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Abstract

A ¯scal policy rule in which taxation is a function of existing government debt

(a \wealth-tax") is usually believed to be e®ective in providing stability. Using a

discrete-time version of Blanchard's overlapping generations model, extended to in-

cludemoney and an endogenous labour supply we show that, contrary to the intuition,

a wealth tax might not be enough to ensure the existence of a unique, well de¯ned,

saddle-path equilibrium. We suggest that a government willing to run a positive and

sustainable level of debt could use an alternative ¯nancing rule, imposing an addi-

tional tax component, that is a function of the di®erence between the real interest

rate and the tax rate on wealth.
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1 Introduction

The sustainability of ¯scal policy is an issue that has interested economists at least since

Keynes (1923) and Domar (1944). Christ (1979) studied the implications of di®erent rules

for stability, in an ad hoc Keynesian framework.

In more recent times, this interest has also been fostered by policy-related events. The

high levels of public debts in several European countries, for example, have been the cause

of great concern among policy makers and public opinion in relation to the constitution

of the European Monetary Union (EMU). Expressions like unsustainability, instability and

default risk have entered the day-to-day debate on economic policies. The fears related to

growing debts have been translated in to the strict constraint imposed by the Maastricht

Treaty and the Stability and Growth Pact. Outside the EMU, the UK government and the

House of Commons approved, in 1998, the Finance Act and the Code for Fiscal Stability.

These documents specify two key ¯scal rules that have to be followed in policy making.

The \golden rule" requires that, over the economic cycle, the Government will borrow only

to invest and not to fund current spending, while the \sustainable investment rule" rec-

ommends that the public sector net debt to GDP ratio is kept over the economic cycle at

a \stable and prudent level". In the US, proposals aimed at imposing constitutional con-

straints on the Federal Government borrowing capabilities have been recently put forward.

A Balanced Budget Amendment was rejected by the Senate only by one vote both in 1995

and in 1997.

The above examples show that the sustainability of public ¯nances is a topical issue.

At the same time, some of the resolutions and proposals that emerged in the policy arena

have been criticized for not being based on rigorous economic foundations. This suggests

that more academic research aimed at investigating, both theoretically and empirically, the

implications of ¯scal policy rules for sustainability is highly desirable.

Blanchard et al. (1990), for example, construct short, medium and long-term indicators

of sustainability. Their exercise, based on the idea that a sustainable policy is one that

does not violate the intertemporal budget constraint, has the merit to acknowledge the
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importance of forward looking behaviour in a®ecting policy outcomes. This approach,

however, can be criticized on the grounds of being mostly an accounting exercise, that

heavily depends on how good the forecasts about future variables are.

In our opinion, there is a need to use modern, fully microfounded models to investi-

gate which ¯scal policy rules are \stable", in the sense that they are consistent with the

existence of a well de¯ned equilibrium and of a unique convergent path. The most natural

candidates for this kind of analysis are models of overlapping generations, in which Ricar-

dian equivalence is broken and the debt is allowed to have real e®ects. A contribution in

this direction is the work by Rankin and Ro±a (1999), that uses a Diamond (1965) type,

two-period-lives model to investigate the existence of a maximum sustainable level of debt.

The main question they want to address is whether there can occur \catastrophes", de¯ned

as situations in which a well-de¯ned debt steady-state suddenly ceases to exist while other

variables, like consumption and the capital stock, still lay in an economically feasible range

of values. Because of their interest in catastrophes, they mostly concentrate on comparing

various steady-states for constant levels of debt, and they do not conduct a comparative

analysis of di®erent ¯scal policy rules.

In this paper, we aim at comparing the dynamic e®ects of di®erent ¯scal policy rules,

including ones in which the level of debt is endogenous, rather than being ¯xed at some

constant, exogenous level. To do this, we use a modi¯ed version of the perpetual youth

model provided by Blanchard (1985), in which agents face in every period a positive proba-

bility of death. Our point of departure is the discrete time treatment of Blanchard's model

provided by Frenkel and Razin (1996). In the original Blanchard framework, disposable

income is either given or it follows an exogenously imposed declining path.1 In our model,

by endogenising the labour supply, we take in to account the impact of the labour-leisure

trade o® decisions of agents. On the other hand, we assume that labour is the only fac-

tor of production. Since in Blanchard (1985) capital is endogenous, our contribution is

orthogonal to his in this respect.
1Disposable income is endogenous in Blanchard's model (since the real wage is endogenous), but it is

given to the agent himself.
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The model that we present is similar to others that have been recently developed in

the literature. Leith and Wren-Lewis (2000), for example, use a perpetual youth model to

study the interaction between monetary and ¯scal policy. While they introduce nominal

rigidities in the analysis, they retain the original assumption of an exogenous labour supply.

Another similar model is developed by Heijdra and Ligthart (2000), whose focus is not on

debt, but on comparing the macroeconomic e®ects of three di®erent tax regimes (capital,

labour income and consumption tax).

We conduct three policy experiments. For comparative purposes, we start by looking

at the case in which the government is not allowed to use debt at all. We ¯nd that the

introduction of a positive probability of death is not enough, by itself, to cause an e®ect

of balanced budget expansions on the real interest rate. This policy, on the other hand,

reduces both consumption and leisure. The overall welfare e®ect is therefore negative.

We then study a policy similar to the one considered by Blanchard (1985), in which a

government is initially holding its debt constant, and subsequently decides to increase the

level of debt to a new, higher, steady state. As government expenditure is constant, we are

assuming that taxes adjust endogenously to meet the increased payments of interest. We

show that, under our assumption, this policy raises the real interest rate.

We ¯nally consider the case of a \wealth tax", in which taxation is an increasing function

of government debt (that enters positively the wealth of agents). Contrary to what we

could expect, making taxes an increasing function of existing debt does not automatically

guarantees stability. The presence of a wealth tax might not be enough to ensure the

existence of a unique, well-de¯ned saddle path leading to the equilibrium. In this situation,

it could be the case that a huge increase in the tax coe±cient on debt is needed in order

to have a saddle path solution. Such an increase, however, could be not easy to implement

for the government, because of political pressures. We suggest an alternative rule that

can yield the same outcome, in which the government drastically reduces the tax rate on

debt but adds another tax component, that is a function of the di®erence between the real

interest rate and the tax coe±cient on debt wealth. Our intention here is not to suggest
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that such a rule would be optimal, but only to give some insights in to what policy could

be followed by a government that is in a position of having to control is debt, but that

is prevented from implementing more stringent policies because of some political reasons.

We believe that this situation re°ects the dilemma faced by some European governments

in the early 1990s, that were in a situation of having to reduce drastically their debt, but

could not rely on very large parliamentary majorities to undertake more structural policies,

like heavy taxation of wealth or permanent cuts in government expenditure.

The paper is organized as follows. Section 2 introduces the model, section 3 analyzes

some steady-state and dynamic properties in the case in which there is no public sector,

that is nested in our more general speci¯cation. Sections 4 and 5 look at the e®ects of

di®erent policy rules, while Section 6 draws some conclusions.

2 The Model

2.1 Private Agents

We consider a closed economy. In every period each agent faces a constant probability of

death (1 ¡ q): We also assume no population growth. The size of the cohorts of agents

born in every period is constant across time and can be normalized to 1: The size of the

world population is therefore constant as well and equal to
P1
a=0 q

a = 1
1¡q . Only one good

is produced in the economy. Agents gain utility from consumption, money balances and

leisure. In what follows, we introduce the optimization problem of a representative agent

of age a at time t. Before proceeding with the illustration of the model, it is useful to

clarify our terminology. We will call variables relating to an individual of age a individual

variables, while aggregate variables will be the one obtained aggregating across individuals

of all the di®erent ages, and per-capita variables will be aggregate variables divided by the

size of the population.

The representative agent maximizes the expected utility function2

2Ca+s¡t;s denotes consumption of an agent of age a + s ¡ t at time s: An analogous notation holds for
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E(Ut) =
1X

s=t

(¯q)s¡t[log(Ca+s¡t;s) +Â log
Ma+s¡t;s
Ps

+ Ã log(1¡ La+s¡t;s)] (1)

Where all the parameters are positive, 0 < ¯ < 1 is the discount factor; C; MP and L

denote consumption, real balances and leisure respectively. Preferences are homothetic and

separable in consumption, real balances and leisure. The endowment of time in each period

is normalized to 1: La+s¡t;s is the quantity of labour supplied in every period, (1¡La+s¡t;s)
is leisure. A standard assumption in this framework is the existence of insurance companies.

We assume that insurance companies pay a net premium of (1¡qq ) on the agent's ¯nancial

wealth for each period of his life, while they encash the agent's ¯nancial wealth if the agent

dies.3 Agents can hold ¯nancial wealth as real balances or as government debt. In addition,

they supply labour and pay lumps-sum taxes. The representative agent's period t budget

constraint in real terms is, therefore4

Da;t+1 +
Ma;t
Pt

+ Ca;t =
1
q
[Ma¡1;t¡1
Pt

+ (1 + rt)Da¡1;t] +
Wa;t
Pt
La;t ¡ ¿t (2)

Where D;W; r; ¿ and P denote respectively government debt, nominal wage, real in-

terest rate, real lump-sum taxes and prices. The agent's maximization problem is also

subject to a standard No-Ponzi Game condition. It can be shown that solving the agent's

optimization problem, aggregating across ages and dividing by the population size we can

derive the per-capita equations that we present in next sub-section.

Before presenting these equations, it is useful to specify the technology used by ¯rms and

the behavior of the government. In order to make aggregation possible, we assume that

the agents supply their labour in a perfectly competitive market. For the same reason,

the other variables.
3As agents die in each period with probability q; these arrangements ensure a safe return of 1 on money

and of (1 + rt) on debt.
4Note the di®erent timing convention for money and assets. Money between periods t ¡ 1 and t is

denoted by t ¡1, while government liabilities between t ¡1 and t are indexed by t. This timing convention

is used, for example, by Obstfeld and Rogo® (1996, Ch. 10).
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we assume that the marginal productivity of labour is invariant across ages. Another

simplifying assumption is that labour is the only factor of production, with constant returns.

The technology used by ¯rms is therefore

Yt = Lt (3)

Where Lt is the quantity of labour used in the production process. Under these assump-

tions, from the pro¯t maximization condition we obtain WtPt = 1 in every period t.

In this paper we abstract from utility enhancing government spending. The government

therefore spends on public expenditure that does not a®ect private utility. Government

expenditure and interest payments on outstanding debt can be ¯nanced by seigniorage,

lump-sum taxes and issuing of new debt, according to the single-period budget constraint

Gt + (1 + rt)Dt = ¿t +
(Mt¡Mt¡1)
Pt

+Dt+1 (4)

In addition to this, the government must also respect a No-Ponzi game condition. It is

important to notice that, since the government has an in¯nite life horizon, the real interest

rate applied to Dt in (4) is (1 + rt); as opposed to(1+rt)q in the private agents' budget

constraint.

2.2 Per-Capita Variables

All per-capita variables will be indexed by the superscript PC: It is also useful to de¯ne

formally total wealth as the sum of ¯nancial and human wealth

TWt = (1 + rt)[
1

1 + it
Ma¡1;t¡1
Pt¡1

+Da¡1;t] +Ha;t

Where Ha;t is human wealth, de¯ned as:

Ha;t =
1X

s=t

®s;tqs¡t(
Wa+s¡t;s
Ps

¡ ¿s)
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Human wealth is de¯ned as the present discounted value of potential gross earnings

(that would be earned if the agent chose to consume no leisure), minus taxes.5

Per-capita consumption is given by

CPCt =
1X

a=0

(1¡ q)qaCa;t = (
1 ¡ q¯

1 +Â +Ã
)TWPCt (5)

Where (1 ¡ q)qa is the proportion of agents of age a in the world population.6 The other

per-capita variables are

TWPCt =
1X

a=0

(1¡ q)qaTWt =HPCt + (1 + rt)[
1

1 + it
MPCt¡1
Pt¡1

+DPCt ] (6)

HPCt =
1X

a=0

(1 ¡ q)qaf
1X

s=t

®s;tqs¡t(
Ws
Ps

¡ ¿s)g =
1X

s=t

®s;tqs¡t(1 ¡ ¿s) (7)

MPCt¡1 =
1X

a=0

(1¡ q)qa¡1Ma¡1;t¡1

DPCt =
1X

a=0

(1¡ q)qa¡1Da¡1;t

Notice that, in the aggregation of wealth, we have used the fact that both taxes and

real wages are invariant across ages, and that real wages can be set to 1 with the special

production function (3). As a consequence, per-capita human wealth is equal to individual

wealth for each agent.
5Of course, as leisure provides utility, agents will not choose to supply a quantity 1 of work in each

period as long as the parameter on leisure in the utility function is positive (Ã > 0).
6The size of each cohort of agents is normalized to 1, and each agents has a probability of surviving in

every period equal to q: For the law of large numbers, therefore, qa is the number of agents of each cohort

that survive till the age a:
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Similarly, as prices and interest rates are independent of age, per-capita money demand

is given by
MPCt
Pt

= Â(1 + it+1)
it+1

CPCt (8)

The following per-capita labor-leisure equation can also be derived

LPCt =
1X

a=0

(1 ¡ q)qaLa;t = 1¡ Ã(1¡ q)
1X

a=0

qaCa;t = 1 ¡ÃCPCt (9)

The latter relationship is useful to illustrate an important characteristic of the model,

namely the fact that private consumption and output (equal to the quantity of labour

supplied) are determined by government expenditure. To show this, notice that in this

simple closed economy, equilibrium in the goods market, in per-capita terms, boils down

to

Y PCt = LPCt = CPCt + Gt (10)

Solving for LPCt and CPCt from (9) and (10) we obtain:

Y PCt = LPCt =
1

1 +Ã
+
Ã

1 +Ã
Gt (11)

CPCt = 1
1 +Ã

¡ 1
1 + Ã

Gt (12)

In the case in which leisure does not provide utility (Ã = 0); equations (11) and (12)

reproduce the neo-classical result of no e®ect on output and complete crowding-out of

consumption following a ¯scal expansion (dY=dG= 0 , dC=dG= ¡1). In this case agents

supply inelastically all their endowment of time. The balanced-budget multiplier derived

in the IS/LM literature, (dY=dG = 1; dC=dG = 0); on the other hand, emerges in the

limiting case in which Ã ! 1.

While Y PCt and CPCt can be expressed as functions of an exogenous, predetermined

variable like government expenditure, the real interest rate is a function of its future lev-

els, behaving like a \jump" variable. In order to see this, it is useful to go through the

intermediate step of characterizing the dynamic behavior of consumption.

10



2.3 Per-Capita Consumption Dynamics

The dynamics of per-capita consumption is given by

CPCt = (
1¡ q¯

1 + Â+ Ã
)(1 ¡ q)HPCt + (1 + rt)q¯CPCt¡1 (13)

In the case of in¯nite life (q = 1) equation (13) reduces to a standard Euler equation.

In that case human wealth is not relevant for predicting future consumption. The above

expression also nests the logarithmic case in the Frenkel and Razin (1996) model, in which

money and leisure do not provide utility (Â = Ã = 0).

3 Steady State and Dynamics without Government

Wewill now characterize the steady-state and the dynamics of the model. It is convenient to

consider ¯rst the case in which government expenditure, taxes and debt are permanently

¯xed to zero. As the model displays multiple equilibria, one issue that arises is how to

discriminate between them. The preliminary analysis of this section gives some insights

about this, that will also turn out to be useful once we reintroduce the government in the

model.

3.1 Steady State

In an economy without public sector, consumption and output are permanently ¯xed at

the \natural" level 1
1 +Ã

: It follows that a steady-state version of equation (13) is7

1 + r = 1¡ (1 + Ã)(
1 ¡ q¯

1 +Â +Ã
)(1¡ q)HPC (14)

Where HPC is the steady-state level of human wealth with ¿ = 0; i.e.

HPC =
1X

s=t

(
q

1 + r
)s¡t =

1+ r
1 + r ¡ q (15)

7Barred variables denote the steady-state.
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RHRL

f(R), g(R)

R=1 + r

q ↓

RH’RL’

Figure 1:

Substituting (15) in (14) and denoting with R = 1 + r the gross real interest rate we can

derive the following quadratic equation in R

R2 ¡ fq + 1
q¯

[1¡ ( 1¡ q¯
1 + Â+ Ã

)(1 ¡ q)(1 +Ã)]gR + 1
¯

= 0 (16)

To solve explicitly for R from this equation would be possible, but not very illuminating.

The implications of (16) are more easily understood looking at Figure 1.

The two solutions of (16) are the points in which the parabola f( R) = R2 meets the

line g( R) = fq + 1
q¯

[1 ¡ ( 1¡q¯
1+Â+Ã)(1 ¡ q)(1 + Ã)]gR ¡ 1

¯
: Given the ranges of values of

the parameters, the slope of this line is obviously positive. From Figure 1 it is clear that

we are faced with two possible equilibria. As the real interest rate is expected to behave

like a jump variable, one way of discriminating between them is to select the unstable

one. This can only be done after characterizing the dynamics of R: However, we can

discriminate between the two di®erent steady-states even before looking at the dynamics,

if we assume that deviations from the Ricardian equivalence case (q = 1), are not too large.

In particular, we can notice that, when Ricardian equivalence holds (q = 1), equation (16)
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yields the two solutions RL = 1 and RH = 1
¯ :

8 In this case only the higher equilibrium is a

well de¯ned steady-state. This can be seen considering that, since there is no in°ation in

the steady state, R = 1 implies r = i = 0; i.e. an in¯nite money demand. In addition, it

is clear from equation (15) that R = 1 also implies an in¯nite level of steady-state human

wealth. Furthermore, considering that the derivative of fq+ 1
q¯

[1¡( 1¡q¯
1+Â+Ã)(1¡q)(1+Ã)]g

computed at q = 1; being equal to ¯¡1¯ ( Â
1+Â+Ã ); is negative, in the neighborhoods of this

value a fall in q implies an increase of the \higher" equilibrium (that is a movement from

RH to R0H in Figure 1) and a fall of the \lower" equilibrium (from RL to R0L in Figure 1):

It follows that, if the deviation from the in¯nite life case is not too big (if q is not too much

smaller than 1), we are sure that RL becomes smaller than one. Since in a zero in°ation

steady-state nominal and real interest rate coincide, RL implies a negative nominal interest

and cannot be considered a well-de¯ned steady-state.

As we are going to show in what follows, the analysis of the dynamics of the model

will lead to the same conclusion. In particular, it will allow us to prove that, even for

large deviations from Ricardian equivalence, reducing q rises (lowers) the higher (lower)

equilibrium. This conclusion will give more generality to the arguments developed above.

3.2 Dynamics

In this simpli¯ed version, the dynamics of the model can be summarized by a ¯rst-order

non-linear di®erence equation for the gross real interest rate, given by

Rt+1 =
1

1
q
[1 ¡ (1 + Ã)

(1 ¡ q¯)
(1 +Â +Ã)

(1¡ q)] + q¯ ¡ ¯Rt
(17)

Equation (17) reduces to the quadratic expression that characterizes the steady state if we

impose Rt = Rt+1 = R: The dynamics out of the steady state can be investigated with the

help of Figure 2, where we plot equation (17) together with the Rt = Rt+1 line.
8Notice that, when agents have in¯nite lives, our model collapses to a discrete time version of the

Ramsey (1928) model. When q = 1; equation (16) yields the two solutions RL = 1 and RH = 1
¯ : RH = 1

¯

is the solution of the Ramsey model, while RL = 1 is not.
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Rt+1

Rt

RH
RL

Rt+1=f(Rt)

Rt+1 =Rt

Figure 2:

Equation (17) is a hyperbola, that cuts the Rt = 0 axis at
1

1
q
[1¡ (1 +Ã)

(1¡ q¯)
(1 + Â+ Ã)

(1 ¡ q)]
.

We can restrict our attention to the positive arm, that tends to the vertical asymptote

Rt =

1
q
[1¡ (1 + Ã)

(1¡ q¯)
(1 +Â +Ã)

(1¡ q)]

¯
as Rt+1 ! 1:

From equation (17) it is evident that, starting form every point on the left or on the

right of RL; the economy will converge back to RL; while the opposite happens around

RH : Therefore, RH is the unstable equilibrium. As this is a forward-looking, rational-

expectations model, this property should not be regarded as problematic. On the contrary,

it is a very desirable feature. The logic of the rational expectations method is that, if there

is a unique possibility that ensures boundedness, this is the one that will be selected. In

other words, the real interest rate acts as a jump variable, making the model \well behaved"

in terms of dynamics. This con¯rms that, in what follows, we can restrict our attention on

RH :

From Figure 2 is also possible to derive an analysis of the e®ects of the probability of

death on the real interest rate that is not limited to the case in which the value of q lies in the
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vicinity of 1. It is possible, infact, to show that the derivative of 1
q
[1¡(1+Ã) (1 ¡ q¯)

(1 + Â+ Ã)
(1¡

q)] + q¯ with respect to q is equal to (q2¯¡1)
q2

Â
(1+Â+Ã) , that is unambiguously negative. This

implies that a decrease in q; by raising the denominator of (17), will shift the hyperbola

downward, thus raisingRH and lowering RL: In the unstable steady-state, an increase in the

temporal horizon of agents decreases the real interest rate. This con¯rms that the unstable

steady-state is the one that yields the more sensible result in terms of comparative static,

even if deviations from Ricardian equivalence are large (if q is considerably smaller than 1).

Furthermore, the above result show that, if we start from the Ricardian case (q = 1) and

we reduce the probability of survival, the gross real interest rate in the lower equilibrium

becomes smaller than 1. Again, the lower equilibrium implies a negative nominal interest

rate and cannot be considered a well de¯ned steady state. Unlike in the previous subsection,

the result derived here proves that this is the outcome even if the reduction from q = 1 is

not marginal.

As we are going to see in what follows, when we reintroduce the public sector in the

model we can use similar arguments to discriminate between equilibria. The conclusions

drawn from this simple version of the model are consistent with the more general case.

4 E®ects of Fiscal Policy

We will now reintroduce the government in the model. In the policy rules studied in this

section government debt is either not allowed or exogenous. The analysis of cases in which

debt is endogenous is carried out in next section.

In the ¯rst policy experiment we look at a balanced budget expansion (G = ¿; D = 0).

In the second one we consider the steady-state e®ects of increasing debt from a constant

level to another constant level. In the latter case, government expenditure is kept constant

and taxes are assumed to adjust endogenously. As the focus is on ¯scal policy, in both cases

we hold the money supply permanently ¯xed at a constant level M; ruling out seigniorage.

For the reasons explained above we restrict our attention to the higher equilibrium RH :
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4.1 Balanced-Budget Expansions

We start considering the case in which the government is allowed to spend but not to use

debt. Assuming a constant level of expenditure perfectly matched by lump-sum taxes in

every period, the steady state of human wealth becomes: HPC =
P1
s=t(

q
1 + r

)s¡t(1¡ ¿) =

(1¡ ¿ ) 1 + r
1 + r ¡ q . We can therefore derive a modi¯ed version of equation (16):

R2 = fq ¡ 1
q¯

[1¡ (1 ¡ ¿)
(1¡G) (

1¡ q¯
1 + Â+ Ã

)(1¡ q)(1 + Ã)]gR ¡ 1
¯

(18)

Under a policy regime in which G = ¿ ; the above equation reduces to (16). This im-

plies a quite unexpected result. Although our model is based on some \non neo-classical"

assumptions, like the deviation from Ricardian Equivalence, balanced-budget ¯scal expan-

sions turn out not to a®ect the real interest rate. In Blanchard (1985), the real interest

rate is equated to the marginal productivity of capital. As a balanced-budget expansion

decreases capital in his model, the real interest rate increases. The assumption that labour

is the only factor of production implies that, even with ¯nite horizons, following a balanced-

budget expansion our model behaves like the Ramsey one, in which the real interest rate

is independent of movement in G, rather than like Blanchard's.

As in the steady state in°ation is zero, nominal and real interest rates coincide. This

implies no direct e®ect via the interest rate on real balances. Remembering equations (11)

and (12), it is clear that, following a once and for all ¯scal expansion, there will be a

step increase in the quantity of labour supplied and a step decrease in consumption. Both

consumption and leisure fall.9 Money demand, being a function of consumption, falls as

well. The overall welfare e®ect of a balanced-budget ¯scal expansion is therefore negative.

The welfare results of our model are qualitatively the same that can be derived, for

the long run, in a closed-economy version of the Redux model presented by Obstfeld and

Rogo® (1995, 1996).10 In the present model and in the Obstfeld and Rogo® model the
9The reduction in steady-state consumption in our model is consistent with both the Ramsey and

Blanchard models.
10As the present model is a °exible-prices one, it would not be appropriate to compare our results with
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output multiplier is positive and the consumption multiplier is negative, and both are less

than one in absolute value. If we assume Ã < 1; the negative welfare e®ect is mitigated

in our case, compared to the Obstfeld and Rogo® model. When Ã = 1 our model and the

closed-economy version of the Obstfeld and Rogo® model coincide.

A paper that looks at the consequences of a balanced-budget expansion in a sticky-price,

continuous-time, perpetual-youth model with capital accumulation is Rankin and Scalera

(1995). Their results are quite di®erent from ours. In their model the long-run consumption

multiplier is positive and the output multiplier is above unity. The authors explain this

as a consequence of the fact that they have investment and capital accumulation. With

no capital accumulation, their model would give the usual Keynesian balanced-budget

multiplier (dY=dG= 1; dC=dG = 0). As we have already stressed in section 2.2, this result

only emerges here in the extreme case of an in¯nite weight of leisure in agents' preferences.

The presence of an endogenous labour supply in our model is su±cient to deviate from the

neo-classical result of a zero output multiplier, even in a °exible price world, but is not

enough to generate the polar result of Rankin and Scalera (1995).

4.2 The Case of Constant Debt

We now turn our attention to another policy, in which the debt is ¯xed exogenously. We

will therefore look at the steady-state e®ect of an increase from one constant level of D to

a new constant level. From the government budget constraint with constant G, D and M;

we have:

¿t = G+ rtD

When the government decides to raise the level of steady-state debt, G is kept constant,

and taxes adjust endogenously to meet the increased interest payments.

The steady-state value of human wealth is now HPC =
P1
s=t(

q
1 + r

)s¡t(1¡G¡ rD) =
1 + r

1 + r ¡ q (1¡G¡ rD); and the steady-state equation for R can be expressed as

the short-run ones in Obstfeld and Rogo® (1995, 1996), where prices are sticky.
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R2 =
[ (1+Ã)(1¡q)(1¡q¯)(1+Â+Ã)(1¡G) D + (1+Ã)(1¡q)(1¡q¯)

(1+Â+Ã) ¡ q2¯ ¡ 1]
(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

R+

+
q

(1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) D ¡ q¯

(19)

The latter expression shows how the analysis becomes more complicated, compared to the

previous cases considered in the paper. We will here present some analytical results on the

e®ects of an increase in debt on the real interest rate in a particular case, that we label the

\reference case".11

In our reference case steady-state debt is initially set to zero (D = 0) and the utility

provided by money is also zero (Â = 0): A case in which initial steady-state debt is ¯xed to

zero is quite a natural one to study, since it is continuous with the no-debt cases previously

considered. As we already know, in the reference case the two steady-state solutions for R

are RL = 1 and RH = 1
¯ . Let's now notice that equation (19) can be rewritten as

(q¯ ¡ k D)R2 ¡ [1 + q2¯ ¡ (1 ¡G)k ¡ kD]R + q = 0

where k = (1+Ã)(1¡q)(1¡q¯)
(1+Â+Ã)(1¡G) : Totally di®erentiating and evaluating in the reference case we

have

[q¯2R¡ (q + q¯)]dR+ (¡kR2 + kR)dD

Further, evaluating at the higher steady-state RH = 1
¯ and rearranging we have

dR
dD

=
k
¯q2

that proves the positive e®ect of an increase in debt on the real interest rate in the reference

case.
11A more general discussion, not reported here for the sake of brevity, can be found in a longer version of

the paper available from the author's homepage: http://econserv2.bess.tcd.ie/ganellig/¯s rules.pdf. The

results presented there con¯rms that those derived for the \reference case" are the most likely to emerge.
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If, as the analysis of the reference case suggests, an increase in the exogenous level of

debt increases the steady-state level of the interest rate, then this policy has two negative

welfare e®ects. The ¯rst one arises through real balances. Since in the steady state nominal

and real interest rate coincide, an increase in RH implies that agents demand less money,

and this reduces their utility. The second e®ect is due to the fact that an increase in the

real interest rate implies an higher growth rate of consumption over an individual's lifetime.

Since average lifetime consumption does not change (the level of per-capita consumption

does not change, see equation 12) , this e®ect increases the imbalance in the lifetime

consumption pro¯le. We could expect, on an intuitive basis, that this would further reduce

lifetime utility.

In Blanchard (1985, p.243), a similar policy reduces the steady-state levels of both

capital and consumption. In his model, therefore, the real interest rate increases unam-

biguously. This is what is likely to happen in our model. In our model, however, we have

no e®ect on per-capita consumption. This di®erence is due to the fact that, keeping the

level of capital constant, we have prevented movements in the real interest rate from hav-

ing direct e®ects on consumption. In Blanchard, the decrease in capital associated with an

increase in R has a direct, negative e®ect on consumption. This does not happen in our

model, because capital does not change.

5 Introduction of a Wealth Tax

In the policy experiments considered so far, government debt was either zero or ¯xed at

a constant level exogenously determined. We now turn to the case in which taxes are a

function of the existing level of debt. In this case both debt and taxes are endogenously

determined.

Since government debt enters as an asset in the portfolio of agents, we refer to this as

a \wealth tax". It is important to stress, however, that this kind of instrument, being a

function of per-capita debt, should not be regarded as a wealth tax in the strictest sense,

i.e. one that distorts agents' decision. From an individual's point of view, the tax is a
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\lump-sum" one. The size of the lump-sum depends on aggregate wealth, but a single

individual has no in°uence on the latter. Examples of taxation imposed on aggregate

wealth, without distortionary consequences, can be found both in the theoretical literature

(for example Rankin and Scalera, 1995) and in large-scale macroeconometric models used

for policy simulations (Mitchell et al. 1999).

Formally, the rule that we are considering, is expressed as

¿ t = T + ¿Dt

for every t, with 0 < ¿ < 1 and G > T: On an intuitive basis, we would expect that if the

real interest rate is smaller than the rate at which new debt feeds in to new taxes (¿ > rt),

this rule should grant stability, preventing the debt from exploding (see below, equation

20).

The most interesting result in this section is that, contrary to the intuition, we can not

rule out cases in which this rule fails, for realistic parameters values, to ensure the existence

of a well-de¯ned equilibrium with a unique convergent path. If Rt; as it appears in equation

(20) below, was independent of debt (as it is the case in the Ramsey model), then stability

would depend only on the sign of rt ¡ ¿t: If we get instability, then, it must be because of

the dynamics in Rt, which are introduced by the fact that, when q < 1, Rt depends on Dt:

This means that an overlapping generations economy is more likely to be unstable, under a

given wealth tax rule, than a Ramsey economy. Failing to consider the implications of ¯nite

horizons implies that rules similar to the one that we are analysing are usually believed,

especially in policy related analysis, to be e®ective in \closing" the model. Mitchell et al.

( 1999, pag. 171), for instance, in comparing the properties of di®erent macroeconometric

models, refer to \The speci¯cation of a ¯scal policy reaction function or ¯scal closure rule

that enforces the government's intertemporal budget constraint...". In their analysis, based

on an in¯nite horizons theoretical framework, a tax rule that makes taxation a function of

the existing stock of debt ensures convergence of debt (in the case of no real growth) if ¿

(µ in their notation) is bigger than the (exogenous) real interest rate (Mitchell et al. 1999,

pag. 179).
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The implications of such a rule in our model are investigated in what follows using a

combination of graphical analysis and numerical simulations. The dynamics of the economy

can be summarized by the following two non-linear di®erence equations in Rt and Dt:

Dt+1 = (Rt ¡ ¿ )Dt + G¡ T (20)

Rt+1 =
1

¡(1 ¡ ¿Dt ¡ T )
(1 +Ã)
(1 ¡G)

(1 ¡ q¯)
(1 +Â +Ã)

(1 ¡ q)
q

+ q¯ +
1
q

¡ ¯Rt
(21)

Equation (20) comes from substituting the tax-rule in to the period by period government

budget constraint with constant G, andM , while (21) is the expression equivalent to (17),

once we take into account that now HPCt =
P1
s=t ®s;tqs¡t(1 ¡ ¿s) =

P1
s=t ®s;tqs¡t(1 ¡ T ¡

¿Ds):

The locus ¢Dt = 0 is a hyperbola with intercept Dt =
G¡ T
¿ +1

; and Rt = ¿ + 1 and

Dt = 0 respectively as vertical and horizontal asymptotes. Debt converges back to the

locus on the left of the vertical asymptote (where ¿ > r), and diverges away from it on the

right (where r > ¿). The locus ¢Rt = 0 is the sum of a straight line with positive slope

and of a hyperbola. It tends to the straight line as Rt ! 1 and to the hyperbola as Rt

! 0. Rt decreases above the locus and increases below.

In principle, the existence of steady-state solutions could be studied analytically, impos-

ing constant levels of D and R in equations (20) and (21) and solving the system. Doing

this without assigning speci¯c parameters to the values would not allow us to derive neat

expression for the solutions. Before resorting to simulations, however, it is useful to stress

that, combining equations (20) and (21), it is possible to show that the steady-state values

are the solutions of a cubic equation, that therefore has either one or three real roots. All

the possible cases are presented graphically in Figures 3 to 5.12 The three possible steady

states are labelled, starting with the lower, as R1; R2 and R3: If there is only one solution,
12The practice of drawing phase dyagrams for discrete systems is a standard one in modern macroeco-

nomics (see, for example, Blanchard and Fischer, 1989, pp. 230-31).
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AD t=0Dt

Rt

R1

Figure 3:

this can only be in the region where r < ¿ (Fig. 3). The case of three solutions can happen

in two di®erent ways: all the solutions where r < ¿ (Fig. 4), or one where r < ¿ and two

where r > ¿ (Fig. 5).

It is evident that steady-states in the region where r > ¿ can only occur for negative

values of debt. The intuition behind this is that when the real interest rate is bigger than

the taxation coe±cient, existing debt generates new debt at a faster rate than it increases

taxation. As a result, it is only possible to have a stable level of debt if this is negative, i.e.

if agents are borrowing from the government. In this case an increase in r is good news for

the government's ¯nance. We are induced to pay little attention to the possibility of such

an outcome, however, on the basis of the observation that equilibria with negative values

of government debt are not very likely in reality. On the normative side, we are interested

in sustainability, so we do not want to suggest a rule that would eliminate government debt

completely.13

What about the region in which r < ¿ ? From Figures 3, 4 and 5 it is clear that the
13A positive level of debt can be a desirable property of an economy, as long as it is sustainable. In our

model, for instance, debt facilitates consumption smoothing over time.
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steady-state R1 in this region is globally stable. However, we are quite doubtful about the

practical relevance of this equilibrium, for several reasons. The ¯rst one is that it implies

a multiplicity problem, i.e. there is no unique path along which the system converges.

It is also possible to show that, as in the previous cases, this lower equilibrium is not a

well de¯ned steady-state because it implies a negative nominal interest rate. In order to

show this, we start considering the case in which Ricardian equivalence holds (q = 1): This

yields a discrete-time version of the Ramsey model with a wealth tax. In this situation,

debt ¯nancing becomes irrelevant for the real interest rate, and the solutions for R are

only two, and they are equivalent to the ones that we obtain when there is no government

in the model: RL = 1 and RH =
1
¯
: The ¢R = 0 locus collapses to two vertical lines in

correspondence of the two solutions for R: Figure 6 describes the dynamics in this case.

It is clear that the RL is always a sink, whereas RH implies a positive (negative) debt

and is a saddle (source) if 1 + ¿ > 1
¯

(1 + ¿ < 1
¯
): The equilibrium RH with 1 + ¿ > 1

¯
is therefore the one that yields the case that we consider more satisfactory in terms of the

stability properties, i.e. the saddle path. Comparing Figure 6 with Figure 3, 4 and 5 we

can develop our argument to rule out R1. In Figure 6, where q = 1, the lower equilibrium
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yields a value of 1 for the gross real interest rate. Figures 3, 4 and 5, however, suggest

that when we marginally reduce q from 1 to a value less than 1, the ¢Rt = 0 locus goes

from a straight to an hyperbolic shape. This implies that the RL steady-state goes from

1 to a value smaller than 1, becoming what we have denoted as R1 in ¯gures 3, 4, and

5. As already stressed, a gross real interest rate smaller than 1, means r < 0: Since in

the steady-state, with constant prices, real and nominal interest rate coincide, the lower

steady state implies not only a negative real interest rate, but also a negative nominal

interest rate, that is obviously economically meaningless. The numerical simulations that

we provide below (see Table 1) support this reasoning, yielding always a value less than 1

for R1: We are con¯dent, therefore, that we can rule out this equilibrium.

From the above analysis it follows that the only case in which the economy converges

along a uniquely well de¯ned path to a steady-state with positive debt is when we have

three steady states in the region where r < ¿ (Fig 5). In this case the second steady-state

R2 is a saddle-path, while the third one R3 is a source.

It is useful, at this point, to see which cases are likely to emerge for given parameter

values, and how the government's choices can a®ect the outcome. In our simulation exer-

cises on this case, we start from the following benchmark parametrization: ¯ = :9; q = :9;

Ã = :1; Â = :05; G = :3; T = :2 and ¿ = 0:25: Our benchmark case reproduces a situation

in which agents are not very myopic and the deviation from Ricardian equivalence is not

very high. Also, the utility provided by leisure and real balances is assumed to be small

compared to the one provided by consumption. We also assume that one third of the

maximum amount of work available in every period is used to produce public goods.

This yields a solution in which the three steady state are in the region r < ¿; and a

well de¯ned, convergent steady-state exists. The result of the simulations are summarized

in Table 1.14 Figure 7 was generated in Maple setting the parameters at the benchmark

levels, and it con¯rms the shapes of the loci already illustrated in the theoretical analysis
14In the benchmark case, the selected steady state implies a value of r w 16%: It is worth stressing here

that, since our model is a very simplī ed one, our aim here is not to produce realistic estimates of the

magnitudes of the variables, but rather to gain some insights on the theoretical properties of the economy.
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of Figure 5.

Table 1. Steady-state values of R and D for di®erent numerical examples (In column

2,3,4 only the parameters reported have been altered with respect to the benchmark case)
Benchmark q = :85 ¿ = :2 ¿ = :01
R1 = :992 R1 = :987 R1 = :992 R1 = :997
R2 = 1:16 R2 complex root R2 complex root R2 = 1:053
R3 = 1:207 R3 complex root R3 complex root R3 = 1:068
D1 = :338 D1 = :380 D1 = :482 D1 = 7:815
D2 = 1:107 D2 complex root D2 complex root D2 = ¡2:309
D3 = 2:324 D3 complex root D3 complex root D3 = ¡1:713

How do changes in the parameters of the model a®ect the solutions? Keeping everything

else constant, a reduction in q from .9 to .85 gives complex roots for the second and third

steady state. Therefore, we are left only with the R1 solution (See Table 1, column 2).15 A

moderate reduction in ¿ (for example, from .25 to .2) has the same e®ect (Table 1, column

3), while if the reduction is drastic (for example, from .25 to .01), we have the case of one

steady-state with positive debt and two with negative debt (Table 1, column 4). Notice

that in this numerical example we have a saddle-path corresponding to positive debt when
15A similar result emerges if we reduce the discount rate to ¯ = :85 keeping q = :9:
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1 + ¿ = 1:25 >
1
¯

= 1:11; and a saddle path with negative debt when
1
¯

= 1:11 > 1 + ¿ =

1:01: The eigenvalues for the relevant (positive debt) steady-state have been calculated for

this parametrization and are reported in Table 2, con¯rming that it is a saddle-path.

Table 2. Eigenvalues for the (R2; D2) steady-state in the benchmark case
Steady-state Eigenvalues
R2 = 1:16;D2 = 1:107 ¸1 = :951; ¸2 = 1:169

Although the properties of the solutions depend on the vector of all the parameters,

the previous analysis suggests that a well-de¯ned saddle-path is more likely to emerge for

higher values of ¿ : In some cases, the tax coe±cient on debt needed to ensure a saddle-path

with positive debt could be quite high. We therefore suggest that a government that is

faced with the dilemma of designing a policy rule that is sustainable and at the same time

allows a positive debt steady state could choose an alternative policy rule. In this new rule

taxes are a function not only of debt, but also of the divergence between the real interest

rate and the taxation coe±cient on debt. To clarify our motivations in proposing such a

rule, let's consider the following parametrization, in which the deviation from Ricardian

equivalence is larger than in the benchmark case: ¯ = :9; q = :685; Ã = :1; Â = :05;

G = :3; T = :2 and ¿ = 0:25: This is a case that produces only one equilibrium (Table

3, column 1). As we know from the previous analysis, this is not a well de¯ned steady

state. If the government increases ¿ to 0:6; however, we can have a well de¯ned steady

state with a positive level of debt, to which the economy converges along a saddle-path

(Table 3, column 2).

A saddle-path with positive debt, however, can also be obtained if the government

introduces the alternative rule

¿ t = T + ¿ 1Dt + ¿2(rt ¡ ¿ 1) (22)

setting the following tax rates: T = :25; ¿1 = :07; ¿ 2 = :5 (Table 3, column 3). The

eigenvalues corresponding to this steady-state are reported in Table 4.

Table 3. Introduction of a interest-tax rule
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q = :685 q = :685; ¿ = 0:6 q = :685; ¿ 1 = 0:7; ¿ 2 = :5
R1 = :965 R1 = :958 R1 = :98

R2 complex root R2 = 1:25 R2 = 1:17
R3 complex root R3 = 1:49 R3 = 1:2
D1 = :351 D1 = :158 D1 = 1:053

D2 complex root D2 = :285 D2 = :0048600
D3 complex root D3 = :877 D3 = :1054469

Table 4. Eigenvalues for the (R2; D2) steady-state in interest-tax rule case
Steady-state Eigenvalues
R2 = 1:17;D2 = :0048 ¸1 = ¡:059; ¸2 = 1:104

With this rule we can have a saddle-path with positive level of debt in the region

where r > ¿ . The intuition behind this is quite straightforward. As we said previously,

when the real interest rate is bigger than the taxation coe±cient on debt, taxes are not

growing enough to close the debt if this is positive, so stability can only be achieved for

negative levels of debt. In the case of the new rule, we can have a positive debt steady

state because, even though the real interest rate is bigger than the taxation coe±cient on

debt, the additional tax component increases with the real interest rate, preventing the

debt from exploding.

From equation (22) it is clear that the new tax rule is taking into account not only the

level of the debt (the stock), but also the stream of payments for the government that the

existing level of debt is generating. The new taxation component is proportional to the

net gains, for the agents, from holding a unit of debt, that is a °ow variable. If the ¿ 1Dt

component can be assimilated to a wealth-tax (that hits a stock), the ¿ 2(rt¡¿1) component

can be considered a tax on income from ¯nancial capital.

Formally, with the new tax rule the di®erence equations governing the system are

Dt+1 = (Rt ¡ ¿1)Dt ¡ ¿2(Rt ¡ 1¡ ¿ 1) +G¡ T (23)

and

Rt+1 =
1

f¡[1¡ ¿ 1Dt ¡ T ¡ ¿2(Rt ¡ 1¡ ¿ 1)]
(1 + Ã)
(1 ¡G)

(1 ¡ q¯)
(1 + Â+ Ã)

(1 ¡ q)
q

g+ q¯ + 1
q

¡ ¯Rt
(24)
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The ¢Dt = 0 locus is still the sum of an hyperbola and of a straight line. The

line is still upward sloping if the coe±cient ¿ 2 is not too big (formally if ¿2 <
¯

(1 + Ã)
(1 + Â+ Ã)
(1¡ q¯)

q
(1¡ q)).

In graphical terms, the introduction of the new component in taxation shifts the hor-

izontal asymptote of the ¢Dt = 0 locus above zero (to D = ¿ 2); and makes possible a

saddle-path equilibrium for a positive level of debt in the region where r > ¿ (Fig. 8).

In the case of the numerical example that we have provided, the main advantage of using

this alternative rule lays in the fact that a ¯scal package that implies a much lower tax rate

on debt (¿1 = 0:7), a small increase in the lump-sum component in taxes (T increases from

.2 to .25) and the introduction of the new tax component (at the rate ¿2 = :5); could be

more feasible, from a political point of view, than the alternative of a huge increase of the

tax coe±cient on debt to .6. A rule like the one that we are proposing would approximate

the e®ects of a rule in which debt inclusive of interest (for example ¿t = ¿RtDt); but

could have the advantage of being more feasible from a political point of view. As we

already stressed in the introduction, we do not intend to argue that such a rule would be

optimal. Nevertheless, we believe that our analysis could give some useful indication to
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policy makers about a possible way to follow in a situation in which political constraint

prevent more drastic measures, like an increase in the taxation of debt (or a reduction in

government expenditure). We are not explicitly considering in the model the possibility

that agents could refuse to subscribe new public debt when this is being taxed, or when the

tax coe±cient on this increase drastically, how it would be necessary to achieve stability

in the example that we have summarized in Table 4, column 2 . The latter is, however, an

example of what we mean by political constraints. Our analysis also gives some warnings

about the excessive faith put in the literature and in policy analysis in ¯scal \closure" rules

since, as we have seen, these can fail to generate a well-de¯ned steady-state for sensible

parameters values.

Our analysis is, of course, subject to several caveats. One is the practical working of

a rule that makes taxation a function of the real interest rate. It could be problematic,

for example, to decide which exact measure of the nominal rates and prices to choose to

build the real rate that taxes should target. Furthermore, even if in our model output is

¯xed, in real economies increases in the real interest rate are likely to be associated with

periods of recession. This means that also the alternative rule that we are proposing could

be the object of political criticism, since it would be problematic to introduce a rule that

automatically increases taxes during a recession. In addition to this, such a rule would give

to the monetary authorities a certain degree of (indirect) power on ¯scal policy.

6 Conclusions

This paper uses a modi¯ed version of the Blanchard (1985) model of perpetual youth to

investigate the dynamic e®ects of di®erent ¯scal policy rules. The main ¯nding of the paper

is that a simple ¯scal closure rule, based on a wealth tax, could be insu±cient to ensure the

existence of a well de¯ned saddle-path equilibrium even when the tax rate exceeds the real

interest rate. We suggest that an alternative way of solving this problem could be to add

another taxation component, that takes in to account the level of the real interest rate.

Our model is characterized by perfect competition and fully °exible prices. An obvious
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direction in which the work done here could be extended is the introduction of larger

departures from neo-classical assumptions. In particular, it could be interesting to consider

a version of the model with nominal rigidities and imperfect competition. This would allow

an analysis of how the policy rules analyzed in the current paper interact with market

imperfections. Studying ¯scal rules in a two-country framework would also be relevant. In

this direction, a natural extension would be combining the work presented here with the

New Open Economy Macroeconomics framework introduced by Obstfeld and Rogo® (1995,

1996).
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