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Abstract
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adapt their conjectural variation by imitating the most successful firm. Sim-

ulations suggest that in the long-run the Walrasian, Cournot-Nash and cartel

equilibria survive. The theory of nearly-complete decomposability is used to

show that the Walrasian equilibrium is approximately the only stochastically
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1 Introduction

The question under which conditions collusion or cartel formation in oligopolistic

markets is possible is an important issue in the theory of industrial organisation. It

is particularly interesting for anti-trust policies. There are several ways in which the

issue has been addressed in the literature. The static Cournot or Bertrand models

don’t allow for a cooperative outcome. Experimental evidence, e.g. by Friedman

(1967), Axelrod (1984), and Offerman et al. (2002), suggests that cooperation or

cartel formation (tacit collusion) does arise in oligopolistic markets.

In the literature many contributions try to explain sustainability of tacit collu-

sion. For most of these models it holds that extensions to the basic static model

are needed in order to get cooperation as a possible equilibrium outcome, e.g. by

assuming incomplete information or asymmetries in the firms’ technologies. There

is, however, a very simple way of obtaining a collusive outcome in the static model,

namely by introducing conjectural variations, a concept that dates back to Bowley

(1924). This approach assumes that firms take into account the reaction of the mar-

ket to their own quantity choice. For example, the standard best-reply dynamics

is compatible with conjectural variations stating that the market does not respond

to one’s own actions. The problem is that conjectural variations are essentially a

dynamic concept, but are mostly used in a static environment. Kalai and Stanford

(1985) show that there are repeated game formulations of Cournot markets that

can result in beliefs in the spirit of conjectural variations without abandoning full

rationality. In a recent paper Friedman and Mezzetti (2002) show how conjectural

variations can be used in an oligopoly model. They consider a differentiated prod-

uct market with boundedly-rational, price-setting firms that at each point in time

maximise their profit over an infinite time horizon based on a conjectural variation.

These authors also study an adaptation process of the conjectural variation where

adaptation takes place if the observed price change is substantially larger than the

price change predicted by the conjectural variation. They show that under certain

conditions the Nash equilibrium always constitutes a stable steady-state. Further-

more, as substitutability among firms increases, a more cooperative outcome can be

sustained as a stable steady-state. In the limit (perfect substitutability) this leads

to full cooperation.

An important step in the evolution of economic thinking has been the interest

of economists for the theory of evolution applied to economic phenomena. Several

contributions to the literature have set off the development of this field. First there is

the concept of bounded rationality introduced by Herbert Simon (cf. Simon (1957)).

The bounded rationality approach replaces the assumption of full rationality of
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economic agents. Secondly, in neo-classical economics the objective of agents is to

maximise some absolute quantity (e.g. utility or profit), whereas Alchian (1950)

already pointed out that relative payoffs are often of more interest.

In this paper, the concept of stochastic stability introduced by Foster and Young

(1990) is used to analyse an oligopoly model with boundedly rational firms which

are ultimately interested in relative profits. The first paper in industrial organisa-

tion which applies the concept of stochastic stability is Vega-Redondo (1997). He

considers a Cournot oligopolistic market where firms choose their quantity level by

imitating the most successful firm, i.e. the firm that makes the highest profit. He

shows that the unique stochastically stable state is given by the Walrasian equilib-

rium. This model has been extended by Alós-Ferrer et al. (1999) by allowing for

entry and exit. They find that if there are decreasing returns to scale, then the mar-

ket will eventually settle in a Walrasian equilibrium. In case of increasing returns

to scale, a monopoly will arise eventually.

As mentioned before, an experimental study by Offerman et al. (2002) shows that

not only the Walrasian equilibrium may survive in a Vega-Redondo framework, but

also the collusive (cartel) equilibrium. This experimental evidence seems to suggest

that the behavioural assumptions in Vega-Redondo (1997) are too restrictive. There

are attempts in the literature to construct models with more behavioural rules.

For example, Schipper (2003) models myopic optimisers (best-repliers) and profit

imitators à la Vega-Redondo (1997). He finds that the market eventually converges

to a situation where the myopic optimisers play a best-reply to the imitators and

the imitators play a semi-Walrasian quantity taking into account the existence of

the best-repliers. In this model, neither the Walrasian equilibrium nor the cartel

outcome is obtained. Kaarbøe and Tieman (1999) use a similar model to show that

in supermodular games a Nash equilibrium is always selected in the limit.

In all the papers mentioned above agents either cannot change their behaviour,

or changing behaviour is modelled as an exogenous random process. The model

presented in this chapter gives more flexibility to the behavioural assumptions un-

derlying the results of these papers by endogenising the behavioural choice. It is

assumed that firms base their quantity choice in a boundedly rational way on obser-

vations from the past and on their conjectures about competitors’ reactions to their

behaviour. The latter aspect is modelled by using a variable that measures the –

supposed – immediate reaction of others to one’s own actions. The quantity dynam-

ics is then modelled in such a way that a firm chooses the quantity that maximises

next period’s profit given the quantity choices of the previous period and its own

conjecture. Hence, at the quantity level, firms are assumed to be myopic optimisers.

This quantity dynamics is extended with random noise to capture aspects of the
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quantity choice that are not explained by the model. One can think for example of

experimentation by firms which leads to a different quantity choice than would be

expected from myopic optimisation. The noise part can also be interpreted as firms

making mistakes in their myopic optimisation process. It might also capture the

fact that a firm is replaced by a new firm that has the same conjecture, but starts

with another quantity choice. The last aspect reflects what biologists call mutation.

It may happen that after some time a firm realises that it is making less profit

than its competitors. In such a case, its conjecture is apparently not correct. In

such cases, firms adapt their conjecture. They make this decision in a boundedly

rational way, namely by imitating the conjecture of the firm that has the highest

profit. This dynamics is called the conjecture dynamics. Here too a random noise

term is added to capture experiments, mistakes or mutations. By allowing evolution

at the behavioural level this paper is related to the literature on indirect evolution

(cf. Güth and Yaari (1992)). The main difference is that in this paper it is not

assumed that given a behavioural pattern agents act rationally. Boundedly rational

behaviour enters here at both the behavioural and the quantity-setting level.

The quantity dynamics and the conjecture dynamics, together with the noise

terms, lead to an ergodic Markov chain having a unique invariant probability mea-

sure. A simulation study is conducted to study the behaviour of this Markov chain.

It is found that the cartel, Cournot-Nash, and Walrasian equilibria are played more

frequently than other quantities. Furthermore, in the long-run the Walrasian equi-

librium gets played more often.

To see if the Walrasian equilibrium can theoretically be supported as the most

likely long-run outcome of the model, we look at the stochastically stable states of

the Markov chain. The stochastically stable states are the states in the support of

the unique invariant probability measure of the limit Markov chain when the error

probabilities for both the quantity dynamics and the conjecture dynamics converge

to zero. Due to the complexity of the dynamics it is not possible to get analytical

results on the stochastically stable states. However, by construction of the model

the Markov chain can be decomposed in a chain that governs the quantity dynamics

and a chain that describes the conjecture dynamics. It is shown that – given the

conjectures – the quantity dynamics has a unique invariant probability measure.

The Markov chain is then aggregated over the quantity level using this measure

and a Markov chain is obtained that is solely based on the conjecture dynamics.

It is shown that this aggregated Markov chain has a unique invariant probability

measure. The theory of nearly-complete decomposability as developed by Simon

and Ando (1961), Ando and Fisher (1963) and Courtois (1977) provides conditions

under which the invariant measure of the aggregated chain is an approximation of
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the invariant measure of the original chain.

Following this path of analysis it is obtained that the market will eventually settle

in the Walrasian equilibrium, just like in Vega-Redondo (1997). So, even with the

more elaborate behavioural structure of this model, the Walrasian equilibrium is still,

by approximation, the only stochastically stable state. This results from the fact

that imitative behaviour drives cooperative behaviour out, just as in Vega-Redondo

(1997) profit imitation drives out cooperative quantity setting. This result only

holds, however, if the frequency of the conjecture dynamics is sufficiently low. Then,

the quantity dynamics has time to settle in its equilibrium. Otherwise, anything can

happen, although the simulations suggest that the dynamics mainly evolves around

the cartel, Cournot-Nash and Walrasian equilibria.

The chapter is organised as follows. In Section 2 the model is formally introduced.

Section 3 presents a simulation study, whereas in Section 4 the model is analysed

analytically. Section 5 concludes.

2 The Model

Let be given a dynamic market for a homogeneous good with n firms, indexed by

In = {1, 2, . . . , n}. At each point in time, t ∈ IN, competition takes place in a

Cournot fashion, i.e. by means of quantity setting. Inverse demand is given by a

smooth function P : IR+ → IR+ satisfying P ′(·) < 0. The production technology

is assumed to be the same for each firm and is reflected by a smooth cost function

C : IR+ → IR+, satisfying C ′(·) > 0. If at time t ∈ IN the vector of quantities is

given by q ∈ IRn
+, the profit for firm i ∈ In at time t is given by

π(qi, q−i) = P (qi +Q−i)qi − C(qi),

where q−i = (qj)j 6=i and Q−i =
∑

j 6=i qj .

Each firm i ∈ In chooses quantities from a finite grid Γi. Define Γ =
∏

i∈In
Γi.

For further reference let q(k), k = 1, . . . ,m, be the k-th permutation of Γ. It is

assumed that in setting their quantities firms conjecture that their change in quantity

results in an immediate change in the total quantity provided by their competitors.

This can also be seen to reflect the firm’s conjecture of the competitiveness of the

market. Formally, firm i ∈ In conjectures a value for the partial derivative of Q−i

with respect to qi. Using this conjecture, the firm wants to maximise next period’s

profit. Hence, the firm is a myopic optimiser, which reflects its bounded rationality.

The first-order condition for profit maximisation of firm i reads

P ′(qi +Q−i)
(

1 +
∂Q−i
∂qi

)

qi + P (qi +Q−i)− C ′(qi) = 0. (1)
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As can be seen from eq. (1) we assume that there is only a first order conjecture

effect. Furthermore, we assume that it is linear. These assumptions add to the

firm’s bounded rationality.1

To facilitate further analysis, the conjectures are parameterised by a vector α ∈
IRn such that for all i ∈ In

(1 + αi)
n

2
= 1 +

∂Q−i
∂qi

.

Given a vector of conjectures an equilibrium for the market is given by q ∈ IRn
+ such

that for all i ∈ In the first-order condition (1) is satisfied. Note that if all firms

i ∈ In have a conjecture αi = −1, the equilibrium coincides with the Walrasian

equilibrium. Furthermore, if all firms have αi = 2−n
n or αi = 1, the equilibrium

coincides with the Cournot-Nash equilibrium or the cartel equilibrium, respectively.

Therefore, the conjectures αi = −1, αi = 2−n
n , and αi = 1 will be called the

Walrasian, Cournot-Nash, and cartel conjectures, respectively.

Each firm chooses its conjecture from a finite grid Λ on [−1, 1], where it is

assumed that Λ ⊃ {−1, 2−nn , 1}. The bounds of this finite grid represent the extreme

cases of full competition (α = −1) and cartel (α = 1). For further reference, let

α(I), I = 1, . . . , N , be the I-th permutation of Λn =
∏

i∈In
Λ.

The dynamics of the market takes place in discrete time and consists of both

a quantity dynamics and a conjecture dynamics. The quantity dynamics works as

follows. At the beginning of period t ∈ IN, each firm gets the opportunity to revise

its output with probability 0 < p < 1. The output is chosen so that it maximises

this period’s profit based on last period’s quantities and the firm’s conjecture. That

is, firm i ∈ In seeks to find qti ∈ Γi so as to approximate as closely as possible the

first-order condition from eq. (1), i.e. qti ∈ B(qt−1−i , αt−1
i ), where for q−i ∈

∏

j 6=i Γj

and αi ∈ Λi,

B(q−i, αi) = argmin
q∈Γi

{
∣

∣

∣
P ′(q +Q−i)(1 + αi)

n

2
q + P (q +Q−i)− C ′(q)

∣

∣

∣

}

.

If there are ties, firm i chooses any quantity from B(qt−1−i , αt−1
i ) using a probability

measure ηi(·) with full support. The dynamics described above constitutes the pure

quantity dynamics. The actual quantity choice can be influenced by several other

aspects. For example, a firm can experiment and choose another quantity. Another

possibility is that firms make mistakes in their optimisation process. Finally, a firm

may be replaced by a new firm that has the same conjecture, but sets a different

1The first-order and linearity assumptions are also made throughout the static literature on

conjectural variations. This seems incompatible with the assumption of fully rational firms in these

models.
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quantity to start with. This is what biologists refer to as mutation. To capture these

effects we assume that each firm experiments or makes a mistake with probability

ε > 0 and chooses any quantity from Γi using a probability measure νi(·) with

full support. Given a conjecture vector α(I) for some I ∈ {1, . . . , N} and an error

probability ε, the quantity dynamics gives rise to a Markov chain on Γ with transition

matrix M ε
I , a typical element of which is given by

M ε
I (k, l) =

∏

i∈In

{

(1− ε)
[

p11(
qi(l)∈B(q−i(k),αi(I))

)ηi(qi(l))

+ (1− p)11(
qi(k)=qi(l)

)

]

+ ενi
(

qi(l)
)

}

,

(2)

where 11(·) denotes the indicator function and the part between square brackets gives

the transition probabilities for the pure quantity dynamics.

The conjecture dynamics takes place at the end of period t, when each firm i

gets the opportunity to revise its conjecture with probability 0 < p̃ < 1. The idea

behind this revision is that once in a while a firm analyses its past performance

and it assesses the correctness of its conjecture by looking at the performance of

the other firms. It is assumed that each firm can observe the individual quantity

choices of its competitors and therefore it can also deduce the conjectures that its

competitors use. It can then imitate the firm that made the highest profit in period

t. Since deriving the conjectures requires effort we assume that firms change their

conjecture less often than their quantity choice which is reflected in assuming that

p̃ < p.2 Formally, firm i’s choice αt
i is such that αt

i ∈ B̃(αt−1, qt), where for given

α ∈ Λn and q ∈ Γ,

B̃(α, q) = argmax
γ∈Λ

{

∃j∈In : αj = γ, ∀k∈In : π(qj , q−j) ≥ π(qk, q−k)
}

.

If there are ties, firm i chooses any element from B̃(αt−1, qt) using a probability

measure η̃i(·) with full support. This dynamic process is called the pure conjecture

dynamics. As in the quantity dynamics we allow for mistakes or experimentation.

So, each firm chooses with probability ε̃ > 0 any conjecture using a probability

measure ν̃i(·) with full support. For each k ∈ {1, . . . ,m} and corresponding quantity

vector q(k), and error probability ε̃, the conjecture dynamics gives rise to a Markov

chain on Λn with transition matrix λε̃k. The transition probability from α(I) to α(J)

2One could argue that since the firm can derive its competitors’ conjectures it can always opti-

mally react. However, it would have to gather more information than just quantity choices. This

requires effort and, hence, costs. Therefore, we assume that conjecture updating takes place less

often than the application of the rule of thumb of quantity adjustment with fixed conjectures.
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is given by

λε̃k(I, J) =
∏

i∈In

{

(1− ε̃)
[

p̃11(
αi(J)∈B̃(α(I),q(k))

)η̃i(αi(J))

+ (1− p̃)11(
αi(J)=αi(I)

)

]

+ ε̃ν̃i
(

αi(J)
)

}

,

(3)

where the part between square brackets gives the transition probabilities for the

pure conjecture dynamics.

The combined quantity and conjecture dynamics yield a Markov chain on Γ×Λn

with transition matrix Qε,ε̃. Entries in this transition matrix are grouped according

to the conjecture index. So, the k-th row in Qε,ε̃ consists of the transition probabili-

ties from the state with conjectures α(1) and quantities q(k). The m ∗ (I− 1)+k-th

row contains the transition probabilities from the state with conjectures α(I) and

quantities q(k). A typical element of Qε,ε̃ is given by

Qε,ε̃(kI , lJ) = M ε
I (k, l)λ

ε̃
k(I, J), (4)

which should be read as the transition probability form the state with conjectures

α(I) and quantities q(k) to the state with conjectures α(J) and quantities q(l).

3 A Simulation Study

Since for all i ∈ In, the probability distributions νi(·) and ν̃i(·) have full support, the
Markov chain Qε,ε̃ is ergodic and, hence, has a unique invariant probability measure.

To gain some insight in the long-run behaviour of the Markov chain a simulation

study has been conducted. The demand side of the market is described by an inverse

demand function given by

P (Q) = 45−
√

3Q.

It is assumed that all firms have access to the same technology which is represented

by the cost function

C(q) = q
√
q.

This description is the same as the one used in the experiment conducted by Offer-

man et al. (2002). The focus in that paper is on the frequencies of the Walrasian

(full competition), Cournot-Nash, and cartel quantities, respectively. The Walrasian

quantity, denoted by qw, solves the inequality

P (nqw)qw − C(qw) ≥ P (nqw)q − C(q) ∀q ∈ IR+.

The Cournot-Nash (qn) and cartel (qc) quantities solve

P (nqn)qn − C(qn) ≥ P ((n− 1)qn + q)q − C(q) ∀q ∈ IR+,
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and

P (nqc)qc − C(qc) ≥ P (nq)q − C(q) ∀q ∈ IR+,

respectively. Following Offerman et al. (2002) and taking n = 3 firms, these quan-

tities are given by qw = 100, qn = 81, and qc = 56.25, respectively. The Walrasian,

Cournot-Nash, and cartel conjectures equal −1,−1/3, and 1, respectively.

For the simulation, the quantity grid for all firms is taken to be Γ = {49, 50, . . . , 108}
and the quantity grid is set to Λ = {−1,− 1

3 , 1}. This implies that the state space is

5,832,000 dimensional. The probabilities of quantity and conjecture adaptation are

set to p = 0.9 and p̃ = 0.4, respectively. We simulate 200 runs of 150 time periods.

For each simulation the error probabilities ε and ε̃ are iid uniformly drawn from the

interval [0.001, 0.2].

The frequencies of the conjectures and the running frequencies of the aggregate

quantities are shown in Figure 1. The running frequency for quantity Q has window

size four, i.e. it is the frequency of all observations in the set {Q−4, Q−3, . . . , Q+4}.
As can be seen from this figure, the Walrasian quantity has the highest frequency,
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Figure 1: Frequencies of conjectures (left panel) and running frequencies of aggregate

quantities (right panel).

with two other peaks at the Cournot-Nash quantity and the cartel quantity. The

frequencies of the conjectures chosen paint a similar picture.

If the sample is split into short-run (first 50 periods of each run) and long-run

(last 50 periods of each run) data, the frequencies are as depicted in Figures 2 and

3. These findings show that all three equilibria are being played in the long-run. If

we look at prices, one of the simulation runs led to a price-run depicted in Figure 4.

This price-run stays very close to Offerman et al. (2002) who report that both the
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Figure 2: Short-run frequencies of conjectures (left panel) and running frequencies

of aggregate quantities (right panel).
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Figure 3: Long-run frequencies of conjectures (left panel) and running frequencies

of aggregate quantities (right panel).
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Figure 4: Simulated prices.

cartel and Walrasian equilibria occur approximately half of the time. In Figure 4

one can see that the cartel price prevails in the first half of the run, whereas the

Walrasian price prevails in the second half.

Figures 1, 2, and 3 show an interesting feature, namely that the Walrasian equi-

librium is played more frequently in the long-run than in the short-run. In the next

section we provide theoretical evidence that the Walrasian equilibrium has, approxi-

mately, the largest basin of attraction when the error probabilities converge to zero.

In fact, the Walrasian is the only state that has a basin of attraction in this limiting

case.

4 A Theoretical Analysis

For each ε and ε̃ the chain Qε,ε̃ is ergodic, hence there is a unique invariant proba-

bility measure. In line with other papers on stochastic stability (cf. Kandori et al.

(1993), Young (1993), and Vega-Redondo (1997)) we are interested in the long-run

behaviour of the dynamics when evolution has forced the probabilities of mistakes

to zero. The standard argument for considering this limiting case is that firms learn

to play the game better as time evolves. That is, we are interested in the (unique)

invariant probability measure µ(·) of the Markov chain with transition matrix Q,
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where3

Q = lim
ε̃↓0

lim
ε↓0

Qε,ε̃. (5)

The support of µ(·) constitutes the set of stochastically stable states. Note that,

contrary to the standard literature we have two levels of evolution in this model. Due

to the complexity of the combined dynamics, one cannot determine µ(·) exactly. It
turns out, however, that we can find an approximation, µ̃(·), of this measure which

can be analysed.

As a point of departure the first level of evolution, the quantity dynamics, is

studied. For each I = 1, . . . , N , let MI = lim
ε↓0

M ε
I be the limit Markov chain when

the error in the quantity dynamics converges to zero. Note that MI has a unique

invariant probability measure, say µI(·). To facilitate further analysis it is assumed

that for any vector of conjectures there is a unique equilibrium, i.e. a unique vector

of quantities that solves eq. (1) for all firms. Furthermore, we assume that this

equilibrium is an element of the quantity grid Γ.

Assumption 1 For all α ∈ Λn there exists a unique qα ∈ Γ such that for all i ∈ In,

P ′(qαi +Qα
−i)(1 + αi)

n

2
qαi + P (qαi +Qα

−i)− C ′(qαi ) = 0.

Let the permutation on Γ that corresponds to qα be denoted by k(I), i.e. q(k(I)) =

qα. The following proposition states that for each vector of conjectures α(I) the

unique stochastically stable state of the quantity dynamics is given by qα(I).

Theorem 1 Let I ∈ {1, . . . , N} be given. Under Assumption 1, the unique invari-

ant probability measure µI(·) of the Markov chain with transition matrix MI is such

that

µI(qα(I)) = 1.

Proof. The proposition is proved using the theory developed by Milgrom and

Roberts (1991). First note that for all i ∈ In, Γi is a compact subset of IR+. Define

for all i ∈ In the (continuous) function π̃i : IR+ × IRn−1
+ → IR+, given by

π̃i(qi, q−i) = −
∣

∣

∣
P ′(qi +Q−i)(1 + αi(I))

n

2
qi + P (qi +Q−i)− C ′(qi)

∣

∣

∣
.

Consider the normal-form game 〈In, (Γi)i∈In , (π̃i)i∈In〉. Let S ⊂ Γ, denote by Si the

projection of S on Γi and define S−i =
∏

j 6=i Sj . For all i ∈ In the set of undominated

strategies with respect to S is given by the set

Ui(S) =
{

qi ∈ Γi

∣

∣

∣
∀y∈Si∃q−i∈S−i : π̃i(qi, q−i) ≥ π̃i(y, q−i)

}

.

3The order of limits is crucial in the results to be proved. First evolution drives the error

probability of the quantity dynamics to zero and after that the error probability for the conjecture

dynamics. Since it is assumed that quantity adaptation takes places more frequent than conjecture

adaptation (p̃ < p), this is a straightforward assumption.
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Let U(S) =
∏

i∈In
Ui(S), the k-th iterate of which is given by U k(S) = U

(

Uk−1(S)
)

,

k ≥ 2, where U1(S) = U(S). Note that since qα(I) is unique we have

U∞(Γ) = {qα(I)}.

Following Milgrom and Roberts (1991) we say that {qt}t∈IN is consistent with adap-

tive learning if

∀t̂∈IN∃t̄>t̂∀t̃≥t̄ : qt̃ ∈ U
(

{qs|t̂ ≤ s < t̃}
)

.

Let t̂ ∈ IN, take t̄ = t̂+ 1 and let t̃ = t̄+ k for some k ∈ {0, 1, 2, . . . }. Then

{qs|t̂ ≤ s < t̃} = {qs|s = t̂, . . . , t̄+ k − 1}.

Let {qt}t∈IN be generated by the pure quantity dynamics, i.e. the quantity dynamics

without the experimentation (or mutation) part. Then we have by definition

∀y∈Γi : π̃i(qt̃i , qt̃−1−i ) ≥ π̃i(y, q
t̃−1
−i ).

Furthermore, it holds that q t̃−1 ∈ {qs|t̄ ≤ s < t̃}. Hence, we can conclude that

{qt}t∈IN is consistent with adaptive learning. From Milgrom and Roberts (1991,

Theorem 7) one obtains that ‖qt − qα(I)‖ → 0 as t→∞. Since Γ is finite we have

∃t̄∈IN∀t≥t̄ : qt = qα(I).

So, {qα(I)} is the only recurrent state of the (mutation-free) pure quantity dynamics.

From Young (1993) we know that the stochastically stable states are among the

recurrent states of the mutation-free dynamics. Hence, µI(qα(I)) = 1. ¤

Before we turn to Theorem 2, the following lemma is introduced, which plays a

pivotal role its proof. It compares the equilibrium profits for different conjectures.

Suppose that the market is in a monomorphic state, i.e. all firms have the same

conjecture. The question is what happens to equilibrium profits if k firms deviate

to another conjecture. If n− k firms have a conjecture equal to α and k firms have

a conjecture equal to α′, let the (unique) equilibrium quantities be denoted by qαk
and qα

′

k , respectively.

Lemma 1 For all k ∈ {1, 2, . . . , n− 1} and α > α′ it holds that

P
(

(n− k)qαk + kqα
′

k

)

qα
′

k − C(qα
′

k ) > P
(

(n− k)qαk + kqα
′

k

)

qαk − C(qαk ).

The proof of this lemma can be found in Appendix B. Lemma 1 plays a similar role

as the claim in Vega-Redondo (1997, p. 381). The main result in that paper is driven

by the fact that if at least one firm plays the Walrasian quantity against the other

firms playing another quantity, the firm with the Walrasian quantity has a strictly
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higher profit. In our model the dynamics is more elaborate. Suppose that all firms

have the Walrasian conjecture and that the quantity dynamics is in equilibrium, i.e.

the Walrasian equilibrium. If at least one player has another conjecture not only its

own equilibrium quantity changes, but also the equilibrium quantities of the firms

that still have the Walrasian conjecture. Lemma 1 states that the firms with the

lower conjecture still have the highest equilibrium profit. This is intuitively clear

form the first-order condition (1). The firms with the lower conjecture increase their

production until the difference between the price and the marginal costs reaches a

lower, but positive, level than the firms with the higher conjecture. Therefore, the

total profit of having a lower conjecture is higher. This happens because the firms do

not realise that in the future their behaviour will be imitated by other firms which

puts downward pressure on industry profits.

Some additional notation and assumptions are needed in the following. For

a matrix A let λj(A) denote the j-th largest eigenvalue in absolute value of A.

Furthermore, define λk(I, J) = lim
ε̃↓0

λε̃k(I, J) and let ζ = max
kI

{

∑

K 6=I

∑m
l=1QkI lK

}

.

The following assumptions are made.

Assumption 2 All elementary divisors of Q are linear.

Assumption 3 ζ < 1
2

[

1− max
I∈{1,...,N}

λ2(MI)
]

.

Since the probability measures νi(·) and ν̃i(·) have full support for all i ∈ In, all

eigenvalues of Q will generically be distinct and, hence, Assumption 2 will generically

be satisfied. Let α(1) be the monomorphic state where all firms have the Walrasian

conjecture, i.e. α(1) = (−1, . . . ,−1) We can now state the following theorem.

Theorem 2 Suppose that Assumptions 1–3 hold. Then there exists an ergodic

Markov chain on Λn with transition matrix Q̃ and unique invariant probability mea-

sure µ̃(·). For µ̃(·) it holds that µ̃(qα(1)) = 1. Furthermore, µ̃(·) is an approximation

of µ(·) of order O(ζ).

Proof. The approximation result follows from the theory of nearly-complete de-

composability (cf. Courtois (1977) and Appendix A). First, define

Q∗ =

















M1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 MN

















,
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and take the matrix C such that

ζCkI lJ =











λk(I, J)MI(k, l) if I 6= J

−∑K 6=I λk(I,K)MI(k, l) if I = J.

Note that Q = Q∗ + ζC. So, the transition matrix Q has been decomposed into a

block diagonal matrix Q∗, where each diagonal block is the transition matrix for the

quantity dynamics of a given vector of conjectures, and a matrix that reflects the

conjecture dynamics. The constant ζ can be interpreted as the maximum degree of

coupling between subsystems MI .

Given the result of Theorem 1 one can aggregate Q using µI(·) in the following

way. Define a Markov chain on Λn with transition matrix Q̃ which has typical

element

Q̃(I, J) =
m
∑

k=1

µI
(

q(k)
)

m
∑

l=1

QkI lJ

=
m
∑

k=1

µI
(

q(k)
)

λk(I, J)
m
∑

l=1

MI(k, l)

=
m
∑

k=1

µI
(

q(k)
)

λk(I, J) = λk(I)(I, J).

Note that the transition matrix Q̃ is the limit of a sequence of ergodic Markov

chains with transition matrices Q̃ε̃ with Q̃ε̃(I, J) = λε̃k(I)(I, J). So, Q̃ has a unique

invariant probability measure µ̃(·). Under Assumptions 2 and 3 the matrix Q is

nearly-completely decomposable. From Courtois (1977, Section 3.2) this directly

implies that µ̃(·) is an O(ζ) approximation of µ(·).
The result on µ̃(·) is obtained by using the techniques developed by Freidlin and

Wentzell (1984). First we establish the set of recurrent states for the mutation-free

dynamics of Q̃ε̃. This is the dynamics without the experimentation part and is

thus equal for all ε̃ > 0. From (3) one can see that the transition probabilities for

this dynamics are equal to the transition probabilities of going from one vector of

conjectures α(I) to another vector α(J) given that the current quantity vector is

the equilibrium qα(I). So, the dynamics of Q̃ε̃ is the pure conjecture dynamics if the

quantity dynamics gets sufficient time to settle in equilibrium. Let the transition

matrix for this aggregated pure conjecture dynamics be denoted by Q̃0.

Lemma 2 The set A of recurrent states for the aggregated mutation-free conjecture

dynamics with transition matrix Q̃0 is given by the set of monomorphic states, i.e.

A =
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

.
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The proof of this lemma can be found in Appendix C. Define the costs between

α(I) and α(J) to be

c(α(I), α(J)) = min
K=1,...,N

{

d(α(I), α(K))
∣

∣Q̃0(K,J) > 0
}

,

where d(α(I), α(K)) =
∑

i∈In
11(

αi(I)6=αi(K)
). The cost between α(I) and α(J) is

the minimum number of mutations from α(I) that is needed for the pure conjecture

dynamics to have positive probability of reaching α(J). Let α ∈ Λn. An α-tree Hα

is a collection of ordered pairs (α′, α′′) such that:

1. every α′ ∈ Λn\{α} is the first element of exactly one pair;

2. for all α′ ∈ Λn\{α} there exists a path (α′, α1),(α1, α2),. . . ,(αs−1, αs), (αs, α)

in Hα.

For each α-tree Hα the cost of tree Hα is defined by

c(Hα) =
∑

(α′,α′′)∈Hα

c(α′, α′′).

First, we build an α(1)-tree H∗ with minimal costs. Then it is shown that for any

state α ∈ A\{α(1)} and any α-tree Hα the costs will be higher. From Freidlin and

Wentzell (1984, Lemma 6.3.1) one can then conclude that α(1) is the unique element

in the support of µ̃(·). Young (1993) has shown that the minimum cost tree is among

the α-trees where α is an element of a recurrent class of the mutation-free dynamics.

Thus, from Lemma 2 we know that we only need to consider the monomorphic states

in A. This implies that for all α-trees Hα, α ∈ A, we have c(Hα) ≥ |A| − 1, since

one always needs at least one experiment to leave a monomorphic state.

Consider α(1) and the α(1)-tree H∗ that is constructed in the following way.

Let α ∈ A\{α(1)}. For all i ∈ In we have αi > αi(1). Suppose that one firm i

experiments to αi(1) = −1, while the other firms cannot revise their output. Ac-

cording to Lemma 1 with k = 1 this firm has a higher profit in quantity equilibrium

than the other firms. If one period later all other firms j 6= i get the opportunity

to revise their conjectural variation (which happens with positive probability) they

will all choose αj(1) = −1. Hence, one mutation suffices to reach α(1) and therefore

c(H∗) = |A| − 1.

Conversely, let Hα be an α-tree for some α ∈ A\{α(1)}. Then somewhere in

this tree there is a path between α(1) and a monomorphic state α′ with α′i > −1
for all i ∈ In. Suppose that starting from α(1) one firm i experiments to α′i. From

Lemma 1 with k = n − 1 it is obtained that firm i has a strictly lower profit than

the other firms in quantity equilibrium. So, to drive the system away from α(1) to

α′ at least two mutations are needed. Hence, c(Hα) > c(H∗). ¤
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Theorem 2 gives a result on the convergence of market interaction to the Wal-

rasian equilibrium that is similar to the result of Vega-Redondo (1997). Apparently,

profit imitation is such a strong force that it also drives this more elaborate be-

havioural model to the Walrasian equilibrium. Note, however, that the result in

Theorem 2 is an approximation. It might well be that the support of µ(·) consists

of more states than just the Walrasian equilibrium. This is actually suggested by

the simulations in Section 3.

A crucial assumption is the one on the maximum degree of coupling between

subsystems M I , ζ, as stated in Assumption 3. This parameter should not be too

large. Intuitively, this condition requires that the interaction between subsystems

M I is sufficiently low, i.e. that the conjecture dynamics does not happen too fre-

quent. In Proposition 1 a sufficient condition on p̃ is given for Assumption 3 to

hold.

Proposition 1 If p̃ < 1−
(

3
4

)1/n
, then Assumption 3 is satisfied.

Proof. Let I ∈ {1, 2, . . . , N}. From Bauer et al. (1969) we obtain an upper bound

for the second largest eigenvalue of M I :

λ2(M
I) ≤ min

{

max
1≤θ,ρ≤m

1

2

m
∑

i=1

v1i (M
I)
∣

∣

∣

M I(i, θ)

v1θ(M
I)
− M I(i, ρ)

v1ρ(M
I)

∣

∣

∣
,

max
1≤θ,ρ≤m

1

2

m
∑

i=1

|M I(θ, i)−M I(ρ, i)|
}

,

(6)

where v1(M I) is the eigenvector corresponding to the largest eigenvalue ofM I . Since

M I is a stochastic matrix we have that

v1i (M
I) = µIi = 11(q=qα(I)).

Consider the first term on the right hand side of (6). For θ = k(I) and ρ 6= k(I), we

get

1

2

m
∑

i=1

v1i (M
I)
∣

∣

∣

M I(i, k(I))

v1k(I)(M
I)
− M I(i, ρ)

v1ρ(M
I)

∣

∣

∣

=
1

2

∣

∣

∣

M I(k(I), k(I))

µIk(I)
− M I(k(I), ρ)

µIρ

∣

∣

∣

=∞,

since µI(q(ρ)) = 0 and MI(k(I),k(I))

µI
k(I)

= M I(k(I), k(I)) = 1.

The maximum of the second term on the right hand side of (6) is attained for

θ = k(I) and some ρ 6= k(I), such that q(k(I)) is not a best response to q(ρ). One
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obtains that

1

2

m
∑

i=1

|M I(k(I), i)−M I(ρ, i)| ≤ 1

2
|M I(k(I), k(I))| = 1

2
,

since q(k(I)) is a best response to q(k(I)). Hence, we find that λ2(M
I) ≤ 1

2 for all

I = 1, . . . , N . So, we have that

1

2
[1− max

I=1,...,N
λ2(M

I)] ≥ 1

4
.

Note that it holds that

ζ = max
kI

{

∑

K 6=I

m
∑

l=1

QkI lK

}

= max
kI

{

∑

K 6=I

λk(I,K)
}

= max
kI

{

1− lim
ε̃↓0

λε̃k(I, I)
}

.

Furthermore, by definition we have that

λε̃k(I, I) ≥
∏

i∈In

{(1− ε̃)(1− p̃) + ε̃ν̃i(αi(I))}.

Therefore, we conclude that

ζ ≤ 1− lim
ε̃↓0

∏

i∈In

{(1− ε̃)(1− p̃) + ε̃ν̃i(αi(I))}

= 1− (1− p̃)n <
1

4

⇐⇒ p̃ < 1−
(

3

4

)1/n

,

which proves the proposition. ¤

5 Discussion

The model presented in this chapter extends existing evolutionary models of e.g.

Vega-Redondo (1997), Schenk-Hoppé (2000) and Schipper (2003) by allowing for

dynamics at two levels. We model quantity dynamics based on myopic optimisation

by firms that includes the conjectured market response to the firm’s own quantity-

setting behaviour which is modelled by means of a conjecture parameter. At a

second level, we allow firms to change or adapt their behaviour in the sense that

they can change their conjecture. This decision is also modelled to be boundedly
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rational. Firms look at their competitors and imitate the behaviour of the most

successful firm.

The main conclusion of Theorem 2 is that if behavioural adjustment takes place

at a sufficiently lower rate than quantity adjustment, the market ends up in the Wal-

rasian equilibrium in the long-run. To be more precise, the Walrasian equilibrium is

the only outcome that will be observed a significant amount of time in the long-run.

A sufficient condition for this result to hold is that the conjecture dynamics occurs

at a sufficiently low frequency. A simulation study shows that in the long-run also

the cartel and Cournot-Nash equilibria can arise at a significant frequency. The

main point of Theorem 2 is, however, that even with more elaborate behavioural

dynamics than e.g. Vega-Redondo (1997), evolution still selects the Walrasian equi-

librium. The appeal of this equilibrium lies in the fact that if behaviour is guided

by profit imitation, i.e. relative payoffs, this leads to spitefulness in a firm’s actions.

This in turn leads to selection of the Walrasian equilibrium.

An important feature of our model that triggers the result of Theorem 2 is the

fact that we model an explicit dynamic process where firms learn from the past. This

induces them to adapt their behaviour if their profit falls behind their competitors’

profits. This contrasts, for example, standard repeated games where time plays an

implicit role. To quote Vives (1999): in a ”pure repeated game framework[...]history

matters only because firms threaten it to matter”. Therefore, a cartel outcome can

be sustained as an equilibrium in such models. The combination of time having

an explicit role and boundedly rational firms has important consequences for the

long-run outcome of market interaction since it avoids folk theorem-like results and

instead pins down a unique equilibrium outcome.

Appendix

A Nearly-Complete Decomposability

This appendix is based on Courtois (1977). Intuitively, a nearly-complete decom-

posable system is a Markov chain where the matrix of transition probabilities can

be divided into blocks such that the interaction between blocks is small relative to

interaction within blocks. In the remainder let Q be an n× n irreducible stochastic

matrix. The dynamic process (yt)t∈IN, where yt ∈ IRn for all t ∈ IN, is then given by

(yt+1)
> = (yt)

>Q. (A.1)

Note that Q can be written as follows:

Q = Q∗ + ζC, (A.2)
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where Q∗ is of order n and given by

Q∗ =





















Q∗1
. . . 0

Q∗I

0
. . .

Q∗N





















.

The matrices Q∗I , I = 1, . . . , N , are irreducible stochastic matrices of order n(I).

Hence n =
∑N

I=1 n(I). Therefore the sums of the rows of C are zero. We choose ζ

and C such that for all rows kI , I = 1, . . . , N , k = 1, . . . , n, it holds that

ζ
∑

J 6=I

n(J)
∑

l=1

CkI lJ =
∑

J 6=I

n(J)
∑

l=1

QkI lJ

and

ζ = max
kI

(

∑

J 6=I

n(J)
∑

l=1

QkI lJ

)

,

where the kI denotes the k-th element in the I-th block. The parameter ζ is called

the maximum degree of coupling between subsystems Q∗I .

It is assumed that all elementary divisors4 of Q and Q∗ are linear. Then the

spectral density composition of the t-step probabilities – Qt – can be written as

Qt =
N
∑

I=1

n(I)
∑

k=1

λt(kI)Z(kI), (A.3)

where

Z(kI) = s(kI)
−1v(kI)v(kI)

>,

λ(kI) is the kI -th maximal eigenvalue in absolute value of Q, v(kI) is the corre-

sponding eigenvector normalised to one using the vector norm ‖ ·‖1, and s(kI) is the

condition number s(kI) = v(kI)
>v(kI). Since Q is a stochastic matrix, the Perron-

Frobenius theorem gives that the maximal eigenvalue of Q equals 1. Therefore, (A.3)

can be rewritten as

Qt = Z(11) +
N
∑

I=2

λt(1I)Z(1I) +
N
∑

I=1

n(I)
∑

k=2

λt(kI)Z(kI). (A.4)

4See e.g. Lancaster and Tismentetsky (1985).

20



If one defines for each matrix Q∗I in a similar way Z∗(kI), s
∗(kI), λ

∗(kI), and v∗(kI),

e.g. λ∗(kI) is the k-th maximal eigenvalue in absolute value of Q∗I , then one can find

a similar spectral decomposition for Q∗, i.e.

(Q∗)t =
N
∑

I=1

Z∗(1I) +
N
∑

I=1

n(I)
∑

k=2

(λ∗)t(kI)Z
∗(kI), (A.5)

using the fact that v∗kI (1I) = n(I)−1 for all kI . The behaviour through time of yt

and y∗t , where the dynamics of (yt)t∈IN is described by (A.1) and the process (y∗t )t∈IN

is defined by

(y∗t+1)
> = (y∗t )

>Q∗, (A.6)

are therefore also specified by (A.4) and (A.5). The behaviour of yt can be seen

as long-run behaviour whereas y∗t describes short-run behaviour. The comparison

between both processes follows from two theorems as proven by Simon and Ando

(1961).

Theorem A.1 For an arbitrary positive real number ξ, there exists a number ζξ

such that for ζ < ζξ,

max
p,q
|Zpq(kI)− Z∗pq(kI)| < ξ,

for any 2 ≤ k ≤ n(I), 1 ≤ I ≤ N , where 1 ≤ p, q ≤ n.

Theorem A.2 For an arbitrary positive real number ω, there exists a number ζω

such that for ζ < ζω,

max
k,l
|ZkI lJ (kI)− v∗lJ (1J)αIJ(1K)| < ω,

for any 1 ≤ k ≤ n(I), 1 ≤ l ≤ n(J), 1 ≤ K, I, J ≤ N , and where αIJ(1K) is given

by

αIJ(1K) =

n(I)
∑

k=1

n(J)
∑

l=1

v∗kIzkI lJ (1K).

It can be shown that for all I = 1, . . . , N , λ(1I) is close to unity. Therefore

λt(1I) will also be close to unity for small t. Hence, the first two terms on the

right-hand side of eq. (A.4) will not vary much for t < T2, for some T2 > 0.

The first term of the right-hand-side of (A.5) does not change at all. Hence, for

t < T2 the behaviour through time of yt and y∗t is determined by the last terms of

Qt and (Q∗)t, respectively. Also, if ε → 0 it can be shown that λ(kI) → λ∗(kI)

and from Theorem A.1 it follows that Z(kI) → Z∗(kI), for all k = 2, . . . , n(I) and

I = 1, . . . , N . This means that for ζ small and t < T2 the paths of yt and y∗t are

very close.
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The eigenvalues λ∗(kI) are strictly less than unity in absolute value for all k =

2, . . . , n(I), and I = 1, . . . , N . For any positive real number ξ1 we can therefore

define a smallest time T ∗1 such that

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

(λ∗)t(kI)Z
∗
pq(kI)

∣

∣

∣
< ξ1 for t > T ∗1 .

Similarly we can find a T1 such that

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

λt(kI)Zpq(kI)
∣

∣

∣
< ξ1 for t > T1.

Theorem A.1 plus convergence of the eigenvalues with ζ then ensures that T1 → T ∗1

as ζ → 0. We can always choose ζ such that T2 > T1. As long as ζ is not identical

to zero it holds that λ(1I) is not identical to unity for I = 2, . . . , N .5 Therefore,

there will be a time T3 > 0 such that for sufficiently small ξ3,

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

λt(1I)Zpq(1I)
∣

∣

∣
< ξ3 for t > T3.

This implies that for T2 < t < T3, the last term of Qt is negligible and the path of

yt is determined by the first two components of Qt. According to Theorem A.2 it

holds that for any I and J the elements of Z(1K),

ZkI1J (1K), . . . , ZkI lJ (1K), . . . , ZkIn(J)J (1K),

depend essentially on I, J and l, and are almost independent of k. So, for any I

and J they are proportional to the elements of the eigenvector of Q∗J corresponding

to the largest eigenvalue. Since Q∗ is stochastic and irreducible, this eigenvector

corresponds to the unique invariant probability measure µ∗J of the Markov chain with

transition matrix Q∗J . Thus, for T2 < t < T3 the elements of the vector yt, (ylJ )t,

will approximately have a constant ratio that is similar to that of the elements of µ∗J .

Finally, for t > T3 the behaviour of yt is almost completely determined by the first

term of Qt. So, yt evolves towards v(11), which corresponds to the unique invariant

probability measure µ of the Markov chain with transition matrix Q. Summarising,

the dynamics of yt can be described as follows.

1. Short-run dynamics: t < T1. The predominant terms in Qt and (Q∗)t are the

last ones. Hence, yt and y∗t evolve similarly.

2. Short-run equilibrium: T1 < t < T2. The last terms of Qt and (Q∗)t have

vanished while for all I, λt(1I) remains close to unity. A similar equilibrium

is therefore reached within each subsystem of Q and Q∗.

5If ζ = 0, all blocks QI are irreducible and then we would have λ(1I) = λ∗(1I) = 1 for all I.
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3. Long-run dynamics: T2 < t < T3. The predominant term in Qt is the second

one. The whole system moves to equilibrium, while the short-run equilibria in

the subsystems are approximately maintained.

4. Long-run equilibrium: t > T3. The first term of Qt dominates. Therefore, a

global equilibrium is attained.

The above theory implies that one can estimate µ(·) by calculating µ∗I for I =

1, . . . , N , and the invariant measure µ̃ of the process

(ỹt+1)
> = (ỹt)

>P, (A.7)

where (ỹI)t =
∑n(I)

k=1(ykI )t for all I = 1, . . . , N , and some transition matrix P . For

t > T2 we saw that
(ykI )t
(ỹI)t

≈ µ∗I,k. Hence, the probability of a transition from group

I to group J is given by

(pIJ)t+1 = (ỹI)
−1
t

n(I)
∑

k=1

(ykI )t

n(J)
∑

l=1

QkI lJ .

For t > T2 this can be approximated by

(pIJ)t+1 ≈
n(I)
∑

k=1

µ∗I,k

n(J)
∑

l=1

QkI lJ ≡ pIJ .

So, by taking P = [pIJ ], the process in (A.7) gives a good approximation for t > T2

of the entire process (yt)t∈IN. It is shown in Courtois (1977, Section 2.1) that the

error of this approximation is of order O(ζ).

Until now we have not been concerned by how large ζ can be. It was stated

that for T ∗1 < t < T2, the original system Q is in a short-run equilibrium close to

the equilibrium of the completely decomposable system Q∗. If this is to occur it

must hold that T ∗1 < T2. Every matrix Q can be written in the form of eq. (A.2),

but not for all matrices it holds that T ∗1 < T2. Systems that satisfy the condition

T ∗1 < T2 are called nearly-complete decomposable systems (cf. Ando and Fisher

(1963)). Since T ∗1 is independent of ζ and T2 increases with ζ → 0, the condition is

satisfied for ζ sufficiently small. It is shown in Courtois (1977, Section 3.2) that a

sufficient condition for nearly-complete decomposability is given by

ζ < 1
2

[

1− max
I=1,...,N

|λ∗(2I)|
]

. (A.8)

B Proof of Lemma 1

Since all firms are identical and solutions to the first-order conditions are unique,

firms with the same conjecture have the same equilibrium quantity. Therefore, the
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equilibrium quantities qαk and qα
′

k satisfy

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk + P

(

(n− k)qαk + kqα
′

k

)

− C ′(qαk ) = 0

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k + P
(

(n− k)qαk + kqα
′

k

)

− C ′(qα
′

k ) = 0.

These first-order conditions imply that

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk − C ′(qαk )

= P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k − C ′(qα
′

k ).
(B.1)

Suppose that qαk ≥ qα
′
. There are two possible cases:

1. if C ′(qαk ) ≥ C ′(qα
′

k ), then (B.1) immediately gives a contradiction;

2. if C ′(qαk ) < C ′(qα
′

k ), then according to (B.1) it should hold that

−P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk ≤ P ′

(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k .

This implies that
qα
k

qα
′

k

≤ 1+α′

1+α . However, since
qα
k

qα
′

k

≥ 1 and 1+α′

1+α < 1 this gives

a contradiction.

According to the mean-value theorem there exists a q ∈ (qαk , q
α′

k ) such that

C ′(q) =
C(qα

′

k )− C(qαk )

qα
′

k − qαk
,

since the cost function is continuous. Furthermore, it holds that

C ′(q) < max{C ′(qαk ), C ′(qα
′

k )}
≤ P

(

(n− k)qαk + kqα
′

k

)

⇐⇒ P
(

(n− k)qαk + kqα
′

k

)

qα
′

k − C(qα
′

k ) > P
(

(n− k)qαk + kqα
′

k

)

qαk − C(qαk ),

which proves the lemma. ¤

C Proof of Lemma 2

Given a monomorphic state, the pure conjecture dynamics remains in the same

monomorphic state with probability one. So A ⊃
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

. Conversely,

let α ∈ Λn\A. With positive probability all firms may adjust their conjecture and

with positive probability all choose the same conjecture, leading to a monomorphic

state. Hence,

A ⊂
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

,

which proves the lemma. ¤
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