the mark-up in earlier weeks of lakes closed, 

when compared to later weeks, are higher.  Periods of cartel instability, similar to those 

estimated by Porter (1983), are explained by the external pressure of having unusually 

low seasonal pricing on the Great Lakes and Canals. The Ulen (1983) story of cartel 

breakdown due to declines in the volume of trade has some merit.    
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Figure I (a) Railroad and Lakes and Canals prices in Competitive Regimes 
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Figure I (b) Railroad and Lakes and Canals prices in Cartel Regimes 
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Figure I (c) Railroad and Lakes and Canals prices in Regulated Regimes 
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Figure 2(a)   The original Porter’s lakes dummy (.1=closed, .9 opened); our lakes & 
canals dummy (0=closed, 1 opened). 
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Figure 2 (b). The original Porter’s po (0=cheating, 1= collusion); our ponew 
(.1=cheating, .9=collusion); Porter’s estimated pn (.2=cheating, .8 collusion). 
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Results I: Original Porter* 
Table 1 (a) : (Table 3 in Porter 1983) 

 2SLS (Employing po) ML (Yielding pn)** 
VARIABLES Demand Supply Demand Supply 

Constant 
(C) 

9.152 
(.182) 

-3.939 
(1.757) 

9.014 
(.148) 

-3.307 
(.913) 

Lakes 
(l) 

-.439 
(.119) 

 -.453 
(.117) 

 

Log price 
(lgr) 

-.725 
(.119) 

 -.841 
(.089) 

 

Structural dummy  
(S1) 

 -.200 
(.056) 

 -.160 
(.031) 

Structural dummy 
(S2) 

 -.169 
(.080) 

 -.218 
(.041) 

Structural dummy 
(S3) 

 -.314 
(.065) 

 -.307 
(.037) 

Structural dummy  
(S4) 

 -.204 
(.183) 

 -.275 
(.071) 

Cheating dummy (po) / Estimated 
cheating dummy 

(pn) 

 .367 
(.052) 

 .595 
(.043) 

Log sales 
(ltqg^) 

 .249 
(.172) 

 .110 
(.088) 

     
R2 .313 .361 .306 .826 
S .397 .245 .391 .121 

* Monthly dummy variables are employed but not reported. Estimated standard errors are 
in parentheses. 
** pn is the regime classification series ( TII ˆ,...,1̂ ). The coefficient attributed to pn is the 
estimate of β3. 
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Table 1 (b): Price, Quantity, and Total Revenue for Different Values of LAKES and 
pn* (Table 4 in Porter) 

Price LAKES 
 0 1 

pn=0 .166 .156 
pn=1 .281 .263 

   
Quantity   

 0 1 
pn=0 39936 26802 
pn=1 25697 17246 

   
Total Revenues**   

 0 1 
pn=0 132588 83622 
pn=1 144417 90713 

* Computed from the reduced form of the maximum likelihood estimates of Table 3, with 
all other explanatory variables set at their sample means. 
** Total Revenue = 20(Price x Quantity), to yield dollars per week. 
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Figure 3 (a): Markup- (estimation employing po).  
One is for lakes open, zero otherwise;  Top line is normalized log sales; The Bottom 
line is the estimated markup;  
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Figure 3 (b): Markup (estimation employing pn).  
One is for lakes open, zero otherwise;  Top line is normalized log sales; The Bottom 
line is the estimated markup;  
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 Figure 3 (c): Figure 1 in Porter (1983) using estimated pn 
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Results II: Original Porter with Year Dummies 
 
Table 2 (a): Estimation Results* 

 Two Stage Least Squares 
equation by equation 

(Employing po) 

Maximum Likelihood 
(Yielding pn)** 

VARIABLES Demand Supply Demand Supply 
Constant 

(C) 
9.383 
(.212) 

-3.626 
(1.985) 

9.214 
(.133) 

-3.368 
(1.359) 

Lakes 
(l) 

-.413 
(.105) 

 -.328 
(.101) 

 

Log price 
(lgr) 

-.574 
(.191) 

 -.709 
(.104) 

 

Structural dummy  
(S1) 

 .013 
(.070) 

 .002 
(.033) 

Structural dummy 
(S2) 

 .047 
(.129) 

 .066 
(.057) 

Structural dummy  
(S3) 

 .021 
(.122) 

 .126 
(.058) 

Structural dummy 
(S4) 

 -.119 
(.210) 

 -.013 
(.087) 

Cheating dummy (po) / Estimated 
cheating dummy 

(pn) 

 .321 
(.048) 

 .541 
(.047) 

Log sales 
(ltqg^) 

 .220 
(.197) 

 .171 
(.133) 

     
R2 .514 .462 .509 .844 
S .337 .225 .338 .119 

* Monthly and year dummy variables are employed. To economize space, their 
estimated coefficients are not reported. Estimated standard errors are in parentheses.  
** pn is the regime classification series ( TII ˆ,...,1̂ ). The coefficient attributed to pn is the 
estimate of β3. 
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Table 2 (b) (with year dummies): Price, Quantity, and Total Revenue for Different 
Values of LAKES and PN* 

             Price Lakes 
 0 1 

pn=0 .173 .164 
pn=1 .280 .266 

   
Quantity              

 0 1 
pn=0 34466 25736 
pn=1 24479 18279 

   
Total Revenues**   

 0 1 
pn=0 119252 84414 
pn=1 137082 97244 

* Computed from the reduced form of the maximum likelihood estimates of Table 3, with 
all other explanatory variables set at their sample means. 
** Total Revenue = 20(Price x Quantity), to yield dollars per week. 
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Figure 4(a)  (based on the estimates reported in Table 2a – employing po -):  
One is for lakes open, zero otherwise;  Top line is normalized log sales; The Bottom 
line is the estimated markup;  
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Figure 4 (b) (based on the estimates reported in Table 2 (a) – employing pn -): One 
is for lakes open, zero otherwise;  Top line is normalized log sales; The Bottom line 
is the estimated markup;  
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Results III: Porter with Lakes and Canal Prices 
Table 3 Estimation Results 

 2SLS 
polynomial 

Semi-Parametric 
Kernel approach 

Probit 
(Cheating dummy) 

VARIABLES D S D S Pr(ponew) 
Constant  

(C) 
9.066 
(.438) 

1.091 
(1.150) 

8.819 
(.295) 

.675 
(1.022) 

3.440 
(.623) 

 
Log price lakes&canals 

(lgr_l&c) 

 
.345 

(.128) 

 
.155 

(.037) 

 
.068 

(.031) 

  

      
Log price 

(lgr) 
-1.28 
(.293) 

 -1.26 
(.275) 

  

      
Number weeks  l&c closed 

 (nwc) 
-.171 
(.072) 

-.018 
(.005) 

  -.009 
(.028) 

Number weeks l&c opened  
(nwo) 

.121 
(.032) 

.012 
(.003) 

  .060 
(.043) 

      
Lakes&canals Dummy 

(l&c) 
.610 

(.346) 
    

Structural dummy  
(S1) 

-.061 
(.115) 

    

Structural dummy  
(S2) 

-.387 
(.200) 

    

Structural dummy  
(S3) 

-.181 
(.204) 

    

Structural dummy  
(S4) 

-.790 
(.308) 

    

      
Estimated cheating dummy 

(ponew^) 
 .291 

(.096) 
   

      
Log sales 
(ltqg ^) 

 -.246 
(.109) 

 -.193 
(.103) 

 

      
Lgr_lc*year1881     -.931 

(.289) 
Lgr_lc*year1885     -.123 

(.227) 
R2 .51 .64 .57 .77 .59 
S .350 .179    

Month and year dummy variables are employed. Estimated standard errors are in parentheses.  
Polynomial Order One: 
Demand Omega: the lakes&canals dummy, the four structural dummies, number of weeks that lakes 
&canals areclosed (nwc) and the number of weeks that lakes and canals are open (nwo). 
Supply Omega: estimated cheating dummy (phat), log of price of lakes&canals (lgr_lc), number of  weeks 
that lakes&canals are open (nwo), number of  weeks that lakes&canals are closed (nwc). 
Kernel: 
Demand kernel: the lakes&canals dummy, the four structural dummies, number of weeks that lakes&canals 
are closed (nwc) and the number of weeks that lakes and canals are open (nwo). 
Supply Kernel: estimated cheating dummy (phat), log of price of lakes&canals (lgr_lc), number of  weeks 
that lakes&canals are open (nwo), number of  weeks that lakes&canals are closed (nwc). 
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Figure 5 (a): Estimated Markup  (Table 3 Polynomial). Top line is normalized log 
sales; The Bottom line is the estimated markup; Dummy for collusion = 1 and 0 
otherwise (PONEW variable); Dummy for lakes and canals  is equal to 0.1 when 
closed and .9 otherwise. 

0 50 100 150 200 250 300 350
-0.5

0

0.5

1

1.5

2

 
Figure 5 (b): Estimated Profits (Table 3 Polynomial). Top line is normalized log 
sales; The Bottom line is the estimated profits; Dummy for collusion = 1 and 0 
otherwise (PONEW variable); Dummy for lakes and canals  is equal to 0.1 when 
closed and .9 otherwise. 
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Figure 5 (c):  Estimated Markup (Table 3 Kernel). Top line is normalized log sales; 
The Bottom line is the estimated markup; Dummy for collusion = 1 and 0 otherwise 
(ponew variable); Dummy for lakes and canals  is equal to 0.1 when closed and .9 
otherwise. 
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Figure 5 (d): Estimated Profits (Table 3 Kernel). Top line is normalized log sales; 
The Bottom line is the estimated profits; Dummy for collusion = 1 and 0 otherwise 
(ponew variable); Dummy for lakes and canals  is equal to 0.1 when closed and .9 
otherwise
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Results IV: Porter with Dynamic adjustment 
Table 4 Estimation Results 

 2SLS 
polynomial 

Semi-Parametric 
Kernel approach 

Probit 
(Cheating dummy) 

VARIABLES D S D S Pr(ponew) 
 

Constant  
(C) 

 
9.386 
(.463) 

 
.830 

(.610) 

 
8.966 
(.343) 

 
.591 

(.432) 

 
3.440 
(.623) 

 
Log price lakes&canals 

(lgr_l&c) 

 
.298 

(.146) 

 
.154 

(.037) 

 
.118 

(.035) 

  

 
Log price 

(lgr) 

 
-1.216 
(.357) 

  
-1.311 
(.330) 

 

  

Number weeks l&c closed  
(nwc) 

-.214 
(.079) 

-.019 
(.005) 

  -.009 
(.028) 

Number weeks  l&c opened 
(nwo) 

.151 
(.051) 

.012 
(.003) 

  .060 
(.043) 

      
Lakes&canals 

(l&c) 
.405 

(.392) 
    

Structural dummy  
(S1) 

-.148 
(.128) 

    

Structural dummy  
(S2) 

-.440 
(.217) 

    

Structural dummy  
(S3) 

-.231 
(.222) 

    

Structural dummy  
(S4) 

-.878 
(.334) 

    

Estimated cheating dummy 
(ponew^) 

 .306 
(.078) 

   

      
Log sales 
(ltqg ^) 

 -.221 
(.057) 

 -.194 
(.043) 

 

      
Lgr_lc*year1881     -.931 

(.289) 
Lgr_lc*year1885     -.123 

(.227) 
Lag Log sales 

(ltqg_1) 
.177 

(.035) 
 .186 

(.033) 
  

      
 R2 .60 .65 .65 .78 .59 
S .315 .178 .094 .021  

Month and year dummy variables are employed. Estimated standard errors are in parentheses.  
Polynomial Order One: Demand Omega: the lakes&canals dummy, the four structural dummies, number of 
weeks that lakes&canals areclosed (nwc) and the number of weeks that lakes and canals are open (nwo). 
Supply Omega: estimated cheating dummy (phat), log of price of lakes&canals (lgr_lc), number of  weeks 
that lakes&canals are open (nwo), number of  weeks that lakes&canals are closed (nwc). 
Kernel:Demand kernel: the lakes&canals dummy, the four structural dummies, number of weeks that 
lakes&canals areclosed (nwc) and the number of weeks that lakes and canals are open (nwo). 
Supply Kernel: estimated cheating dummy (phat), log of price of lakes&canals (lgr_lc), number of  weeks 
that lakes&canals are open (nwo), number of  weeks that lakes&canals are closed (nwc). 
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Figure 6 (a): Estimated Markup  (Table 4 Polynomial). Top line is normalized log 
sales; The Bottom line is the estimated markup; Dummy for collusion = 1 and 0 
otherwise (PONEW variable); Dummy for lakes and canals  is equal to 0.1 when 
closed and .9 otherwise. 
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Figure 6 (b): Estimated Profits (Table 4 Polynomial). Top line is normalized log 
sales; The Bottom line is the estimated profits; Dummy for collusion = 1 and 0 
otherwise (PONEW variable); Dummy for lakes and canals  is equal to 0.1 when 
closed and .9 
otherwise
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Figure 6 (c): Estimated Markup  (Table 4 Kernel). Top line is normalized log sales; 
The Bottom line is the estimated markup; Dummy for collusion = 1 and 0 otherwise 
(PONEW variable); Dummy for lakes and canals  is equal to 0.1 when closed and .9 
otherwise. 
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Figure 6 (d): Estimated Profits (Table 4 Kernel). Top line is normalized log sales; 
The Bottom line is the estimated profits; Dummy for collusion = 1 and 0 otherwise 
(PONEW variable); Dummy for lakes and canals  is equal to 0.1 when closed and .9 
otherwise
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