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Background: In multicolor flow cytometric analysis,
compensation for spectral overlap is nearly always neces-
sary. For the most part, such compensation has been
relatively simple, producing the desired rectilinear distri-
butions. However, in the realm of multicolor analysis,
visualization of compensated often results in unexpected
distributions, principally the appearance of a large num-
ber of events on the axis, and even more disconcerting, an
inability to bring the extent of compensated data down to
“autofluorescence” levels.
Materials and Methods: A mathematical model of detec-
tor measurements with variable photon intensities, spill-
over parameters, measurement errors, and data storage
characteristics was used to illustrate sources of apparent
error in compensated data. Immunofluorescently stained
cells were collected under conditions of limiting light
collection and high spillover between detectors to con-
firm aspects of the model.
Results: Photon-counting statistics contribute a nonlinear
error to compensated parameters. Measurement errors
and log-scale binning error contribute linear errors to
compensated parameters. These errors are most apparent
with the use of red or far-red fluorochromes (where the
emitted light is at low intensity) and with large spillover
between detectors. Such errors can lead to data visualiza-

tion artifacts that can easily lead to incorrect conclusions
about data, and account for the apparent “undercompen-
sation” previously described for multicolor staining.
Conclusions: There are inescapable errors arising from
imperfect measurements, photon-counting statistics, and
even data storage methods that contribute both linearly
and nonlinearly to a “spreading” of a properly compen-
sated autofluorescence distribution. This phenomenon
precludes the use of “quadrant” statistics or gates to ana-
lyze affected data; it also precludes visual adjustment of
compensation. Most importantly, it is impossible to prop-
erly compensate data using standard visual graphical in-
terfaces (histograms or dot plots). Computer-assisted com-
pensation is required, as well as careful gating and
experimental design to determine the distinction between
positive and negative events. Finally, the use of special
staining controls that employ all reagents except for the
one of interest (termed fluorescence minus one, or “FMO”
controls) becomes necessary to accurately identify ex-
pressing cells in the fully stained sample. Cytometry 45:
194–205, 2001. © 2001 Wiley-Liss, Inc.
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Compensation is the mathematical process by which
we correct multiparameter flow cytometric data for spec-
tral overlap. This overlap, or “spillover,” results from the
use of fluorescent dyes that are measurable in more than
one detector; this spillover is correlated by a constant
known as the spillover coefficient. The process of com-
pensation is a simple application of linear algebra, with
the goal to correct for spillovers of all dyes into all detec-
tors, such that on output, the data are effectively normal-
ized so that each parameter contains information from a
single dye.

In general, our ability to process data is most effective
when the visualization of data is presented without un-
necessary correlations. In other words, when displaying
graphs of one or two parameters, we wish to be certain
that there is no contribution of other (perhaps undis-

played) parameters to the distributions being shown. This
problem is particularly acute when the number of inter-
acting parameters is greater than two; currently, there are
no tools to effectively display correlated multidimensional
data. It is also unlikely that our brain’s processing capa-
bilities are sufficient to discern useful information from
uncompensated multiparameter data displays, no matter
how they are displayed. To date, the process of compen-
sation has been achieved primarily on the instrument (in
hardware).

This has been successful because of the use of fluores-
cent dyes with limited overlap, such that a few pairwise
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corrections could render the data sufficiently orthogonal,
and such that rectangular sort gates, quadrant analysis,
and isotype controls could be used accurately. Under
these circumstances, it has been relatively straightforward
to achieve proper compensation. Proper or correct com-
pensation is achieved when the compensated data in each
detector have no bias in the fluorescence distribution that
is related to the intensity measured in any other detector.

However, given the advent of the use of several new
fluorochromes with multiple spectral overlaps, compen-
sation is no longer simple enough to be achieved by
manual interaction at the instrument. Thus, software that
could automatically compensate the data postacquisition
became the modus operandi for experiments utilizing
more than 4 or 5 colors, and even some 3- or 4-color
experiments (1,2). It is also important to note that correct
compensation for more than 2 colors can almost never be
achieved using the standard interface of adjusting com-
pensation coefficients (rather than spillover coefficients),
because of the interdependence of these values (3,4).

It is important to note that compensation cannot take
into account dye-dye interactions or dye-cell interactions
which change the fluorescence spectrum of a given dye.
Under conditions where the spectrum of a dye may
change due to experimental variables, then additional
parameters must be collected to quantify this change, and
more complex analysis than simple compensation must be
utilized. Such analysis is beyond the scope of this paper,
which deals exclusively with the case where dye spectra
behave predictably and uniformly, as is the case for the
vast majority of immunofluorescence experiments.

In the development of our 11-color flow cytometric
technology (3,5,6), we discovered that even properly
compensated data appeared to be undercompensated, de-
spite the concomitant appearance of a large number of
events on the axis. This was previously noted by Stewart
and Stewart even for 4-color experiments (7). Indeed,
what we observed was a significant “spreading” of the
distribution of compensated data compared to the
autofluorescence distribution of unstained cells.

One important contribution to this apparent error in
compensation was the use of inaccurate log amplifiers.
The analog circuits that convert linear input signals into
log-scaled output signals, upon which the compensation is
performed, are imperfect. The most serious problem with
these circuits is that their dynamic range, purported to be
4.0 decades, actually ranges anywhere from 3.7–4.2 de-
cades. The effect of this inaccuracy on compensation is
insidious: data at fluorescence intensities below the com-
pensation standard can be either under- or overcompen-
sated (for log amps with less or greater than 4.0 decades,
respectively); data at fluorescence intensities above the
standard will be incorrectly compensated in the opposite
direction. In addition, log amps typically have a variability
as much as 65% at different positions in the scale.

In order to overcome this problem, we carefully cali-
brated our log amplifiers, only to discover that while we
significantly improved the accuracy of compensation,
there was still significant spreading occurring (Roederer

and Bigos, unpublished findings). Another solution was to
perform as much hardware compensation as possible,
since hardware compensation occurs prior to the error-
inducing logarithmic correction. This partial compensa-
tion reduced error significantly (8), but far from elimi-
nated it.

In order to better understand the sources and impacts
of measurement errors on compensation, I developed a
mathematical model of the data collection, compensation,
and visualization process that allowed for precise control
of a number of important variables, including the relative
amount of light at the detector, a base measurement error
in the signal quantitation, the “binning” effects of data
discretization, and the degree of spillover between detec-
tors. In addition, I collected immunofluorescence data
under different conditions to confirm the basic conclu-
sions of this analysis.

Compensation functions perfectly well without need-
ing to take into account autofluorescence or any other
dye-independent background value (or logarithmic ampli-
fier offsets). This was explained in more detail previously
(4). Alternatively, autofluorescence can be modeled in
compensation corrections (1); this process leads to similar
absolute values of autofluorescence intensity before and
after compensation. In the absence of this more complex
correction, it is only important to have the autofluores-
cence intensity in all collected parameters at approxi-
mately the same signal level.

I will show that there are two distinct types of errors
that contribute to imprecise compensation beyond the
inaccuracies of log amplifiers discussed above: errors aris-
ing from photon-counting statistics, and measurement er-
rors. These are distinct in that the former are nonlinear,
while the latter are linear. I demonstrate that in the pres-
ence of detectable levels of these errors, it is not possible
to properly set compensation by visual methods (i.e.,
relying on dot plots or histograms); nor is it possible to
accurately analyze data using quadrant gates or control
samples based on isotype controls in all channels. Impor-
tantly, these results hold true irrespective of the use of
newer digital electronics that obviate the use of log am-
plifiers.

This paper is not meant to be a comprehensive analysis
of errors in fluorescence measurements. Rather, I present
a model of those errors that are sufficient to explain the
artifacts observed for compensated data, and to alert re-
searchers how to better analyze data in the context of
such artifacts.

MATERIALS AND METHODS
Data Analysis

Flow cytometric data were gated, compensated, and
displayed using FlowJo version 3.3.3 (Tree Star, San Car-
los, CA). Data modeling was performed and displayed
using JMP version 4 (SAS Institute, Cary, NC). A specially
modified version of FlowJo was used to generate the
output in Figure 1 (left).
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Model

The simple model was developed using the JMP spread-
sheet application. This model simulates an experiment
using a primary “measurement” detector to measure the
fluorescence of the experimental fluorochrome, and a
secondary “spillover” detector into which the experimen-
tal fluorochromes exhibit spectral overlap. The specifica-
tions for this model are: 1) Events in the measurement
channel are evenly distributed from the lowest to the
highest value; in general, 40,000 events were modeled. 2)
Autofluorescence (AF) in the spillover channel is normally
distributed in the log domain, and is centered at 100.5 with
a standard deviation of 0.125 decades (Equation 1). 3) The
absolute fluorescence in the measurement channel (F) is
converted to a log-scaled channel value according to the
number of channels C, given that the dynamic range is 4.0
decades (Equation 2). This channel value, CF, is an integer
value. To generate the scale signal in the primary detector
(DF), a random value between 0–1 (intrachannel random-
ization) is added to the integral channel value and con-
verted back into the linear fluorescence domain (Equation
3). 4) The scale signal in the spillover detector (Ds) is the
sum of AF, the spillover fluorescence from the primary
detector (s 3 DF), an error term relating to the photon
counting statistics (where the relative photon count is P),
and an error term relating to measurement error E (Equa-
tion 4). 5) The compensated spillover parameter channel
value (Cs) is then converted to log scale, and “binned”
according to the number of channels C and number of
decades of dynamic range N (in Figs. 2–4, N 5 6) used to
store the data (Equation 5). In accordance with specifica-
tion 1, the channel values of the events in the measure-
ment channel (CF) are evenly distributed from 0 to C. In
these equations, the function Rn generates a random num-
ber with a normal distribution around zero and a standard
deviation of 1, the function Ru generates a random num-
ber with a uniform distribution between 0–1, and the
function int returns the integer portion of the expression:

AF 5 Log10(Rn 3 0.125 1 0.5) (1)

CS 5 intFLog10(F) 3
C 1 Ru

4 G (2)

DF 5 10(CS34/C) (3)

DS 5 AF 1 s 3 DF 1 Rn 3 Î s 3 DF

P
1 Rn 3 E 3 s 3 DF

(4)

SS 5 intFLog10(DS) 3
C

NG (5)

In the model, the values s, P, E, and C were parameters
that were studied for this paper. In general, the output
graphs shown in Figures 2–4 are graphs of CS vs. CF.

Figure 4 also shows a graph of DS vs. CF. Channel numbers
less than zero were set to a value of zero.

Cell Staining and Flow Cytometric Analyses

Human PBMC were obtained by Ficol-Hypaque centrif-
ugation; at least 106 cells were used for each stain. Cells
were stained at room temperature for 15 min with FITC
CD3, Cy5PE CD8, and PE CD4 (PharMingen, San Diego,
CA) for Figure 1, or with APC-conjugated anti-human
CD57 (purified antibody obtained from PharMingen and
conjugated with APC obtained from ProZyme, San Lean-
dro, CA, as previously described (9)) for Figure 5, and
washed three times with staining medium (biotin, flavin-
deficient RPMI supplemented with 4% newborn calf se-
rum and 0.02% sodium azide). Data were collected on a
modified FACSVantage SE (Becton Dickinson, San Jose,
CA).

RESULTS
Striped Data in Compensated Bivariate Plots

Bagwell and Adams (1) previously described an artifact
of visualization of compensated data, in which bivariate
plots of compensated parameters appear “striped” (Fig.
1). As they describe, such striping is a direct consequence
of the fact that the data have been divided into discrete
“bins” for efficient storage purposes. Typically, the bin-
ning process is used to store intensity data in either 256 or
1,024 channels. For a 4-decade log scale, this means that
each bin covers 3.7% (256 channels) or 0.91% (1,024) of
the signal. In other words, for a 256-channel resolution, all
events between the fluorescence intensities of [f] and [f 3
1.037] will be grouped together in the bin starting at f.

The consequence of transforming the data into discrete
values becomes visually apparent when compensation is
applied. For example, using the data in Figure 1, consider
the events with a CD4 fluorescence intensity of 40. There
is a range of (uncompensated) CD8 fluorescences associ-
ated with these cells around a value of 10. Two vertically
adjacent channels may have a CD4 intensity of 40, and
CD8 intensities of 10.00 and 10.91 (for the 1,024-channel
data). Given a 24% spillover coefficient, compensation
removes 24%3 40 5 9.6 fluorescence units from each of
these two events, resulting in compensated intensities of
0.40 and 1.31. In the first decade, these two fluorescence
values are separated by nearly 84 channels. No events can
exist in the intervening 83 channels, since the two events
are as close as possible to begin with. Hence, there is the
appearance of striations.

Bagwell and Adams (1) solved this problem by adding a
uniform random value of between 0–1 to the channel
number before compensation. As shown in Figure 1, this
process leads to an even distribution of compensated
events, with no evidence of striping in the data.

At first glance, it may seem that the process of intra-
channel randomization adds error to the data, and there-
fore should be avoided as it does not faithfully reproduce
the “true” distribution (10). However, the amount of error
it adds is unbiased and small: the position of an event
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without intrachannel randomization is known to within
6=(1/12) channels; randomization leads to an error of
6=(1/6) channels (data not shown). In a typical 1,024-
channel (4-decade) collection, this corresponds to adding
an average error of 60.1%, which is small compared to
other unavoidable errors present in the measurement.
Therefore, the intrachannel randomization, which signifi-
cantly aids visualization of compensated data, is highly
recommended.

Effect of Binning and Measurement Error
on Compensation

For most current flow cytometry instruments, where
complete compensation of all potential spillovers is not
possible because of a limitation on the number of correc-
tions that can be applied, postacquisition compensation
must still be performed. Therefore, it is of interest to

determine the effect of binning the data on the accuracy
of compensation. As noted above, the average error intro-
duced by binning the data is 60.29 channels (or, with
intrachannel randomization, this increases to 60.41 chan-
nels). To determine the effect of this and other errors on
compensation, I developed a model of compensation (see
Materials and Methods) in which the parameters related to
measurement error, number of bins used to store the data,
spillover percentage, and others could be varied in a
defined way. Note that the binning error is only applicable
to data stored with logarithmic scaling, where the error is
proportional to intensity; if data are stored in the linear
domain, the binning error is inversely proportional to
intensity and thus becomes unimportant (assuming that
linear domain data are stored with at least 18 bits (262,144
channel) resolution to achieve the required low-signal
precision).

FIG. 1. Intrachannel randomization improves visualization of compensated data. Left: Three-color immunofluorescence data were collected uncompen-
sated. Single-stained compensation controls were used to calculate the proper compensation matrix. Graphs were gated for lymphocytes. A: Uncompen-
sated pseudocolor plot of CD8 versus CD4. B, C: Same data after proper compensation, using no intrachannel randomization (B) or randomizing every
measured event within a single channel (1) prior to compensation (C). Arrows in B indicate striations resulting from discretization of data prior to
compensation. D: Three of the striations in B were individually gated and displayed in separate colors. The slight spread in these striations is due to the
effects of compensation from the undisplayed fluorescein (CD3) channel; without the contribution of that third channel, each striation would be a thin
line of one bin’s width. E: Same data as D, but shown uncompensated. Inset: Each of the three striated groups results from essentially a single-channel
ratio within the original data. Thus, it is impossible to have events between the striated distributions in B and D, since there are no events in between the
data in the original data: they represent adjacent channel ratios.
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Figure 2 illustrates the effect of adding an intensity-
proportionate error to the measurement. (Both log-scale
binning errors and signal processing errors fall into this
category and can be treated identically for the purposes of
modeling.) There are two important conclusions that can
be drawn from these illustrations. First, the spread down-
ward in the compensated distribution (below autofluores-
cence, towards the axis) occurs at a much lower-stained
intensity than the spread upwards. This is because the
effect of the error on the distribution is unbiased (equal in
both directions), but the log-scaling makes it much more
apparent at the lower intensity range than at the higher
intensity range. Hence, there is a significant buildup of
events in the lowest channel of the compensated spillover
parameter, even at measurement intensities well below
where the distribution is rising. Second, because the mea-
surement error (or binning error) is proportional to the

measurement intensity, the spread upward occurs at a
relative log-log slope of 1:1. It is important to note that by
decreasing the spillover, the relative positions of the min-
imum error slopes (both above and below the ideal
autofluorescence distribution) move to the right. A 10-fold
reduction in spillover decreases the error at any given
intensity by an identical factor of 10.

This upward spreading in compensated data has an
important implication for distinguishing “dim-positive”
from negative events in the spillover (compensated) chan-
nel. Because this error process results in the compensated
(negative) distribution increasing at the same rate as the
uncompensated distribution, the ratio of uncompensated
distribution to the top of the compensated distribution is
a constant, equal to the spillover multiplied by the error in
the measurement (e.g., 20% spillover 3 0.5% error 5 0.1%
ratio). In this case, it will be difficult or impossible to

FIG. 2. Effect of measurement error and log-scale binning on compensation. A model of the compensation process was derived to examine the effect
of photon-counting statistics, measurement error, and degree of spillover on compensation (see Materials and Methods). In this hypothetical model, cells
are stained such that the entire population covers a continuum of intensity from autofluorescence to the top of the measurement scale. Here, the
distributions shown in red are the uncompensated data; those shown in blue are the properly compensated data. The measurement channel (abscissa) is
a 4-decade log scale. The spillover channel (ordinate) is shown with 6-decade scaling; one can consider the range from 1–104 to be the typical collected
output range. The purpose of showing 6 decades is to better illustrate deviations in the distribution. In these evaluations, the number of photons was
considered infinite, such that there was no photon-counting error; the spillover was 20% for all cases. Top left: This model shows the effect of “proper
compensation” when log-scale binning effect is ignored. By binning data into discrete values on a log scale and using the scale intensity value of the left
edge of the bin as the intensity for all events in that bin, the average error for each event is 20.5 6 0.29 channels, which translates to a constant percentage
of intensity anywhere in the scale (for 1,024 channels of 4-decade data, it is 20.45 6 0.26%). This leads to an overcompensation of nearly 0.5%, which
is evident in the data. Therefore, the intensity assigned to each bin must be the value for the center of the bin. In that case, the minimum average error
for any given measurement value is 0 6 0.29 channels (or 0 6 0.26%). The error for any given measurement must also take into account instrumentation
errors; typically, these are much smaller. Top right: A model where the minimum measurement error is 0.23% (similar to that occurring with
postacquisition compensation of 1,024-channel, 10-bit data). Bottom left: Minimum measurement error is 0.0035% (for 65,536-channel, 16-bit data).
Bottom right: Minimum measurement error is 0.90% (for 256-channel, 8-bit data).
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distinguish events having less than 0.1% of the uncompen-
sated spillover fluorescence from autofluorescent cells.

Effect of Limiting Emission Light on Compensation

Binning errors can be overcome by storing the data in
the linear domain (as new, “digital” electronics cytom-
eters can, although it is important to recognize that such
data require at least 18-bit resolution to achieve the nec-
essary precision at low signal levels). Other proportional
measurement errors are typically extremely small by com-
parison. However, a fundamental measurement error that
can never be overcome is one arising from counting sta-
tistics. For most cytometry applications, the number of
photoelectrons in the photomultiplier tube (PMT) detec-
tor is typically in the range of 1–105, depending on the
signal intensity. For example, autofluorescence in the flu-
orescein or phycoerythrin detectors (for lymphocytes) is
typically below 10 photoelectrons. The error in this mea-
surement must be at least as great as the counting error,
which is the square-root of the count, i.e., 10 6 3.2
(632%). Even at 104 photoelectrons, which puts the sig-
nal into the third decade of fluorescence, the counting
error is 61%. Given that measurement errors contribute
to the spread in compensated parameters (Fig. 2), I in-
cluded this type of error in my model to model the effect
of limiting light levels on compensated parameters.

Figure 3 illustrates the effect of decreasing the number
of photons (or photoelectrons at the first PMT dynode) on
compensation. There are four conclusions that can be
drawn from Figure 3: 1) Reducing spillover (Fig. 3, top left
versus top right) decreases the “error” in the compensated
distribution concomitantly. 2) As the number of photons
available to the primary detector decreases, the error in
the distribution increases concomitantly. 3) As is the case
for proportionate errors (Fig. 2), the spread downward
occurs at a much lower intensity than the spread upwards.
4) Finally, because the photon-counting error is propor-
tional to the square root of the measurement intensity
(i.e., nonlinear), the spread upward occurs at a relative
log-log slope of 1:2. Thus, this visualization artifact cannot
be corrected by overcompensating the data, because com-
pensation is a linear process.

Visualization Artifacts in the Log Scale Domain

The log scaling that is commonly used to display flow
cytometric data causes an apparent bias (asymmetry) in
the spread of compensated data due to the sources of
error noted above. For example, as shown in Figures 2 and
3, the spread towards the axis is apparent at much lower
intensities than the spread upwards. In addition, it seems
that the bulk of the distribution of the compensated data
moves towards higher intensity, giving the impression

FIG. 3. Effect of low-emission intensity on compensation. Model and displays are as for Figure 2. For each of these distributions, an intrachannel
correction of 10.5 channels was used (see text), and the data were considered to have been collected in 1,024-channel mode. In each graph, the relative
number of emitted photons and the relative spillover percentage are shown.
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FIG. 4. Visual estimation of proper compensation is impossible in the presence of detectable error. The data in one of the models of Figure 3 (relative
photon count 5 0.5, spillover 5 20%) are shown in different forms here to illustrate the cause of the apparently asymmetric spreading of compensated
data. Top right: Log-log plot of compensated (black) and uncompensated (gray) data. Top left: Same data in linear scaling, in which the compensated
parameter has not been “pinned” to a minimum value of 1.0 (minimum value on the log plot). Here it is evident that the spreading of compensated data
is in fact symmetric in linear scale, and that the error contribution is therefore unbiased. Below are overlaid four histograms of the compensated spillover
fluorescence parameter from regions A–D as shown. Histograms at left and right represent exactly the same data, and differ only in the scaling (linear vs.
log). The change in scaling results in a change in the apparent shape of the histogram; the shape is what humans use to judge the central tendency.
Therefore, we estimate that the log-scaled histogram D would have the highest median fluorescence, and A the lowest, whereas in fact all four have the
same median fluorescence (as is obvious from the linear distributions at left). Arrow at right is positioned over the median of all four distributions. Since
setting proper compensation requires adjusting the spillover correction until histograms A–D have the same median, visual adjustment will always lead to
overcompensation of the data as we try to force the distribution in D to align with that in A. Bottom: Not even improperly overcompensating the data
can correct for this artifact. Here, the applied compensation was 30% (i.e., 50% overcompensated). Left: Data in the linear domain. Right: In the log
domain.
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that the data are actually undercompensated. Figure 4
illustrates that this impression is a visual illusion created
by the logarithmic scaling, and arises from our (incorrect)
perception that the central tendency of a population
moves with its mode rather than its median.

It is evident in Figure 4 that the error-induced spread in
the compensated parameter is symmetrical in the linear
domain: it is unbiased. Proper compensation is achieved
when the compensated data in the spillover detector have
no intensitydependent bias in distribution, i.e., the median
of the events with high primary detector fluorescence is
the same as that for “negative” or low primary fluores-
cence.

It is crucial to recognize that all of the histograms in the
bottom right of Figure 4 have the same median fluores-
cence, and all represent properly compensated distribu-
tions. Visual setting of compensation (whether based on
gated histograms such as these, or visual estimates of the
distribution based on dual parameter graphs such as those
at the top of Fig. 4) is impossible, because we are not
capable of accurately identifying the median (or mean) of
these distributions in the log-scale (see also Wood (11)).
Indeed, the human tendency would be to align either the
tops of the distributions or the modes of the distributions,
either of which would result in significant overcompen-
sation.

Note that no amount of overcompensation can lead to
rectilinear displays by virtue of the fact that the spread in
the data is nonlinear (Fig. 4). Overcompensating by 50%
still results in a spreading of the compensated data for a
portion of the distribution; above a certain intensity, all of
the compensated data end up on the axis, with the infor-
mation content completely lost.

Visualization Artifacts
in Immunofluorescence Data

In order to ascertain whether the conclusions from this
model of compensation are applicable to “real” data, I
collected immunofluorescence stains under conditions
that would limit the number of photons available to the
primary detector (Fig. 5). The effect of limiting light (er-
rors from photon-counting statistics) are apparent just by
examining the uncompensated data: the correlation be-
tween the primary and spillover detectors decreases dra-
matically as the amount of light measured in the APC
detector decreases. The impact on compensation is sub-
stantial: the compensated spillover detector signal shows
increasing spread as the photon-counting errors dominate.
Interestingly, even at full collection intensity, there was a
significant spread in the compensated signal: a spread
which increased at a 1:2 log:log slope, consistent with
photon-counting statistics as the unavoidable source of
the spread.

The data in Figure 5 also illustrate the log-scaling visu-
alization problem modeled in Figure 4. For example, the
contour plots reveal that the number of events on the
bottom axis is substantial. Of course, this is not very
evident when viewing dot plots of the data: since all the
events are within a single channel, the dot plots “hide” the

large fraction of events that is present there. It is notewor-
thy that the histograms shown in Figure 5 have the same
median fluorescence (thus represent properly compen-
sated data), and reinforce the concept that proper com-
pensation is not achievable by visual inspection of log-
scaled data.

Summary

Figure 6 summarizes the conclusions of the models and
data analysis. One aspect that was not explicitly included
in the model was the contribution of photon-counting and
binning/measurement errors in the spillover channel it-
self. These errors do not change the quality of the spread
in the compensated data (i.e., the presence of both a
nonlinear and a linear component)—they simply increase
the magnitude of the error. Indeed, the errors modeled
here should be considered the sum of the errors in all
detectors that are used in the compensation of signal from
a given detector. In our 11-color experiments (3,6), we
found that the APC detector received significant fluores-
cence spillover from more detectors than any other;
hence, the magnitude of errors and the concomitant
spread in the compensated signal were greatest for the
APC signal (5). Ironically, even though APC is one of the
“brightest” fluorochromes (measured as the measured sig-
nal to autofluorescence ratio), the compensation process
reduces its utility significantly in our polychromatic flow
cytometry analysis.

DISCUSSION
Unfortunately, compensation is and will probably re-

main the least well-understood process in flow cytometric
data analysis that significantly impacts the visualization
and interpretation of experimental data. Many of the com-
plexities and apparent artifacts that arise from the com-
pensation process are difficult to intuit, largely because of
the fact that most data display is in the log domain. It is
crucial to understand the effects of different types of
errors on compensation in order to appreciate the inher-
ent limitations of our data, as well as how these limitations
might be best addressed by changes in experimental de-
sign.

Perhaps the greatest source of “measurement error” in
today’s systems is the log amplifier. This analog circuitry is
imperfect, in that the conversion can be accompanied by
a 62–5% error (from “true” log conversion, which is the
assumption used by the data analysis). In addition, the
dynamic range of the amplifiers is rarely exactly 4.0 de-
cades (another assumption); deviations from this assumed
dynamic range lead to significantly imprecise quantitation.
The degree of imprecision linearly affects the compen-
sated data, as illustrated in Figure 2. Fortunately, the ad-
vent of digital electronics that collect and store data in the
linear domain with 18-bit resolution obviates this prob-
lem. These electronics also eliminate the “binning” error,
since data binning occurs in the linear domain (and thus
error is inversely proportional to signal levels, rather than
a constant proportion).
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FIG. 5.
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However, no electronics can overcome the fundamen-
tal counting error inherent in measuring signal levels. We
will always have this nonlinear error contribution in our
data, leading to the spread of compensated data as shown
in Figures 3 and 5.

The degree to which the errors are apparent depends
principally on two factors: the degree of spillover, and the
brightness of the signal. Minimizing these errors can be
accomplished by using fluorescent dyes that are as bright
as possible, with as little spectral overlap as possible.
Likewise, optimizing light collection will improve signal
detection, e.g., by slowing the stream velocity to allow for
longer interrogation times for peak-area measurements,
using higher numerical aperture (NA) light collection ob-
jectives, and using interference filters that are as wide as
possible without substantially increasing spectral overlap.
If postacquisition compensation is necessary, then storing
the data in as many channels as possible (and, if possible,
in the linear domain with at least 18 bits or 262,144
channels) will also minimize error.

It is important to recognize that the visualization arti-
facts shown in Figures 2–6 are not simply aesthetic prob-
lems. The spreading of compensated data can significantly
impact on the analysis and interpretation of data. For
example, where this error is present, the use of linear
“quadrant” gates, or any gate based on a completely
unstained sample, would lead to erroneous results, since
at higher intensities, the autofluorescence distribution will
spread up into the “positive” gate. The best control is to
stain cells with all reagents except for the one of interest,
in order to determine the exact range of the negative
population. This type of control can be termed “fluores-

cence minus one,” or FMO. A nonlinear gate can be drawn
based an FMO control, and applied to the fully stained
sample to determine which events are positive. (FMO
controls are more fully discussed elsewhere (5,12), al-
though they were not defined by name.) Such a gate
would have the same general shape as those shown in
Figure 6.

Because of the propagation of errors, the more param-
eters that are measured, the more pronounced will be this
effect. (And of course, the error is more easily detected at
higher intensities, where the absolute magnitude of the
error is large.) These effects undoubtedly account for the
(incorrect) conclusion that the compensation setting itself
depends on the intensity and presence of other stains (7);
it is the exacerbated spread in properly compensated data
that makes such data appear undercompensated. The
propagation of errors through the compensation process
can also significantly impact on the sensitivity and resolu-
tion of flow cytometry measurements: the discussions by
Wood (11) and Wood and Hoffman (13) are particularly
relevant when the limitations of multiparameter compen-
sation are superimposed.

The other important conclusion is that in the presence
of any significant errors of the types discussed here, it is
impossible to visually set compensation properly when
viewing data on a log scale. Because of our inability to
correctly estimate the central tendency of the distribu-
tions such as those shown in Figure 4, manual adjustment
will always result in overcompensation (which cannot, in
any case, correct the apparent error). Therefore, computer-
aided adjustment of compensation is necessary. At a min-
imum, such aid would be to provide median statistics or a
graphical representation of the median as a function of
intensity (as WinList does) of positive and negative popu-
lations during any user-controlled adjustment; alterna-
tively, the computer can make all of the adjustments
automatically without user intervention (as FlowJo does).

New software tools to aid in the analysis of compen-
sated data are also desirable: tools that can automatically
create “background” versus “positive” gates based on
FMO control samples would be valuable. These gates
would have nonlinear shapes (Fig. 6). Of course, it is
important for such tools to avoid common pitfalls such as
those illustrated in Figure 1 (leading to “striped” compen-
sated data) and Figure 2 (leading to automated overcom-
pensation).

Even with such tools, proper data analysis, interpreta-
tion, and presentation on the part of flow cytometry users
will require a high level of understanding of the intricacies
of compensation and the inherent limitations of compen-
sated data. Without a proper understanding, there will
continue to be a surfeit of improper conclusions based on
assumptions about the rectilinearity of cytometry data.
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FIG. 5. Example of photon-counting and measurement errors in com-

pensation of immunofluorescence data. Here, human PBMC were stained
with APC-conjugated anti-CD57. Fluorescence was collected in the pri-
mary APC detector (using a 660/30 filter), as well as a Cy5.5APC detector
(using a 710/50 filter, with a 680 dichroic splitting the emission beam).
Left column: Fluorescence was collected with no-light reducing filter.
Middle column: An ND1 filter was placed in front of the APC detector
only. Right column: An ND2 filter was used. PMT voltages were con-
comitantly increased so that the CD81 peak had the same fluorescence;
the difference is the number of photons at the detector (the ND1 reduces
by ;10-fold; the ND2 by ;100-fold; data not shown). Top row shows
uncompensated data; other rows show properly compensated data. Sec-
ond row (pseudocolor) and third row (contours) are different represen-
tations of the same data; contour plots illustrate the significant accumu-
lation of events on the X axis (see Fig. 4). Overlaid on the contour plots,
solid blue lines indicate approximate extent of the photon-counting error
contribution (sloped lines are drawn at exactly a 1:2 log:log slope). Under
conditions of lowest light (highest error), the error (blue line) is apparent
even for autofluorescent (CD572) cells. With 10-fold more light (middle
column), the error line is shifted right exactly 10-fold. With the greatest
amount of light (left column), the error line is only shifted about 3-fold
higher (dotted blue line indicates where it would be if it were shifted
10-fold higher). This indicates that the photon-counting statistics present
in the spillover detector are contributing significantly to the error term:
this error term is identical for all three collections, since no neutral
density filter was placed in front of the spillover detector. However, at
lower light levels (middle and right columns), the counting error in the
primary fluorescence detector was much higher and was the principal
contributor to the spreading of compensated data. Bottom-most histo-
grams are distributions of the gated spillover parameter for three different
levels of intensity (D–F). Each of these histograms has the same median
value (indicated by arrows, just above the lower axis); the apparent bias
in the distribution is an artifact of the log-scaling of this data (see Fig. 4).
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development of the theoretical and practical concepts
underlying compensation for high-end multicolor analy-
ses, and for advice in the development of models such as
the one I used here.
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