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Abstract
In order to produce natural sounding output, corpus-based
speech synthesis systems need to be able to properly model the
acoustic variability in the corpus. Creaky voice is a voice qual-
ity frequently produced in many languages, in both read and
conversational speech settings. However, the creaky excitation
displays different acoustic characteristics than modal excita-
tions and is, hence, not suitably modelled by standard vocoders.
This study presents an analysis of the creaky excitation which is
used to derive an extension of the Deterministic plus Stochas-
tic Model of the residual signal. This proposed model is de-
signed to appropriately model creaky voice and is integrated
into a vocoder for parametric speech synthesis. Copy-synthesis
versions of short speech segments containing creaky voice were
used in a subjective listening test which revealed clearly better
rendering of the voice quality than a standard vocoder.
Index Terms: Voice quality, speech synthesis, creak, vocal fry

1. Introduction
For statistical parametric synthesis to produce natural sounding
speech output there needs to be proper acoustic modeling of the
different speech sounds produced in the corpus. Recently there
have been some significant gains in the naturalness of HMM-
based statistical speech synthesis (HTS), particularly from im-
proved excitation modeling in vocoders (see e.g., [1, 2, 3]).

Speakers, however, frequently adopt different phonation
modes, often in conversational settings but also in read speech
for text-to-speech (TTS) corpora. These different phonation
modes may produce acoustic characteristics that are not prop-
erly modeled by existing vocoders. In this study we focus
on one particular voice quality, namely creaky voice, which
arises from a particular non-modal phonation. Creaky voice
displays distinctive acoustic characteristics, such as: extremely
long glottal pulse duration (and as a consequence, little or no
superposition of formant oscillations between adjacent glottal
pulses), long glottal closed period, and the presence of sec-
ondary excitations (see, for example, [4]). In our experience
traditional vocoders are not properly suited to these characteris-
tics.

In many languages creaky voice is frequently produced
even in read speech. In Finnish, for instance, speakers fre-
quently produce creaky voice in sentence final position [5].
This is also true for other languages including many dialects of
American English (see e.g., the BDL sentences from the ARC-
TIC database [6]). Other languages like some North Caucasian
languages and Quiavin Zapotec utilise creaky voice quality for
phonetic contrast [7]. In conversational speech creaky voice is
particularly prevalent, with studies demonstrating associations

with turn-taking [8], hesitations [9] and various forms of ex-
pression [10]. The development of a vocoder which can provide
a natural rendering of creaky voice is, hence, clearly desired for
standard TTS where creaky voice exists in the corpus or for the
development of conversational or expressive speech synthesis.

Some studies have involved synthesis of creaky speech,
mainly using formant synthesis. For instance in [11] the au-
thors use the KLATT88a formant synthesiser to produce creaky
voice by reducing F0 controlling the DI-diplophonia parame-
ter, as well as modifying a number of other parameters. In [9]
the authors use the KTH formant synthesiser to generate creaky
voice for the purpose of studying the perception of hesitations.
They modeled creaky voice by modifying glottal parameters in
time and amplitude for every second pulse. To the best of our
knowledge the only study on modeling creaky voice in HTS
was presented in [5] and arose from the need to provide natural
rendering of creaky voice in Finnish. Their method focuses on
providing robust f0 estimation and suitable voicing decision in
creaky regions. They do not, however, focus on modeling the
characteristics of the creaky excitation which may play a signif-
icant role in producing the correct timbre.

In the present study we focus on modelling the creaky ex-
citation as an extension of the Deterministic and Stochastic
Model (DSM, [1]) synthesis system. We begin by introducing
the speech data used in this study (Section 2). The framework
adopted for analyzing creaky excitation is then described in Sec-
tion 3. The proposed vocoder is described in Section 4 and is
put to a subjective evaluation (Section 5).

2. Speech Data
The speech data used in the present study comes from two sepa-
rate speech synthesis databases. The first is the recorded speech
of a male American speaker (the BDL voice in [6]) and the sec-
ond is a Finnish male speaker (the MV database used in [12]).
Both databases were downsampled at 16 kHz. We carefully se-
lected 100 sentences from each database which included creaky
regions. These creaky regions were then manually annotated by
following a similar annotation procedure as was used in [10].
Qualitative analysis of the creaky excitations revealed similar
patterns across the two speakers with the presence of sharp sec-
ondary excitation peaks. Note, however, that a range of exci-
tation settings can give rise to the perception of creak and can
involve more irregular patterns than those observed in the two
speakers in the present study.

3. Analysis of Creaky Excitation
This section summarizes our framework for the analysis of the
creaky residual excitation and leads to our proposed model,



which will be integrated into a vocoder (Section 4). The gen-
eral analysis workflow which we adopted is displayed in Fig-
ure 1. From a database of a given speaker producing creaky
voice, it aims at estimating the data-driven components of the
proposed model. The process consists of four consecutive steps:
detecting the creaky segments of speech, estimating the Glottal
Closure Instant (GCI) positions and the pitch contour in creaky
voice, determining the instants of the secondary pulses and fi-
nally estimating the data-driven waveforms used in the pro-
posed model of the creaky excitation. These four operations
are detailed in the following sections.
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Figure 1: Workflow for the analysis of creaky excitation leading
to the estimation of the components of the proposed model.

3.1. Creak Voice Detection

In the first analysis step, the creaky segments are detected from
continuous speech. Some algorithms have recently been de-
veloped [13] for the automatic detection of these segments with
relative success (sensitivity between 65 and 77%, specificity be-
tween 97.5 and 99.5%). Nonetheless, the manual creaky anno-
tations are considered in the following in order to remove the
influence of possible errors made by the creaky voice detector
in the process.

3.2. GCI and Pitch Estimation

Glottal Closure Instants (GCIs, [14]) refer to the moments of
significant excitation that occur at the level of the vocal folds
during voiced speech. Locating GCIs is a necessary first step in
pitch synchronous speech processing, in particular when there
is processing of the main excitation region in the LP-residual
signal. The performance of GCI detection on modal speech has
reached a certain level of maturity [14]. However, for voice
qualities like creaky voice, which display dramatically differ-
ent glottal closing characteristics, most GCI algorithms fail to
provide usable levels of performance. A recent study looked
at optimising GCI detection on non-modal voice qualities [15].
The study found that by taking the SEDREAMS algorithm (de-
scribed in [14]) and applying a post-processing method to it can
make the performance suitable for analysis of creaky regions.

Considering GCIs estimated by the SEDREAMS algorithm
in relation to the derivative electroglottographic (dEGG) signal
(bottom panel of Figure 2) there is clearly appropriate GCI de-
tection up to around 1.2 seconds. For the following creaky re-
gion, although the algorithm appears to output ‘correct’ GCIs,
there are also clearly a large number of false alarms. In order to
remove these false alarms one can make use of the output of a
resonator applied the residual signal, derived from LPC analy-
sis and subsequent inverse filtering. The resonator is designed
with a centre frequency of F0,mean and with a bandwidth set
to 150 Hz. This outputs a waveform (shown in the top panel of
Figure 2) which displays strong negative peaks in the region of
the GCI. The post-processing step involves getting the average
of the negative resonator peak value at the previous and follow-
ing estimated GCI values. This average is then multiplied by a
weight, wpp, and if the result is greater than the negative peak
corresponding to the present GCI then this GCI is removed. In
a previous study the optimal wpp was found to be 0.4 [15] and
is used here. Note that this method works sufficiently well for
creaky regions which display a moderate level of irregularity.
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Figure 2: LP-residual signal (solid line) and the output of
a resonator (dashed line) applied to this signal (top panel)
and dEGG signal with GCIs as estimated by the SEDREAMS
method (bottom panel). Creaky region begins from around 1.2
seconds.

3.3. Secondary Peak Estimation

As can be seen in the top panel of Figure 2, one striking acous-
tic feature of creaky speech is the presence of secondary pulses
in the excitation signal [4]. These extra peaks can occur due
to secondary laryngeal excitations, butalso from sharp discon-
tinuities at glottal opening, following a long glottal closed pe-
riod. Through our analysis of speakers BDL and MV, we no-
ticed these secondary excitation peaks to be mainly linked to
the glottal opening instant. This can also be seen from the in-
spection of Figure 2 with parallel dEGG recordings. Therefore
we use in the following the term open period to refer to the
timespan between the secondary pulse and its consecutive GCI,
although the reader should be aware of the possible limitations
of this terminology.

In this study, the secondary excitation peaks are simply lo-
cated by looking for the greatest discontinuity between two con-
secutive GCIs. The regions around GCIs (with a tolerance of
± 1 ms) are not considered in order to avoid detection in the
close vicinity of the GCI discontinuity. Figure 3 shows the his-
tograms of the durations of the resulting F0 and open periods for
the creaky segments produced by speaker BDL. It is observed
that the F0 has very low values with a large variability ranging
from about 45 Hz to 110 Hz. Interestingly, the histogram for
the open period durations displays one prominent narrow peak.
This suggests that in creaky voice, even when F0 is varying, the
open period remains relatively constant. The same pattern was
also found for speaker MV.
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Figure 3: Distribution, for the creaky regions of speaker BDL,
of the duration (in samples) of the F0 period (left panel) and of
the open period (right panel).



3.4. Extracting the Data-driven Waveforms of the Proposed
Model

The approach we adopted for modeling the creaky excitation is
an extension of the Deterministic plus Stochastic Model (DSM)
proposed in [1]. However, the original DSM models the excita-
tion of modal speech while the model we propose in this paper
integrates the presence of secondary pulses in the creaky exci-
tation. As in DSM, the excitation signal is assumed to consist
of two components acting in two separate spectral bands delim-
ited by a cut-off frequency Fm (sometimes referred to as the
maximum voiced frequency): the deterministic and stochastic
components modeling the low and high frequencies [1], respec-
tively. However, the estimation of the data-driven waveforms
for these two components is now split into two parts: the open
and the closed period.

In other words, the open and closed periods of the residual
excitation are extracted from the analysis corpus and isolated in
two separate datasets. For each dataset, data-driven waveforms
are estimated in the same way as for DSM [1]. These latter
waveforms are the first eigenvector obtained by Principal Com-
ponent Analysis (PCA) for the deterministic component, and
the energy envelope for the stochastic component. These com-
ponents (for two glottal cycles centered on a GCI) are shown
in Figure 4 for speaker BDL. Two clear discontinuities are ob-
served in the deterministic component (left panel) at the GCI
and secondary peak locations. This latter waveform exhibits
some residual phase information of the glottal formant in the
open period (as was the case for DSM [1]) while it mainly con-
sists of zero values in the closed period. The energy envelope
(right panel of Figure 4) gives some indication of how the turbu-
lence noise in the excitation are temporally distributed in creaky
voice.
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Figure 4: Two glottal cycles with the data-driven components
of the proposed model of the creaky excitation for BDL: the first
eigenvector for the deterministic component (left panel) and the
energy envelope for the stochastic component (right panel).

4. The Proposed Vocoder
The vocoder incorporating the proposed model for the recon-
struction of the creaky excitation is presented in Figure 5. The
deterministic component rd(t) of the residual signal is obtained
from the first eigenvector calculated in both the open and closed
periods, as extracted in Section 3.4. Given the observation in
Section 3.3 that the open period duration has a very sharp dis-
tribution, it is taken to be constant for a given speaker. Accord-
ing to our analysis, it is fixed to a value of 3.75 ms for BDL
and 5 ms for MV. For this reason, the conversion towards the
target pitch is achieved by only resampling the closed period.
The final rd(t) component is obtained by retaining its low-pass
content below the frequency Fm (fixed to 4 kHz in this work).
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Figure 5: Vocoder incorporating the proposed model of the
creaky excitation. Its inputs are the target F0 and the Mel-
Generalized Cepstral (MGC) coefficients. All other data are
precomputed from the speaker-dependent analysis step.

The stochastic component rs(t) of the residual signal con-
sists of a white Gaussian noise modulated both in the time and
frequency domains. As in DSM, the spectral envelope of the
noise is captured at analysis time by LPC modeling [1]. The
time dispersion of the noisy component in the excitation is taken
into account by making use of the energy envelope extracted in
Section 3.4. Here again, the open period is considered to have a
fixed constant duration and the pitch transposition is performed
by resampling only the closed period.

The final residual signal is obtained by adding its rd(t) and
rs(t) components and by overlapping and adding the resulting
GCI-synchronous excitation frames. In a last step, this excita-
tion signal is the input of the Mel-Log Spectrum Approxima-
tion (MLSA) filter, controlled by the Mel-Generalized Cepstral
(MGC) coefficients to get the creaky voice. Note that in non-
creaky segments of speech, the vocoder makes use of the stan-
dard DSM which is known to be suited for modeling modal
speech.

5. Subjective Evaluation
The subjective evaluation aims at quantifying the perceptual im-
provement brought by the integration of the proposed model of
the creaky excitation. For this, the vocoder described in Sec-
tion 4 is compared to a standard method: the DSM vocoder.
Indeed standard techniques (such as the traditional DSM) have
been designed to model the excitation in modal voiced speech.
Nonetheless, they exhibit some drawbacks when producing
non-modal effects such as creaky voice.

Twenty-two people, all in the area of speech research, par-
ticipated in the subjective evaluation. Participants were either
native English speakers or had English as a second language
and none of them spoke Finnish. Two experiments were car-
ried out: an ABX and a CMOS test. In both tests we focused
on the copy-synthesis of short segments of speech (typically 2
second-long) containing creak. For this, the two male speakers
BDL (US English) and MV (Finnish) were considered. Each
test consisted of 20 stimuli to be scored (10 per speaker).

In the first test (ABX), participants were given the origi-
nal segment of speech as a reference (X) and were asked which
one of versions A or B is the closest. A and B were the seg-
ment X vocoded either by the traditional or proposed technique
(randomly shuffled). Participants had also the possibility to say
that A and B were equivalent. Results of the ABX test are dis-
played in Figure 6, and show consistent improvement for BDL
and MV. About 60% of the responses indicated a preference for
the proposed model, while around 15% of the responses found
the version vocoded by DSM to be closer to the original. Fi-
nally, about 20-25% of responses did not favour either method.



Figure 6: Results of the ABX test for speakers BDL and MV.

The second test was a Comparative Mean Opinion Score
(CMOS) test which aimed at assessing the participant prefer-
ence by providing pairwise stimuli vocoded by the traditional
and proposed method. For each segment of speech considered,
participants were asked to listen to both versions (randomly
shuffled) and to attribute a score according to their overall pref-
erence using the 7-point gradual CMOS scale.

Results of the CMOS test are presented in Figure 7 for the
two speakers BDL and MV and provide a comparison between
the proposed model and the traditional vocoder according to the
CMOS 7-point scale. It is seen that the proposed technique is
almost never perceived as much worse or worse than the tra-
ditional DSM method. About 10% of opinions considered our
model to be slightly worse while around 35% found both ver-
sions to have an equivalent quality. For the remaining 55%,
the proposed technique was preferred over the traditional ap-
proach. Interestingly, our proposed model was perceived to be
better or much better in 20% of cases for BDL and 30% for MV.
The averaged CMOS scores with their 95% confidence intervals
are respectively of 0.71 ± 0.14 for BDL and 0.88 ± 0.16 for
MV, confirming the better creaky rendering using the proposed
model.

Figure 7: Results of the CMOS test comparing the proposed
model with the traditional one.

6. Conclusion
This paper addressed the modeling of the residual signal in
creaky voice. The first step focused on the analysis of the creaky
excitation. This led to the development of specific tools for
the detection of GCIs, for F0 estimation as well as for the de-
termination of the secondary excitation peaks. Some interest-
ing observations were also made. Despite the pitch variability,
it turned out that the open period kept a constant duration in
creaky voice. Besides, the data-driven waveforms of the pro-
posed model were extracted, showing the evolution of its de-
terministic component (whose closed period mostly consists of
zero values) and of the energy envelope of the noise. In a second
step, a vocoder incorporating the proposed model of the creaky

excitation was built. It was compared to the traditional DSM
vocoder through a subjective evaluation made of both an ABX
and a CMOS test. The ABX results showed that the proposed
model was found to be closer to the original speech signal in
60% of cases, against 15% for the traditional approach. Finally,
the CMOS test emphasized the improvements brought by the
proposed vocoder in which 20 to 30% of scores was perceived
to be better or much better than the traditional approach, while
the opposite occurred only in less than 1% of preference scores.
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