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Investigating Nonlinearity: A Note on the Implementation of

Hamilton’s Methodology

by

D. Bond, M. Harrison and E. O’Brien

Introduction

In an important recent paper, Hamilton (2001) proposed a new approach to nonlin-

ear modelling of economic relationships that provides a single flexible parametric framework

for testing for nonlinearity, drawing inference about the form of nonlinearity, and assess-

ing the adequacy of the description of nonlinearity provided by specific models. Following

Wecker and Ansley (1983), the approach treats functional form as the outcome of a latent

stochastic process that is part of the data-generating process, i.e. the conditional expecta-

tion function associated with a regression model is thought of as being generated randomly

prior to the generation of the data. This latent process is modelled using a new Gaussian

random field concept that generalizes Brownian motion to k dimensions, and the parameters

of the process are estimated by maximum likelihood. The method is a good deal more than

an exploratory data or data-smoothing device. From the practicing economist’s viewpoint,

its importance lies in the valuable insights it can provide for model construction and the

resulting enhancement of the forecasting ability of economic models.

However, the new methodology has been little used to date and its full potential

remains to be established. As Hamilton (2001, p. 552) points out, its usefulness for par-

ticular sample sizes and nonlinearities is a matter for empirical investigation. Yet, citing
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his own three examples and the Monte Carlo studies by Dahl (1998), he suggests that the

method holds much promise. We very much agree.

The aims of the present paper are modest. The main purpose is to address a

number of practical issues that arise when using the Hamilton approach. The first of

these concerns computation: we report on our experience with Hamilton’s software to

implement the method.1 It appears that the numerical optimization involved is not an

entirely straightforward matter, either when using Hamilton’s own dataset or our alternative

samples. The second issue concerns the sensitivity of the method to changes in data. Our

experiments suggest that minor data changes can have implications for computation and

big effects on the results. Another aim, given the length and difficulty of the original paper,

is to provide a concise and reasonably accessible account of Hamilton’s methodology for

non-specialist practitioners, though the nature of the subject is such that it is not possible

to avoid technicalities.

The structure of the paper is as follows. Section 2 describes the new approach

to modelling nonlinearity; sections 3 and 4 report on computational and data-sensitivity

matters, respectively; and section 5 contains a brief summary and conclusion.

1The program is written in Gauss and can be freely downloaded from http://weber.ucsd.edu/˜jhamilto.
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2. Hamilton’s method of parametric flexible nonlinear inference 2

The model

Our interest is in the nonlinear regression denoted by

yt = µ(xt) + εt, t = 1, 2, ..., T (1)

where yt is scalar and xt = [xit] is a k×1 vector of observations on the explanatory variables

at time t, εt is a stochastic disturbance with zero mean and constant variance, independent

of lagged values of xt and yt, and µ(x) denotes the conditional expectation function E(y |

x). The nature of µ(x) is fundamental to Hamilton’s approach and is considered to be

determined as

µ(x) = α0 +α0x+λm(g ¯ x) (2)

where α0 and λ are scalar parameters, α = [αi] and g = [gi] are k×1 vectors of parameters,

m(·) is a realization of a stochastic process called a random field, and ¯ denotes element-

by-element multiplication. The realization m(·), hence µ(x), is assumed to be generated

by nature prior to and independently of all of the observations. Given this fixed µ(x), the

values for εt and xt are then generated and yt, is determined according to the regression

(1).

The interpretation of the parameters in (2) is vitally important for the applica-

tion of Hamilton’s method. In particular, the scalars λ and gi, i = 1, 2, ..., k, characterize

the relationship between m(·) and the conditional expectation function µ(x1, x2, ..., xk).
2To facilitate cross-reference to the original paper, the notation used in this section is similar to that used

by Hamilton (2001).
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Specifically, λ is a measure of the overall ‘weight’ of the process m(·) in the conditional ex-

pectation, while the magnitudes of the gi indicate the degree of nonlinearity associated with

their respective xi. Thus λ = 0 indicates that m(·) makes no contribution and the condi-

tional expectation is linear, in which case (1) is the familiar general linear model. Similarly,

gi = 0 implies that the conditional expectation is linear in xi, while gi 6= 0 signifies that it is

nonlinear in xi. If all of the gi → 0, the contribution of m(·) to the conditional expectation,

hence to yt, becomes indistinguishable from that of α0; if all of the gi →∞, the contribution

to yt is indistinguishable from that of εt. The interpretation associated with α0 and the αi

is the standard one.

The key component in (2), on which the interpretation of the gi depends, is the

random realization m(·), whose nature and role require explanation before the practical

matters of estimation and testing are considered. First, consider a uniform orthogonal grid

in <k, bounded in the direction of each of the k standard basis vectors or Cartesian co-

ordinates by some lower value aj and some upper value bj , j = 1, 2, ..., k.
3 Let the set of all

nodes in the grid be AN , whereN−1 is the number of grid intervals in each direction andNk

is therefore the number of distinct points in AN . For each point x ∈AN , let e(x) ∼N(0, 1)

and be independent of e(z) for all x 6= z; let BN (x) = {z ∈AN : (x− z)0(x− z) ≤ 1}, i.e.

the set of all points in AN whose distance from x is less than or equal to unity; and let

nN (x) denote the number of points in BN(x). Hamilton (2001, p.540) then defines the scalar

3By uniform we mean that the intervals defined by the grid are of equal length in the direction of each of
the k co-ordinates, and the number of intervals in each direction is the same. Note that this does not imply
that the intervals in different directions have to be the same length unless the aj are equal and the bj are
equal ∀ j.
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process mN (x) as
4

mN(x) = [nN (x)]
− 1
2

X
z∈BN (x)

e(z). (3)

Taking the limit of (3) as the grid partition becomes finer, i.e. the interval length in

each direction of the grid tends to zero, we have the notion of a continuous scalar-valued k-

dimensional random field. The stochastic nature of this is such that for any x ∈AN , m(x)∼N(0, 1).

The similarity to standard Brownian motion is apparent.

For arbitrary points in <k, say, x and z, the correlation between m(x) and m(z)

is zero if the distance between x and z is greater than 2. If this distance is not greater than

2, it can be shown, though the proofs are difficult,5 that

Hk(h) = Covk (m(x),m(z))=
Gk−1(h, 1)
Gk−1(0, 1)

(4)

where Gk−1(h, 1) = −hk (1 − h)
k−1
2 + k−1

k Gk−3(h, 1), h is one-half the distance between x

and z, k = 2, 3, ... and the initial values are G0(h, 1) = 1 − h and G1(h, 1) = π
4 − 1

2h(1 −

h2)
1
2 − 1

2 sin(h). Thus (4) can be calculated recursively, but fortunately its values for k = 1

to 5 inclusive are provided in Table I of Hamilton (2001, p. 542). It is this covariance that

provides the means by which the gi govern the curvature of µ(x) in (2); see the illustrative

case of k = 1 in Hamilton (2001, p. 540).

Estimation

Assuming normality of the εt, it follows from (1), (2) and (4) that

y ∼N(Xβ,C+σ2IT ) (5)

4This processs is illustrated for k = 2, a1 = a2 = 0, b1 = 5, b2 = 3, and equal interval lengths in
Hamilton (2001, p.541), so that the number of intervals in each direction is not the same, as required by the
definition of AN .

5See Lemma 2.1 and Theorem 2.2 in Hamilton (2001, p. 541). Note also that the details relating to
Equation (4) are expressed slightly differently than in Hamilton’s lemma and theorem.
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where y is the T×1 vector of observations on the dependent variable in (1),X is the T×(k+

1) matrix of observations on the k explanatory variables and a column of ones associated

with the intercept, β = [ α0 α0 ]0 is the (k + 1) × 1 vector of parameters of the linear

component of the conditional expectation, C = [λ2Hk(hts)] is a T × T variance-covariance

matrix whose typical element is λ2Covk (m(g¯ xt),m(g ¯ xs)) , and hts is one-half the

distance between g ¯ xt and g ¯ xs. The likelihood function follows straightforwardly from

(5) as

ln f(y;β,g,λ,σ2) = −T
2
ln(2π)− 1

2
ln |C+σ2IT |− 1

2
(y−Xβ)0(C+σ2IT )

−1(y −Xβ). (6)

Maximum likelihood provides the basis for inference concerning the parameters

β, g,λ and σ2; and as Hamilton shows, the procedure is valid for regressors that are deter-

ministic or lagged values of the dependent variable. However, in the interests of simplifying

the calculations, (6) is re-written. Defining ζ = λ
σ , letting ψ = [ β0 σ2 ]

0 be the (k+2)×1

vector of parameters for the linear part of the model and θ = [ g0 ζ ]
0 be the (k + 1)× 1

vector of parameters of the nonlinear component, and settingW(X;θ) = ζ2C∗+ IT , where

C∗ = λ−2C, the right-hand side of (6) can be written as

−T
2
ln(2π)− T

2
lnσ2 − 1

2
ln |W(X;θ)|− 1

2σ2
(y −Xβ)0W(X;θ)−1(y−Xβ). (7)

The values of the elements of ψ that maximize (7) for given θ can then be calculated

analytically as

eβ(θ) = [X0W(X;θ)−1X]−1X0W(X;θ)−1y, (8)

eσ2(θ) =
1

T
[y−Xeβ(θ)]0W(X;θ)−1[y −Xeβ(θ)]. (9)
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Thus (7) may be concentrated as

φ(θ;y,X) =− T
2
ln(2π)− T

2
ln eσ2(θ)− 1

2
ln |W(X;θ)|− T

2
. (10)

Hence numerical maximization of (10) gives the maximum likelihood estimate of θ, which

via (8) and (9) yields the estimate of ψ.

Testing for nonlinearity

The form of the model used in Hamilton’s approach suggests that a simple method

of testing for nonlinearity is to check if λ, or λ2, is zero or not. Hamilton shows that if

λ2 = 0, and the nonlinear model is estimated, then for fixed g, the maximum likelihood

estimator eλ2 is consistent for the true value of zero and asymptotically normal. Thus a
test based on the use of standard normal tables is suggested. However, given the maxi-

mum likelihood approach to estimation and the linearity of (1) under the null hypothesis

that λ2 = 0, an obvious and perhaps more appealing way of testing is to use the Lagrange

multiplier principle, which requires only a simple linear regression to be estimated. Under

the assumption of normality, Hamilton derives the appropriate score vector of first deriva-

tives and the associated information matrix and proposes a form of LM test for practical

application. The procedure is as follows.

• Set gi = 2√
ks2i
, where s2i is the variance of explanatory variable xi, excluding the

constant term whose variance is zero.

• Calculate the T × T matrix, H, whose typical element is Hk
¡
1
2 kg ¯ xt − g ¯ xsk

¢
,

i.e. the function Hk(hts) defined in (4) and (5).
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• Use OLS to estimate the standard linear regression y = Xβ + ² and obtain the usual

residuals, b², and standard error of estimate, bσ = (T − k − 1)− 1
2

√b²0b².
• Finally, compute the statistic

κ2 =
[b²0Hb²− bσ2tr(MHM)]2bσ4 n2tr ([MHM− (T − k − 1)−1Mtr(MHM)]2)o , (11)

whereM = IT −X(X0X)−1X0 is the familiar symmetric idempotent matrix.

As κ2 A∼ χ21 under the null hypothesis, linearity (λ
2 = 0) would be rejected if κ2

exceeded the critical value, χ21,α, for the chosen level of significance, α. Otherwise the null

of linearity would not be rejected. For example, at the 5 per cent significance level, the null

would be rejected if κ2 > 3.84. In this case the alternative nonlinear specification given by

(1) and (2) would be preferred.6

3. Computational issues

The implementation of Hamilton’s methodology is straightforward, in principle,

given the availability of Hamilton’s software (see Footnote 1 above). In practice, however,

difficulties may await the unwary. These difficulties relate to the nonlinear optimization al-

gorithms in the OPTMUM procedure in Gauss, which is at the heart of Hamilton’s program.

Indeed, in our original attempts to run the program using Gauss 5, the optimization pro-

cedure failed completely and no nonlinear estimates were obtained. It was this experience

that motivated the research for the present paper.

6The identification of a specific form of nonlinearity is greatly aided by the estimate of the conditional
expectation µ(xt) and, specifically, the eζ and egi. The matter is explained in Hamilton (2001, Section 5) and
illustrated in the three examples in his Section 7; note the role of his Equation (5.17). However, this is not
pursued in the present paper, which concentrates on the nonlinear estimation per se.
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The methods of nonlinear optimization are familiar to most econometricians, and

the particular algorithms available in Gauss may be familiar to some Gauss users. However,

most economists probably do not share this familiarity. Therefore, to assist with the under-

standing of the material in this and the following section, a brief description of numerical

optimization and the relevant algorithms is provided in the following subsection.7

Nonlinear optimization

The OPTMUM procedure in Gauss maximizes the function (10), i.e. φ(θ;y,X), by

minimizing the negative of the function with respect to its vector of parameters, θ. Given

the derivatives of this objective function with respect to θ, i.e. the gradient vector, which

it computes numerically, and initial values for θ, OPTMUM proceeds iteratively, computing

a direction, d, and a step length, s, at each iteration. The quantity sd is a vector of values

that is added to the current estimate of θ, and therefore has the same dimension as θ, and

s is a scalar. Thus, given a value for d, the current estimate, eθ, is updated as
eθ+ = eθ + sd; (12)

hence s may be interpreted as changing the rate of descent of the objective function in the

given direction. We will describe in turn how d and s are computed, concentrating on the

former.

Defining G to be the (k + 1)× 1 gradient vector and H to be a (k + 1)× (k + 1)

symmetric matrix, a standard method of calculating d is as

d =H−1G. (13)

7Further details on numerical optimization may be found in the texts by Brent (1973), Greene (2003),
Murray (1972) and theGauss reference manual Optimization, Aptech Systems, Inc., 2001, especially chapters
2 and 3.
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However, as numerical matrix inversion may be a risky process, the OPTMUM procedure

can avoid it by computing d as the solution of the equation

Hd =G, (14)

which is thought to be numerically more reliable. While G is calculated in a standard

manner, H may be calculated in different ways depending on which algorithm is selected.

Several approaches are available in OPTMUM.

The steepest descent algorithm simply sets H = I(k+1). While this is computa-

tionally undemanding and therefore attractive, the descent may be slow and require many

iterations before convergence.

The PRCG or Polak and Ribiere (1969) conjugate gradient method is a devel-

opment of the steepest descent method that also uses only the gradient but updates the

direction as

d+=G+ + rd, where r =
(G+ −G)0G+

G0G
. (15)

There are several more complex methods. The Newton algorithm equates H to the

Hessian of the objective function, which may be computed numerically as the gradient of

the gradient. Unfortunately, this computation is generally a formidable numerical problem

and, as it is required at each iteration, makes the algorithm slow and possibly unreliable.

However, when it works smoothly, the Newton algorithm may converge in fewer iterations

than other methods.

The large computational problems associated with the calculation of the Hessian in

the Newton method are avoided by certain so-called quasi-Newton algorithms. These start

with an initial estimate of the Hessian and employ updates that add information at each
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iteration without requiring the calculation of second derivatives. Although they generally

need more iterations to achieve convergence than the Newton method, their numerical

efficiency means that they are usually faster and, furthermore, tend to be more robust

to the condition of the model and data. The OPTMUM procedure contains three such

algorithms: the BFGS method due to Broyden (1967), Fletcher (1970), Goldfarb (1970) and

Shanno (1970), the DFP method of Davidon (1968) and Fletcher and Powell (1963), and

BFGS-SC, which is a modified BFGS algorithm in which the formula for the computation

of the update of the Hessian estimate has been changed to make it scale free. In all three

cases, the OPTMUM implementation of the algorithm uses the Cholesky factorization of the

approximation to the Hessian in (14), i.e. H = C0C, before solution for d.

The BFGS algorithm is the default choice in OPTMUM, while the other five are

available as options.

The OPTMUM procedure in Gauss 5 also includes a number of methods for com-

puting the step length, s. The default method is called STEPBT, which is described in

Dennis and Schnabel (1983). It first attempts to fit a quadratic to the objective function

and computes an estimate of s that minimizes the quadratic. If that fails, it tries a cubic

function, which is rather more versatile in cases where the objective function is not well

approximated by a quadratic.

If STEPBT fails, then BRENT is used, a technique due to Brent (1972) that evalu-

ates the objective function at a sequence of test values for s, determined by extrapolation and

interpolation using the inverse of the “golden ratio”, namely, the constant (
√
5−1)
2 = 0.61803.

This method is generally more efficient than STEPBT but requires significantly more func-
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tion evaluations.

If, in turn, BRENT fails, then a procedure called HALF is used. Denoting the

objective function by F (eθ + sd), this method first sets s = 1. If F (eθ + sd) < F (eθ), then s
is set to 1; if not, then s = 0.5 and F (eθ+ sd) is tried. The attempted step length is halved
each time the objective function fails to decrease. When the function does decrease, s is

set to its current value. This method usually requires the fewest function evaluations but

is most likely to fail to find the step length that decreases the objective function.

Thus, if HALF fails, a final search for a random direction that decreases the ob-

jective function is implemented. The radius of the random search is fixed via an important

global variable in OPTMUM called oprteps, the default value of which is 0.01. It is, how-

ever, possible to specify any positive value for oprteps.

Computations and results

The computations and results in this subsection and the following section relate

to Hamilton’s Example 3 concerning the post-war US Phillips curve.8 Noting that an OLS

regression of inflation (πt) on unemployment (ut), lagged inflation (πt−1) and a time trend

(t) reveals statistically insignificant evidence of an inflation-unemployment trade-off using

annual data for the period t = 1949 to 1997, Hamilton (2001, Section 7) investigates whether

a nonlinear relation like that defined in (1) and (2), of the specific form

πt = µ(ut,πt−1, t) + εt, (16)

might be an improvement. His results appear on page 563 of his paper. However, as

8No results for the test statistic (11) are given as they derive from a simple ordinary least squares
regression, which is unproblematical. However, they were checked for all of the cases considered in sections
3 and 4 and, without exception, the null of linearity was rejected.
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previously mentioned, we were originally unable to reproduce Hamilton’s results usingGauss

5 and Hamilton’s data: the numerical optimization associated with the maximization of

(10) failed.

Examination of Hamilton’s program revealed that it employs the BFGS algorithm

and relies on the default value of oprteps. It also appeared that it had been implemented

by Hamilton using an earlier version of Gauss. Indeed, we were able to reproduce his

results using Gauss 3, for example, although where he reports a value for eg2 of 0.16, we find
a value of -0.16, when rounded to two decimal places like all of his results.9 However, when

different algorithms were specified under Gauss 3 the results, when they were produced

using Hamilton’s data file, were not always similar to those reported by Hamilton, as shown

in Table 1. In this table, algorithms 1, 2, 3, 4, 5 and 6 refer to the steepest descent, BFGS,

BFGS-SC, DFP, Newton and PRCG methods, respectively; and the gi and αi refer to

the parameters in the nonlinear and the linear components of the conditional expectation

function, respectively. The values of i = 1, 2, 3 relate to ut, πt−1 and t, respectively, while

α0 is the constant.

The results for BFGS (algorithm 2) in Table 1 are those corresponding to Hamil-

ton’s. Apart from the one difference in sign for eg2, they are identical to his. However, we find
that BFGS-SC (algorithm 3) and PRCG (algorithm 6) fail for Hamilton’s dataset, steep-

est descent (algorithm 1) produces noticeably different numerical results from Hamilton’s,

Newton (algorithm 5) produces very similar results except for the sign on the nonlinear pa-

rameter estimate eg2, and DFP (algorithm 4) replicates the results of BFGS, the Hamilton

case. Despite the big numerical differences in the results produced using algorithm 1, the

9This difference in sign may be a typographical error in Hamilton’s paper.
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high statistical significance of eg3 remains and the inference concerning nonlinearity would
be basically the same as that drawn by Hamilton.

Following an amount of experimentation, we eventually reproduced Hamilton’s

results using Gauss 5, though not all values of oprteps proved successful and led to

results. Table 2 contains the results for what was perhaps the most successful value for this

parameter, namely, oprteps = 0.00001, while Table A1 in Appendix A also gives results

for certain other oprteps values, i.e. 0.001, 0.1 and 1.0. As can be see from Table 2, the

results from Gauss 5, algorithm 2, are identical to those produced by the same algorithm

in Gauss 3, and confirm the negative sign on eg2. The results from Gauss 5, algorithms 1

and 5 are similar in absolute terms to those given by algorithm 2 but there are some sign

changes on eg2 and eg3. In contrast to what was found using Gauss 3, there are surprisingly
large numerical differences between the results from algorithms 4 and 6 and those from

algorithm 2 when using Gauss 5. Despite these various changes across some algorithms

and the two versions of Gauss, eg3 remains the most statistically significant of the nonlinear
parameter estimates, though eg2 is marginally significant for most of the algorithms and
oprteps values. Algorithm 3 failed in all experiments due to a problem with the Cholesky

decomposition,10 and we conclude that this may be due to a program error in Gauss, which

remains to be investigated. The numbers of iterations used by the alternative algorithms

are, in relative terms, broadly in line with what was said about relative efficiencies in section

3.

10The Gauss diagnostic message produced was “Cholesky downdate failed”.
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4. Sensitivity to data

This section reports on the performance of the program and Gauss algorithms,

and the results produced, when various small changes are made to the dataset used in

Hamilton’s Example 3. Three kinds of change were considered. The first deleted ob-

servations at the start of the dataset and the second deleted observations at the end to

give successively smaller samples. The third added new observations to create successively

larger, more up-to-date samples. The additional US unemployment data were obtained

from http://www.bls.gov/cps/cpsaat1.pdf and the new values for the US consumer price index

from ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt. Checks confirmed that the observa-

tions for the period 1949 to 1997, also available from these websites, were identical to those

in Hamilton’s dataset.

In all, ten alternative samples were used. Hamilton’s original dataset is called

dataset 1. Deleting the first observation from Hamilton’s data gives dataset 2; deleting the

first and second observations gives dataset 3; deleting the first, second and third observations

gives dataset 4. Similarly, deleting the last observation gives dataset 5; deleting the last two

observations gives dataset 6; deleting the last three observations gives dataset 7. Finally,

adding the observation for 1998 gives dataset 8; adding the two observations for 1998 and

1999 gives dataset 9; adding the three observations for 1998, 1999 and 2000 gives dataset

10; and adding the four observations for 1998 to 2001, inclusive, gives dataset 11.

For each of the 10 alternative samples, Hamilton’s program was implemented using

Gauss 5 and the values for oprteps of 0.00001, 0.001, 0.1 and 1.0, which were referred

to in the previous section and appear in Table A1. The Gauss 3 implementation was also
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used with datasets 2, 5, 7, 8 and 11. A large volume of results was therefore produced

and the relevant details are tabulated in Appendix B. Table 3 summarizes the nonlinear

estimates given by the Gauss 3 implementation of the program using dataset 2. These

results are typical in regard to the incidence of failure of nonlinear optimization algorithms

and of the differences in the results produced by different algorithms that did not fail. The

results from Gauss 3 for data sets 5, 7, 8 and 11 are contained in tables B11, B12, B13 and

B14, respectively, and the level of program failure in each case is at least as great as that

observed using dataset 2.

As can be seen from Table 3, algorithm 2, which is Hamilton’s default method, as

well as algorithms 3 and 4, fail in Gauss 3. The reason is that, after one or several iterations,

the algorithm encountered a non-positive definite matrix.11 Of the methods that worked,

algorithm 1 and 6 give similar results but algorithm 5 gives very different results from these,

including different signs for all of the egi coefficients. These differences are noteworthy, as is
the fact that algorithm 2 fails for all of the modified datasets examined.

The details concerning the Gauss 5 implementation using datasets 2 to 11, inclu-

sive, are contained in tables B1 to B10, respectively. For convenience, the information from

these tables on success and failure of the algorithms is summarized in Table 4, along with

similar information for Hamilton’s data (dataset 1). Of the 264 program runs, 102 or 39

per cent failed to produce nonlinear estimates. At the extremes, algorithm 3 (BFGS-SC)

failed in all cases, while algorithm 1 (steepest descent) was successful in all cases, albeit

requiring the maximum number of iterations permitted.12 Algorithm 5 (Newton) was the

11One or other of two Gauss diagnostic messages were obtained in this event. The first was “Negative of
Hessian is not positive definite”; the second was “Matrix not positive definite”.
12Increasing the maximum number of iterations to 250, for those algorithms that reached the original



17

most efficient in terms of number of iterations but it failed in 10 out of 44 runs, i.e. in 23

per cent of cases. Algorithm 2 (BFGS), the default in Hamilton’s program, failed in 28 out

of 44 runs or 64 per cent of cases.

As noted in the case of Gauss 3, there are also many differences in the nonlinear

estimates obtained from a given data set when different algorithms work under Gauss 5,

including some sign changes. There are also some big changes in numerical estimates of

parameters, including sign changes, when marginal changes in the dataset, such as the

addition or deletion of just one observation, are made. The reader’s attention is also drawn

to the interesting results obtained using dataset 11. However, the relatively high statistical

significance of eg3 is generally maintained across the range of experiments we have conducted.
5. Conclusion

In this paper we have given an account of the new approach to nonlinear econo-

metric modelling proposed by Hamilton (2001) and briefly described some of the methods

of nonlinear optimization that may be used in the Gauss computer program provided by

Hamilton for the implementation of his methodology. The performance of this program

has been investigated using data relating to Hamilton’s example concerning the US Phillips

curve, two versions of the Gauss software and a range of alternative numerical optimization

options and values for the important Gauss parameter oprteps. Finally, the effects of

changes in the sample data on the results produced by Hamilton’s procedure have been

explored.

The results we have presented suggest some clear conclusions, which we hope will

maximum of 150, did not alter the results obtained to three places of decimals.
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be of value to those contemplating working with Hamilton’s new method. First, different

algorithms used for the numerical optimization have different chances of success. Hamilton’s

choice of the BFGS algorithm fails in over 60 per cent of the cases examined in our study,

while the less computationally efficient steepest descent method succeeds in all cases. Sec-

ondly, when different algorithms work, they may produce significantly different numerical

results and different signs for parameter estimates. Thirdly, minor changes in data can have

significant effects, both in terms of whether an algorithm operates or not and, in the case of

it operating, the numerical results its produces. For example, it is interesting to note that

if Hamilton’s data had just one less observation at either end of the sample, or one more

observation at the end, his version of the program would have failed to produce nonlinear

estimates, not only with Gauss 3 but also with Gauss 5 and all of the values of oprteps

used in this study. Moreover, if his dataset had contained the four additional observations

for 1998 to 2001 (dataset 11), while the program would have produced results, all three non-

linear parameter estimates would have been significant, in contrast to just eg3 as found in his
original study (dataset 1). Thus his inferences concerning the form of nonlinearity would

also have been different. However, finally, despite the sensitivity of results to algorithm and

data changes, the statistical significance of the nonlinear parameter estimates, hence the

inference about the form of nonlinearity, generally seems to be little affected according to

the findings that we have reported.

The present paper is only a beginning of the work advocated by Hamilton as re-

quired to establish the usefulness of his new methodology, and our empirical investigations

are continuing. Indeed, the approach used above has already been extended to the im-
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plementation of Hamilton’s program for his Example 1 and Example 2 [Hamilton (2001,

Section 7)], though the results are not discussed here. For the interested reader, some of

the results are presented in the tables in Appendix C.
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Appendix A 
 
 
 

Summary of Gauss 5 Results. 
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Appendix B 
 
 
 

Detailed results, Gauss 3 & 5, for all datasets. 
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Appendix C 
 
 
 

Hamilton’s example 1 & 2 results. 
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