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Abstract

In this paper the standard two-period general equilibrium model with incom-

plete financial markets is considered. First, existence of equilibrium is proved

using a stationary point argument on the set of no-arbitrage prices. Prices are

normalized with respect to the market portfolio. The proof does not use the

commonly applied normalization on the unit sphere or truncation of the set of

prices. Also a new price adjustment process is proposed. The process generates

a path of price vectors from an arbitrary price vector to an equilibrium. The

path can be followed by a simplicial algorithm for finding stationary points on

polyhedra.
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1 Introduction

The main focus of this paper is to describe a price-adjustment process in an economy

with incomplete financial markets, that converges to an equilibrium price vector. It

turns out that the simplicial algorithm for calculating stationary points of a contin-

uous function on a polytope as developed by Talman and Yamamoto (1989) can be

used to describe price formation on financial markets.

In this paper the simplest general equilibrium model with incomplete markets as

is presented in e.g. Magill and Quinzii (1996) is considered. There are two periods of

time (present and future), a finite number of possible future states, one consumption

good and a number of financial securities that can be used to transfer income from

the present to the future. For the consumption good there are spot markets, so at

present one cannot trade the consumption good for the future. Financial markets are

incomplete if not all possible income streams for present and future can be attained

by trading in the assets available on the existing financial markets.

Existence of equilibrium in a two-period general equilibrium model with multiple

consumption goods and (possibly) incomplete markets is proved in Geanakoplos and

Polemarchakis (1986). They prove existence on the set of no-arbitrage prices. These

are prices such that it is impossible to create a portfolio of assets which generates

a non-negative income stream in the future and has non-positive costs at present.

The proof uses a fixed point argument for functions on compact sets. For that,

since the set of no-arbitrage prices can be unbounded, the proof of Geanakoplos

and Polemarchakis (1986) uses a compact truncation of this set. In this paper

we present an existence proof for the one consumption good model that uses a

stationary point argument without truncating the set of no-arbitrage prices. Other

existence proofs use some transformation of the underlying model. Hens (1991) for

example, introduces an artificial asset to translate the present into the future. The

approach taken by Hirsch et al. (1990) shows existence of equilibrium in a model

with only state prices. Then it is argued that each equilibrium in the original model

corresponds one-to-one to an equilibrium in state prices.

Given that an equilibrium exists the question arises how to compute one. There

is a homotopy method introduced in Herings and Kubler (2002) that requires dif-

ferentiability assumptions on the utility functions. In this paper we show that one

can use the simplicial approach developed by Talman and Yamamoto (1989), which

does not require additional assumptions to the ones needed to prove existence. The

algorithm generates a piecewise linear path and approximately follows the piecewise

smooth path of a price adjustment process. The latter process connects an arbi-

trarily chosen initial price vector with an equilibrium price vector. Note that the
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Talman and Yamamoto (1989) algorithm is defined for functions on polytopes. The

set of no-arbitrage prices for the model can, however, be an unbounded polyhedron.

Therefore, we extend the algorithm of Talman and Yamamoto (1989) to unbounded

polyhedra. In the literature there are simplicial algorithms for functions on possibly

unbounded polyhedra, notably by Dai et al. (1991) and Dai and Talman (1993).

These algorithms cannot be applied, however, since they assume pointedness of the

polyhedron and affine functions, respectively.

The paper is organised as follows. In Section 2 the economic model is described.

In Section 3 we prove the existence of equilibrium and in Section 4 we adapt the

simplicial algorithm of Talman and Yamamoto (1989) for the two-period finance

economy. In Section 5 the algorithm is presented in some detail and illustrated by

means of a numerical example.

2 The Finance Economy

The General Equilibrium model with Incomplete markets (GEI) explicitly includes

incomplete financial markets in a general equilibrium framework. In this paper the

simplest version is used. It consists of two time periods, t = 0, 1, where t = 0 denotes

the present and t = 1 denotes the future. At t = 0 the state of nature is known to

be s = 0. The state of nature at t = 1 is unknown and denoted by s ∈ {1, 2, . . . , S}.

In the economy there are I ∈ IN consumers, indexed by i = 1, . . . , I. There is

one consumption good that can be interpreted as income. A consumption plan for

consumer i ∈ {1, . . . , I} is a vector xi ∈ IRS+1
+ , where xi

s gives the consumption level

in state s ∈ {0, 1, . . . , S}.1

Each consumer i = 1, . . . , I, is characterised by a vector of initial endowments,

ωi ∈ IRS+1
+ , and a utility function ui : IRS+1

+ → IR. Denote aggregate initial endow-

ments by ω =
∑I

i=1 ω
i. Regarding the initial endowments and utility functions we

make the following assumptions.

Assumption 1 The vector of aggregate initial endowments is strictly positive, i.e.

ω ∈ IRS+1
++ .

Assumption 2 For each agent i = 1, . . . , I, the utility function, ui, is continuous,

strictly monotone and strictly quasi-concave on IRS+1
+ .

Assumption 1 ensures that in each period and in each state of nature there is at

least one agent who has a positive amount of the consumption good. Assumption 2

ensures that the consumer’s demand is a continuous function.
1In general we denote for a vector x ∈ IRS+1, x = (x0, x1) ∈ IR × IRS to separate x0 in period

t = 0 and x1 = (x1, . . . , xS) in period t = 1.

3



It is assumed that the market for the consumption good is a spot market. The

consumers can smoothen consumption by trading on the asset market. At the asset

market, J ∈ IN financial contracts are traded, indexed by j = 1, . . . , J . The future

payoffs of the assets are put together in a matrix

V = (V 1, . . . , V J) ∈ IRS×J ,

where V j
s is the payoff of one unit of asset j in state s. The following assumption is

made with respect to V .

Assumption 3 There are no redundant assets, i.e. rank(V ) = J .

Assumption 3 can be made without loss of generality; if there are redundant assets

then a no-arbitrage argument guarantees that its price is uniquely determined by

the other assets. Let the market subspace be denoted by 〈V 〉 = Span(V ). That

is, the market subspace consists of those income streams that can be generated by

trading on the asset market. If S = J , the market subspace consists of all possible

income streams, i.e. markets are complete. If J < S there is idiosyncratic risk and

markets are incomplete.

A finance economy is defined as a tuple E =
(

(ui, ωi)i=1,...,I , V
)

. Given a fi-

nance economy E , agent i can trade assets by buying a portfolio zi ∈ IRJ given the

(row)vector of prices q = (q0, q1) ∈ IRJ+1, where q0 is the price for consumption in

period t = 0 and q1 = (q1, . . . , qJ) is the vector of security prices with qj the price

of security j, j = 1, . . . , J . Given a vector of prices q = (q0, q1) ∈ IRJ+1, the budget

set for agent i = 1, . . . , I is given by

Bi(q) =
{

x ∈ IRS+1
+

∣

∣

∣
∃z∈IRJ : q0(x0 − ωi

0) ≤ −q1z, x1 − ωi
1
= V z

}

. (1)

Given the asset payoff matrix V we will restrict attention to asset prices that gen-

erate no arbitrage opportunities, i.e. asset prices q such that there is no portfolio

generating a semi-positive income stream. Such asset prices exclude the possibility

of “free lunches”. The importance of restricting ourselves to no-arbitrage prices be-

comes clear from the following well-known theorem (cf. Magill and Quinzii (1996)).

Theorem 1 Let E be a finance economy satisfying Assumption 2. Then the follow-

ing conditions are equivalent:

1. q ∈ IRJ+1 permits no arbitrage opportunities;

2. ∀i=1,...,I : argmax{ui(xi)|xi ∈ Bi(q)} 6= ∅;

3. ∃π∈IRS
++

: q1 = πV ;
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4. Bi(q) is compact for all i = 1, . . . , I.

The vector π ∈ IRS
++ can be interpreted as a vector of state prices. Condition 3

therefore states that a no-arbitrage price for security j equals the present value of

security j given the vector of state prices π. As a consequence of this theorem, in

the remainder we restrict ourselves to the set of no-arbitrage prices

Q = {q ∈ IRJ+1|q0 > 0, ∃π∈IRS
++

: q1 = πV }. (2)

Under Assumption 2, Theorem 1 shows that the demand function xi(q), maximising

agent i’s utility function ui(x) on Bi(q), is well-defined for all i = 1, . . . , I, and

all q ∈ Q. Since the budget correspondence Bi : Q → IRS+1
+ is upper- and lower-

semicontinuous, Berge’s maximum theorem gives that xi(q) is continuous on Q.

Furthermore, because the mapping zi 7→ V zi + ωi
1
is continuous, one-to-one and

onto, the security demand function, zi(q), determined by V zi(q) = xi
1
(q)− ωi

1
, is a

continuous function on Q.

Define the excess demand function f : Q→ IRJ+1 by

f(q) =
(

f0(q), f1(q)
)

=
(

I
∑

i=1

(xi
0(q)− ωi

0),
I
∑

i=1

zi(q)
)

.

Note that since there are no initial endowments of asset j, j = 1, . . . , J , the excess

demand for asset j is given by
∑I

i=1 z
i
j(q). With respect to the excess demand

function we can derive the following result.

Lemma 1 Under Assumptions 1–3 the excess demand function f : Q → IRJ satis-

fies the following properties:

1. continuity on Q;

2. homogeneity of degree 0;

3. (f0(q), V f1(q)) ≥ −ω for all q ∈ Q;

4. for all q ∈ Q, qf(q) = 0 (Walras’ law).

The proof of this lemma is elementary and therefore omitted.

A financial market equilibrium (FME) for a finance economy E is a tuple
(

(x̄i, z̄i)i=1,...,I , q̄
)

with q̄ ∈ Q such that:

1. x̄i ∈ argmax{ui(xi)|xi ∈ Bi(q̄)} for all i = 1, . . . , I;

2. V z̄i = x̄i
1
− ωi

1
for all i = 1, . . . , I;

3.
∑I

i=1 z̄
i = 0.

Note that the market-clearing conditions for the financial markets imply that the

goods market also clears, since there is only one consumption good.
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3 Existence of Equilibrium

Existence of equilibrium is proved using the space of asset prices Q̄, defined by

Q̄ = {q ∈ IRJ+1|q0 ≥ 0, ∃π∈IRS
+
: q1 = πV }.

Clearly, the set Q̄ is a finitely generated cone. Before proving a general existence

theorem we present the following lemmata. The first lemma is standard and its

proof is, therefore, omitted. Let cl(Q) denote the closure of the set Q.

Lemma 2 Under Assumption 3 it holds that Q̄ = cl(Q).

An important result needed to prove existence of an FME is the existence of a

convergent sequence of state prices to the boundary. This lemma is crucial to our

approach and makes it different from well-known proofs in the literature. Let ∂A

denote the boundary of a set A in euclidean space.

Lemma 3 Let (qν)ν∈IN be a sequence in Q converging to q̄ ∈ ∂Q̄\{0}. Then under

Assumption 3 there exists a sequence of state prices (πν)ν∈IN in IRS
++ satisfying

qν
1
= πνV for all ν ∈ IN and having a convergent subsequence with limit π̄ ∈ IRS

+

satisfying q̄1 = π̄V . Moreover, if q̄0 > 0, it holds that π̄ ∈ ∂IRS
+.

Proof. Define

Q̄1 = {q1 ∈ IRJ |∃π∈IRS
+
: q1 = πV }.

Since Q̄1 is a finitely generated cone, it follows from Carathéodory’s theorem (cf.

Rockafellar (1970, Theorem 17.1)), that there exists a bounded sequence (π̂ν)ν∈IN in

IRS
+ such that qν

1
= π̂νV for every ν ∈ IN.

For all ν ∈ IN, since qν ∈ Q, there exists π̃ν ∈ IRS
++ such that qν

1
= π̃νV . Note

that the sequence (π̃ν)ν∈IN might not be bounded. Since (π̂ν)ν∈IN is bounded (in

any given norm) by, say, M > 0, for all ν ∈ IN, there exists a convex combination

πν of π̃ν and π̂ν that is bounded by 2M , such that πν ∈ IRS
++. Clearly, for every

ν ∈ IN it holds that qν
1
= πνV. Since (πν)ν∈IN is bounded there exists a convergent

subsequence with limit, say, π̄. Clearly, q̄ = π̄V and π̄ ∈ IRS
+. Furthermore, when

q̄0 > 0, it follows immediately from Assumption 3 that π̄ ∈ ∂IRS
+. ¤

The following lemma concerns the boundary behaviour of the excess demand

function.

Lemma 4 Let (qν)ν∈IN be a sequence in Q with lim
ν→∞

qν = q̄ ∈ ∂Q̄\{0}. Under

Assumptions 1–3 it holds that

f0(q
ν) + e>V f1(q

ν)→∞.
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Proof. Suppose not. Then, for all i = 1, . . . , I, since the sequence (xi
0(q

ν) −

ωi
0, V zi(qν))ν∈IN is bounded from below, this sequence has a convergent subsequence

with limit, say, (f̄ i
0, V f̄ i

1). Without loss of generality we assume that the sequence

itself converges to this vector. By Lemma 3 there exists a sequence (πν)ν∈IN in

IRS
++, satisfying qν

1
= πνV , for all ν ∈ IN, and having a convergent subsequence with

lim
ν→∞

πν = π̄ ∈ IRS
+, satisfying q̄1 = π̄V . Again, without loss of generality we assume

that the sequence (πν)ν∈IN itself converges to π̄.

Consider the case where q̄0 > 0 and q̄1 6= 0. Let S = {s|π̄s = 0} and Sc =

{s|π̄s > 0}. Since q̄1 6= 0 and since by Lemma 3, π̄ ∈ ∂IRS
+, both sets are non-empty.

Take sc ∈ Sc. Since ωsc > 0, there exists an ic ∈ {1, . . . , I} with ωic

sc > 0. Let

x̄ic = (f̄ ic

0 + ωic

0 , V f̄ ic

1
+ ωic

1
). It holds that q̄0x̄

ic

0 + π̄x̄ic

1
= q̄0ω

ic

0 + π̄ωic

1
since uic is

continuous and strictly monotonic. Consider the bundle x̃ic = x̄ic + e(s) for some

s ∈ S, where e(s) ∈ IRS+1 is the s-th unit vector. There exists s∗ ∈ Sc satisfying

q̄0x̃
ic

0 + π̄s∗ x̃
ic

s∗ > 0 and thus x̃ic

0 > 0 or x̃ic

s∗ > 0. Suppose first that x̃ic

s∗ > 0. Since

uic(x̃ic) > uic(x̄ic) and uic is continuous, it holds that

∃δ>0 : uic(x̃ic − δe(s∗)) > uic(x̄ic).

However, q̄0x̃
ic

0 + π̄(x̃ic

1
− δe1(s

∗)) < q̄0ω
ic

0 + π̄ωic

1
. Since qν0 → q̄0 and πν → π̄ we also

have

∃ν1∈IN∀ν>ν1
: qν0 x̃

ic

0 + πν(x̃ic

1
− δe1(s

∗)) ≤ qν0ω
ic

0 + πνωic

1
.

Moreover, since xic(qν)→ x̄ic and uic is continuous,

∃ν2∈IN∀ν>ν2
: uic(x̃ic − δe(s∗)) > uic(xic(qν)).

So, for all ν > max{ν1, ν2} we have x̃ic − δe(s∗) ∈ Bic(qν) and uic(x̃ic − δe(s∗)) >

uic(xic(qν)), which contradicts xic(qν) being a best element in Bic(qν). Suppose now

that x̃ic

0 > 0. Using a similar reasoning as above we can show that there exists a

δ > 0 and ν∗ ∈ IN such that for all ν > ν∗ it holds that x̃ic − δe(0) ∈ Bic(qν) and

uic(x̃ic − δe(0)) > uic(xic(qν)), which contradicts xic(qν) being a best element in

Bic(qν). If q̄0 = 0 or q̄1 = 0 the proof follows along the same lines. ¤

Since 0 ∈ ∂Q̄ there is a tangent hyperplane at 0, i.e. there exists z̃ ∈ IRJ+1\{0}

such that qz̃ ≥ 0 for all q ∈ Q̄. Since Q̄ is full-dimensional, it holds that qz̃ > 0

for all q ∈ Q. We show existence of FME by normalising asset prices to qz̃ = 1, i.e.

on a hyperplane parallel to the tangent hyperplane in 0. One possible choice for z̃

is the market portfolio zM which is defined in the following way (cf. Herings and

Kubler (2003)). Decompose the vector of total initial endowments in ω = ωM +ω⊥,

where ωM ∈ 〈V 〉 and ω⊥ ∈ 〈V 〉
⊥, the null-space of 〈V 〉. The market portfolio zM

is defined to be the unique portfolio satisfying V z = ωM . If ωM >> 0 this implies

qzM ≥ 0 for all no-arbitrage prices q ∈ Q̄.
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In the remainder, we fix z̃ ∈ IRJ+1\{0} such that qz̃ > 0 for all q ∈ Q. Denote

the set of normalised prices by Q̃, i.e.

Q̃ = {q ∈ Q̄|qz̃ = 1}.

Note that Q̃ can contain half-spaces and is, hence, not necessarily bounded. Based

on the previous lemma, however, one can show that f0 + e>V f1 becomes arbitrarily

large by moving to the boundary of Q̃ or by taking ‖q‖∞ large enough. Let intQ̃

denote the relative interior of Q̃.

Lemma 5 Let (qν)ν∈IN be a sequence in intQ̃. Under Assumptions 1–3 it holds that

1. limν→∞ qν = q̃ ∈ ∂Q̃⇒ f0(q
ν) + e>V f1(q

ν)→∞;

2. ‖qν‖∞ →∞⇒ f0(q
ν) + e>V f1(q

ν)→∞.

Proof. In case 1 we have that q̃ ∈ ∂Q̄\{0}, since 0 6∈ ∂Q̃. From Lemma 4 it

follows that f0(q
ν) + e>V f1(q

ν) → ∞. In case 2, for all ν ∈ IN define q̃ν = qν

‖qν‖∞
.

Then q̃ν z̃ → 0. Moreover, for all ν ∈ IN it holds that ‖q̃ν‖∞ = 1. Hence, (q̃ν)ν∈IN

is bounded and therefore has a convergent subsequence with limit, say, q̃. Then

q̃z̃ = lim
ν→∞

q̃ν z̃ = 0, i.e. q̃ ∈ ∂Q̄. Furthermore, ‖q̃‖∞ = 1 and hence q̃ 6= 0. From

Lemma 4 we know that f0(q̃
ν)+ e>V f1(q̃

ν)→∞. Since the budget correspondence

is homogeneous of degree 0, we also get f0(q
ν) + e>V f1(q

ν)→∞. ¤

With these lemmas in place, existence of an FME can be proved by using a direct

approach as opposed to the indirect proof of e.g. Magill and Quinzii (1996).

Theorem 2 Let E be a finance economy satisfying Assumptions 1–3. Then there

exists an FME.

Proof. A vector of prices q̄ ∈ Q gives rise to an FME if and only if f(q̄) = 0. For

ν ∈ IN, define the set Qν by

Qν =
{

q ∈ Q̃
∣

∣

∣

1

ν(z̃0 + e>V z̃1)
≤ q0 ≤

ν

z̃0 + e>V z̃1
, q1 = πV,

1

ν(z̃0 + e>V z̃1)
≤ πj ≤

ν

z̃0 + e>V z̃1
for all j

}

.

Clearly, for every ν ∈ IN, the set Qν is a non-empty convex and compact set in the

relative interior of Q̃, and for every q ∈ Q̃ there exists n ∈ IN such that q ∈ Qν for

all ν ≥ n. Since the excess demand function f is continuous on Q̃ and therefore on

every Qν , according to the stationary point theorem (cf. Eaves (1971) and Yang

(1999)) there exists a stationary point of f(·) on every Qν , i.e.

∀ν∈IN∃qν∈Qν∀q∈Qν : qf(qν) ≤ qνf(qν) = 0.
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Recall from Walras’ law that qf(q) = 0 for all q ∈ Q. Consider the sequence

(qν)ν∈IN. If this sequence is unbounded or (has a subsequence that) converges to a

point q̃ ∈ ∂Q̃, then from Lemma 5 it follows that f0(q
ν) + e>V f1(q

ν) → ∞ and

hence there exists n ∈ IN such that f0(q
ν) + e>V f1(q

ν) > 0 for all ν ≥ n. Since

(q0, q1) =
(1,e>V )

z̃0+e>V z̃1
∈ Qν we obtain

q0f0(q
n) + q1f1(q

n) =
f0(q

n) + e>V f1(q
n)

z̃0 + e>V z̃1
> 0,

which contradicts qn being a stationary point of f(·) on Qn. Hence, the sequence

(qν)ν∈IN is bounded and (has a subsequence that) converges to a point q̄ ∈ intQ̃ ⊂ Q.

Moreover, qf(q̄) ≤ 0 for all q ∈ intQ̄ and so q̄ solves the linear programming problem

max{qf(q̄)|qz̃ = 1}. From the dual of this problem it follows that f(q̄) = λz̃ for

some λ ∈ IR. Using Walras’ law we then obtain

0 = q̄f(q̄) = λq̄z̃ = λ.

Hence, q̄ ∈ Q and f(q̄) = λz̃ = 0. ¤

4 Price Adjustments Towards Equilibrium

In this section we present a path of points in Q̃ from an arbitrary starting point in

Q̃ to an FME. First, we prove the existence of such a path. Since Q̃ is a (possibly

unbounded) polyhedron each point in Q̃ can be expressed as a convex combination

of a finite number of points {v1, . . . , vn} plus a non-negative linear combination of

directions {d1, . . . , dm}. The recession cone of Q̃ is given by

re(Q̃) =
{

q ∈ IRJ+1
∣

∣

∣
q =

m
∑

k=1

µkd
k, µ ≥ 0

}

.

Let q0 ∈ Q̃ be an arbitrary starting point in Q̃ and denote

Q̃1 = conv({v1, . . . , vn}),

where conv(A) denotes the convex hull of A. Then Q̃ = Q̃1 + re(Q̃). Note that

re(Q̃) will be empty if Q̃ is bounded. We assume that the directions {d1, . . . , dm}

are taken such that q0 + dk 6∈ Q̃1, for all k = 1, . . . ,m. Define the polytope

Q̃(1) =
{

q ∈ Q̃
∣

∣

∣
q =

n
∑

h=1

µh(v
h − q0) +

m
∑

k=1

µn+kq
k + q0, µk ≥ 0,

n+m
∑

k=1

µk ≤ 1
}

,

and the set

K =
{

q ∈ re(Q̃)
∣

∣

∣
q =

m
∑

k=1

µkq
k, µk ≥ 0,

m
∑

k=1

µk ≤ 1
}

.
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Since Q̃ = Q̃1 + re(Q̃), the set Q̃(1) is a J-dimensional polytope being a subset of

Q̃. For simplicity we assume q0 ∈ intQ̃(1). We can now define the expanding set

Q̃(λ),

Q̃(λ) =







(1− λ){q0}+ λQ̃(1) if 0 ≤ λ ≤ 1;

Q̃(1) + (λ− 1)K if λ ≥ 1.

Note that for all λ ≥ 0 the set Q̃(λ) is a polytope and that lim
λ→∞

Q̃(λ) = Q̃. In

Figure 1 some of these sets are depicted.

\
\
\
\\PPPPPP

!!
!!!

»»»
»»»

»»»
»»»

»»»
»»»
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K + q0

£
£
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£
£
£
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λ = 1

HHHHHHH

£
£
£
£
£
£
£
£

λ = 3
2

HHHHHHH

£
£
£
£
£
£
£
£

λ = 2

Q̃(1)

q0
qv3

q

v4
q

v5

q

v2
q

v1

q

Figure 1: The expanding set Q̃(λ).

By Lemma 5 we know that for all M > 0 there exists an N > 0 such that

‖q‖∞ ≥ N ⇒ f0(q) + e>V f1(q) > M.

This implies that there exists a λ0 > 0 such that for all stationary points q̄ of f on

Q̃ it holds that q̄ ∈ Q̃(λ0). Recall that all stationary points of f on Q̃ are FMEs.

Let λ∗ = max{1, λ0} and define the homotopy h : [0, λ∗]× Q̃(λ∗)→ Q̃(λ∗) by

h(λ, q) =







projQ̃(λ)

(

q + f(q)
)

if q ∈ Q̃(λ);

projQ̃(λ)

(

projQ̃(λ)(q) + f(projQ̃(λ)(q))
)

if q 6∈ Q̃(λ),

where projA(q) is the projection of q in ‖ · ‖2 on the set A. Notice that the function

h is continuous at every (λ, q) ∈ [0, λ∗]× Q̃(λ∗) because Q̃(·) is a continuous point-

to-set mapping and every Q̃(λ) is a compact and convex set. An important property

of this homotopy is stated in the following lemma, where (λ, q) ∈ [0, λ∗]× Q̃(λ∗) is

a fixed point of h if h(λ, q) = q.

10



Lemma 6 Suppose that (λ, q) ∈ [0, λ∗] × Q̃(λ∗) is a fixed point of h. Then q is a

stationary point of f on Q̃(λ). If, in addition, q 6∈ ∂Q̃(λ), then q is an FME.

Proof. Let (λ, q) ∈ [0, λ∗] × Q̃(λ∗) be a fixed point of h. It is easy to see that

q ∈ Q̃(λ). This implies that

q = h(λ, q) = projQ̃(λ)

(

q + f(Q)
)

= argminq′∈Q̃(λ)(q
′ − q − f(q))>(q′ − q − f(q)).

Hence, for all q′ ∈ Q̃(λ) we have that

(q′ − q − f(q))>(q′ − q − f(q)) ≥ f(q)>f(q),

⇐⇒ (q′ − q)>(q′ − q) ≥ 2(q′ − q)>f(q).

Take q̂ = µq′+(1−µ)q, for any µ, 0 < µ ≤ 1. Since Q̃(λ) is convex we have q̂ ∈ Q̃(λ)

and so for all 0 < µ ≤ 1 it holds that

(q̂ − q)>(q̂ − q) = µ2(q′ − q)>(q′ − q) ≥ 2µ(q′ − q)>f(q),

⇐⇒ 1
2µ(q

′ − q)>(q′ − q) ≥ (q′ − q)>f(q).

Letting µ ↓ 0, it follows that q′f(q) ≤ qf(q) = 0, i.e. q is a stationary point of f on

Q̃(λ). Suppose q ∈ Q̃(λ)\∂Q̃(λ). Then it holds that h(λ, q) = q + f(q) ∈ Q̃(λ) and,

hence, that f(q) = 0, since h(λ, q) = q. So, q is an FME. ¤

From Lemma 6 and the proof of Theorem 2 it follows that for any fixed point

(λ∗, q) of h, it holds that q is an FME. Combining Lemma 6 with Browder’s fixed

point theorem (see Browder (1960)) leads to the following result.

Theorem 3 There exists a connected set C in Q̃ of stationary points of f connecting

q0 with an FME q̄.

Since the system of equations h(λ, q) = q for q ∈ Q̃ has one degree of freedom, the

connected set C is generically a path connecting the initial price vector q0 with an

equilibrium price vector. Such a path can be seen as being generated by a price

adjustment process. In this process the prices are being adjusted in such a way that

any price vector q̃ ∈ ∂Q̃(λ) being generated by the process maximises the value qf(q̃)

of excess demand at q̃ over all q ∈ Q̃(λ) until an equilibrium has been generated.

5 The Algorithm

There are simplicial algorithms to approximate the path of stationary points of

an excess demand function f from an arbitrary starting point q0 to an FME. The
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algorithm of Talman and Yamamoto (1989) finds a path to an equilibrium on a

polytope. The algorithm should first be applied to Q̃(1). If the algorithm terminates

in q̄ ∈ intQ̃(1), an approximating FME has been found. If it terminates at q ∈

∂Q̃(1), the algorithm is extended to the unbounded set Q̃ \ Q̃(1).

The algorithm generates a path of stationary points of a piecewise linear approx-

imation to the excess demand function f . The set Q̃(1) is a J-dimensional polytope

and can be written as

Q̃(1) = {q ∈ IRJ+1|qz̃ = 1, aiq ≤ bi, i = 1, . . . , l},

for some ai ∈ IRJ+1\{0} and bi ∈ IR, i = 1, . . . , l.

Let I ⊂ {1, . . . , l}. Then F (I) is defined by

F (I) = {q ∈ Q̃(1)|aiq = bi, i ∈ I}.

The set I = {I ⊂ {1, . . . ,m}|F (I) 6= ∅} is the set of all index sets I for which F (I)

is a (J − |I|)-dimensional face of Q̃(1). Let q0 ∈ intQ̃(1) be the starting point. For

any I ∈ I define

vF (I) = conv({q0}, F (I)).

Now Q̃ is triangulated into simplices with finite mesh size in such a way that every

vF (I) is triangulated into (J − |I|+ 1)-dimensional simplices.

Suppose that the algorithm is in q∗ ∈ vF (I), then q∗ lies in some t-dimensional

simplex σ(q1, . . . , qt+1), its vertices being the affinely independent points q1, . . . , qt+1,

where t = J − |I| + 1 and qi ∈ vF (I) for all i = 1, . . . , t + 1. There exist unique

λ∗1, . . . , λ
∗
t+1 ≥ 0, with

∑τ+1
i=1 λ∗i = 1, such that q∗ =

∑t+1
j=1 λ

∗
jq

j . The piecewise linear

approximation of f(·) at q∗ is then given by

f̄(q∗) =
t+1
∑

j=1

λ∗jf(q
j).

Let λ, 0 < λ ≤ 1, be such that q∗ ∈ ∂Q̃(λ). Then q∗ = (1 − λ)q0 + λq′, for some

q′ ∈ F (I). For all 1 = 1, . . . ,m, define bi(λ) = (1−λ)aiq0+λbi. The point q
∗ is such

that it is a stationary point of f̄ on Q̃(λ), i.e. q∗ is a solution to the linear program

max{qf̄(q∗)|aiq ≤ bi(λ), i = 1, . . . ,m, qz̃ = 1}.

The dual problem is given by

min
{

m
∑

i=1

µibi(λ) + β
∣

∣

∣

m
∑

i=1

µia
i + βz̃ = f̄(q∗), µ ≥ 0, β ∈ IR

}

.
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This gives a solution µ∗, β∗. Using the complementary slackness condition and

assuming non-degeneracy we get the following:

I : = {i|aiq∗ = bi(λ)}

= {i|aiq′ = bi}

= {i|µ∗
i > 0}.

Hence,
t+1
∑

j=1

λ∗jf(q
j) =

∑

i∈I

µ∗
i a

i + β∗z̃,

∑t+1
j=1 λ

∗
j = 1, and µ∗

i ≥ 0, for all i ∈ I. In vector notation this system reads

t+1
∑

j=1

λ∗j

[

−f(qj)

1

]

+
∑

i∈I

µ∗
i

[

ai

0

]

+ β∗

[

z̃

0

]

=

[

0

1

]

. (3)

This linear system has J + 2 equations and J + 3 variables. The value β∗ is a

measure for how much the solution to the piecewise linear approximation deviates

from Walras’ law.

In each step of the algorithm one variable leaves and one new variable enters the

basis of the linear system. This is achieved by making a linear programming pivot

step in (3). Given that due to the pivot step a variable leaves the basis, the question

is how to determine which variable enters the basis. First, suppose that some λk

leaves the basis. This implies that q∗ can be written as

q∗ =
t+1
∑

j=1,j 6=k

λjq
j .

Assuming non-degeneracy, q∗ then lies in the interior of the facet τ of the simplex

σ(q1, . . . , qt+1) opposite to the vertex qk. Now there are three possibilities. First,

suppose that τ ∈ ∂vF (I) and τ 6∈ ∂Q̃(1). According to Lemma 4 this happens if

and only if τ ⊂ vF (I ∪ {i}) for some i 6∈ I. Then we increase the dual dimension

with one and µi enters the basis via a pivot step in (3). The second case comprises

τ ⊂ ∂Q̃(1). Then the algorithm continues in Q̃\Q̃(1). The set τ is a facet of exactly

one t-simplex σ′ in the extension of v(F (I)) in Q̃(2). The vertex opposite to τ of σ′

is, say, qk. The corresponding variable λk then enters the basis. Finally, it can be

that τ 6∈ ∂vF (I). Then there is a unique simplex σ′ in vF (I) with vertex, say qk,

opposite to the facet τ . The corresponding variable λk then enters the basis.

The second possibility is that µi leaves the basis for some i ∈ I. Then the dual

dimension is decreased with one, i.e. the set I becomes I\{i}. Now there are two

possibilities. If I\{i} = ∅ then f̄(q∗) = β∗z̃ and the algorithm terminates. The
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vector q∗ is an approximate equilibrium and the algorithm can be restarted at q∗

with a smaller mesh for the triangulation in order to improve the accuracy of the

approximation. Otherwise, if I\{i} 6= ∅, then define I ′ = I\{i}. Since the primal

dimension is increased with one there exists a unique simplex σ′ in vF (I ′) having

σ as a facet. The vertex opposite to σ is, say, qk. The algorithm continues with

entering λk in the basis by means of a pivot step in (3). Assuming non-degeneracy

in each step or taking lexicographic pivot steps the algorithm can not generate a

simplex more than once. Since for any given λ ≥ 0 the set Q̃(λ) is covered by a finite

number of simplices and for large enough λ the system (3) can have no solutions for

any facet that lies in the boundary of Q̃(λ), the algorithm must terminate within a

finite number of steps with an approximating equilibrium.

The initial step of the algorithm consists of solving the linear program

max{qf(q0)|aiq ≤ bi, i = 1, . . . ,m, qz̃ = 1}.

Its dual program is given by

min
{

m
∑

i=1

µibi + β
∣

∣

∣

m
∑

i=1

µia
i + βz̃ = f(q0)

}

.

This gives as solution µ0 and β0. The set F (I0) is a vertex of Q̃(1), where I0 = {i ∈

{1, . . . ,m}|µ0
i > 0}. There is a unique one-dimensional simplex σ(w1, w2) in vF (I0)

with vertices w1 = q0 and w2 6= w1. Then λ2 enters the basis by means of a pivot

step in system (3).

As an example of this procedure consider the finance economy E(u, ω, V ) with

two consumers, two assets and three states of nature. The utility functions are given

by u1(x1) = (x1
0)

3x1
1x

1
2x

1
3 for consumer 1 and u2(x2) = x2

0x
2
1x

2
2(x

2
3)

2 for consumer 2,

and the initial endowments equal ω1 = (1, 3, 3, 3) for consumer 1 and ω2 = (4, 1, 1, 1)

for consumer 2. On the financial markets, two assets are traded, namely a riskless

bond and a contingent contract for state 3. That is,

V =









1 0

1 0

1 1









.

It is easy to see that the set of no-arbitrage prices, Q, is given by

Q = {(q0, q1, q2)|q0 > 0, q2 > 0, q1 > q2}.

Taking z̃ = (1, 1, 1), we get that

Q̃ = {q ∈ IR3|aiq ≤ 0, i = 1, 2, 3, qz̃ = 1},
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where a1 = (−1, 0, 0), a2 = (0, 0,−1), and a3 = (0,−1, 1). Since Q̃ is a polytope one

can set Q̃(1) = Q̃. The set Q̃ is the convex hull of the points (1, 0, 0), (0, 1, 0), and

(0, 1/2, 1/2).

We start the algorithm at the price vector q0 = (5
8 ,

1
4 ,

1
8). The grid size of the

simplicial subdivision is taken to be 1
8 . In the first step of the algorithm we solve

the linear program

min{β|µ1a
1, µ2a

2, µ3a
3, βz̃ = f(q0), µi ≥ 0, i = 1, 2, 3},

where f(q0) = (−3.02, 8.4667,−1.8333). This gives as solution µ0 = (11.4867, 10.3, 0)

and β0 = 8.4667. This implies that I0 = {1, 2}. The basic variables are λ1, µ1, µ2,

and β. The basis matrix corresponding to (3) equals

B =













3.02 −1 0 1

−8.4667 0 0 1

1.8333 0 −1 1

1 0 0 0













.

The first one-dimensional simplex that is generated is the simplex σ(w1, w2) ∈

vF (I0), where w1 = q0 and w2 = 1
64(35, 22, 7). The algorithm proceeds by letting

λ2 enter the basis by means of a linear programming pivot step of (−f(w2), 1) into

the matrix B−1. This means, the algorithm leaves q0 into the direction vF (I0) −

q0 towards vF (I0) = (0, 1, 0). By doing so one finds that µ2 leaves the basis.

This implies that the dimension of the dual space is reduced and a two-dimensional

simplex is generated in vF ({1}), namely σ(w1, w2, w3), where w3 = 1
64(35, 20, 9).

One proceeds by entering λ3 into the basis by performing a pivot step in B−1. In

this way one obtains a sequence of two-dimensional adjacent simplices in vF ({1})

until the algorithm terminates when µ1 leaves the basis. This happens after, in

total, 12 iterations. The path of the algorithm is depicted in Figure 2.

The basic variables in the final simplex are λ2, λ3, λ1, and β. The corresponding

simplex is given by σ(w1, w2, w3), where w1 = 1
16(5, 8, 3), w2 = 1

64(15, 34, 15), and

w3 = 1
64(15, 36, 11). The corresponding values for λ are given by λ1 = 0.1223,

λ2 = 0.8460, and λ3 = 0.0316. This yields as an approximate FME the price vector

q̄ =
3
∑

i=1

λiw
i = (0.2439, 0.5284, 0.2267).

The value of the excess demand function in q̄ is given by f(q̄) = (−0.0174, 0.0145,−0.0151).

The approximate equilibrium values for consumption at t = 0 and the demand

for assets are given by x̄1
0 = 3.7494, x̄2

0 = 1.2332, z̄1 = (−0.9794,−0.6756), and
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q0 

(1,0,0) (0,1,0) 

(0,1/2,1/2) 

(0,3/4,1/4) 

(1/2,1/4,1/4) 

(1/2,1/2,0) 

q 

Figure 2: The path of prices (dotted line) generated by the algorithm.

z̄2 = (0.9939, 0.6605), respectively. The accuracy of the approximation can be im-

proved upon by restarting the algorithm in q̄ and taking a smaller mesh size for the

simplicial subdivision of Q̃.
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