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Abstract
Parameterisation of the glottal source has become increasingly
useful for speech technology. For many applications it may
be desirable to restrict the glottal source feature data to only
speech regions where it can be reliably extracted. In this pa-
per we exploit the previously proposed set of binary phonetic
feature extractors to help determine optimal regions for glot-
tal source analysis. Besides validation of the phonetic feature
extractors, we also quantitatively assess their usefulness for im-
proving voice quality classification and find highly significant
reductions in error rates in particular when nasals and fricative
regions are excluded.
Index Terms: Glottal source, voice source, phonetic features,
voice quality

1. Introduction
The research being carried out by the voice processing group at
the Phonetics and Speech Laboratory in Trinity College Dublin
is concerned with the development of robust glottal source pro-
cessing methods and analysing the function of the glottal source
in prosody. As part of this endeavour, we have been developing
our speech analysis methods to be adaptive and flexible accord-
ing to the phonetic and prosodic context. This paper illustrates
one recent development which involves training a set of fea-
ture extractors that derive information relevant to certain binary
phonetic classes. This information is then exploited in order to
improve the effectiveness of glottal source analysis by allowing
sensitivity to the phonetic context.

Parametric characterisation of the glottal source component
of speech offers a rich source of information often not captured
with standard spectral features. However, glottal inverse filter-
ing (the process of estimating the glottal source by compensat-
ing for the effect of vocal tract resonance) typically displays
sub-optimal performance in speech involving certain phonetic
classes. For instance, nasal consonants and nasalisation in gen-
eral involves zeros in the vocal tract spectrum which are not
characterised by the commonly used all-pole vocal tract model.
Subsequent parameterisation of certain aspects of the glottal
source (in particular the return phase) has been shown to be
significantly affected by this [1]. The interaction of a low first
formant frequency (F1; commonly found in high vowels) with
a high fundamental frequency (f0) is challenging for automatic
glottal inverse filtering, particularly in terms of discriminating
F1 from the glottal formant [2, 3]. Voiced fricatives are also ex-
tremely challenging for both inverse filtering and glottal source
parameterisation procedures.

For certain applications, for instance fully parametric

speech synthesis [4, 5], complete modelling of the glottal source
is required for all (voiced) regions of the speech data. For many
other applications, such as speaker identification [6], voice qual-
ity detection [7, 8] and emotion classification [9, 10, 11], param-
eterisation may not be required for every region in the speech
signal and these applications may indeed benefit from slightly
less glottal feature data which has a higher likelihood of being
reliable. A previous study [12] proposed a method of determin-
ing centres of reliability, which were defined as vocoids with
strong sonorant energy, in a spectrally steady region where reli-
able formant extraction is possible. Although this approach has
the potential for improving the effectiveness of glottal source
analysis it was not formally evaluated for this purpose.

In the present study, we propose the design of a set of inde-
pendent feature extractors for binary phonetic classes, and using
this information to determine optimal regions for glottal source
analysis. Such an approach has been proposed previously [13],
and has promising implications for both speech synthesis [14]
and recognition [15]. However, it has not yet been exploited
in terms of glottal source analysis. Training and validation of
such phonetic feature extractors is described in the current pa-
per. Their effectiveness in optimising glottal source analysis is
objectively assessed through the use of voice quality classifica-
tion experiments, where the effect of excluding certain speech
regions, as well as combining these phonetic features within the
parameter set, on classification accuracy levels is quantified.

2. Phonetic feature extraction
2.1. Speech data

In order to train and validate the approach of extracting phonetic
features, a reasonably large set of data is required including a
wide phonetic coverage as well as involving a range of speakers.
We opt to use freely available databases containing phonetic
transcriptions (see Table 1). The first is the ARCTIC database
[16] which contains 9 speakers of various English dialects and
the second is the newly available IIIT Indic speech database
[17], from which we use data from 6 speakers.

In the present study we investigate four binary phonetic fea-
ture classes: voicing, frication, nasals and high vowels (chosen
due to their relevance to glottal source analysis). Using the la-
bels available with these databases we create binary vectors for
each feature which are subsequently used as targets in the de-
tection training. Say for instance for frication, all the regions
labelled as being fricatives (e.g., /f/, /v/, /s/, etc.) are allocated
the target 1, with all other labels assigned 0. Note that in the
present data only nasal consonants were present, no nasalised
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Table 1: Summary of speech data used in training and validating
phonetic feature extraction.

Data Speaker ID Language Gender Utterances

A
R

C
T

IC

AWB English Male 1138
BDL English Male 1142
CLB English Female 1132
JMK English Male 1132
KED English Male 452
KSP English Male 1132
RAB English Male 1946
RMS English Male 1132
SLT English Female 1132

II
IT

ABI Malayalam Male 1000
ANT Bengali Male 1000
ASH Marathi Male 1000
LP Kannada Female 1000
MOH Tamil Male 1000
SUKH Hindi Female 1000

vowels. For future work, we intend on developing a phonetic
feature extractor for nasality in general, with the method de-
scribed in the current work being limited to nasal consonants.

2.2. Acoustic features and Artificial Neural Networks

The acoustic features used in the present study are the standard
Mel-frequency cepstral coefficients (MFCCs) measured on 25
ms Hanning windowed frames with a 10 ms shift. Note that
the first MFCC, related to signal energy, is normalised to the
maximum energy for a given utterance. Δ and ΔΔ coefficients
are also included, resulting in a 39-dimensional feature vector.

In order to detect the phonetic features we use this feature
vector as input to artificial neural networks (ANNs). In general
ANNs are used to learn a mapping f from the input feature
space I (typically R

n, i.e. the above described features) to the
target space T (in this case {0, 1}, i.e. the individual phonetic
feature binary target): f(x) : x ∈ I → y ∈ T, where x
denotes the input vector and y the output of the approximator
f .

We chose the well known multi-layer perceptron (MLP) as
the network type of choice [18] which is computationally inex-
pensive once the network parameters are trained. The network
architecture is designed as a two layer MLP with one hidden
layer containing 100 neurons, all fully connected to the input
and the output layer. The hidden layer neurons use tanh as a
transfer-function and the output neuron uses a linear transfer-
function, as this is optimal for function approximation. The
training is conducted using a standard error back-propagation
algorithm [19]. As the binary phonetic features: high vowels,
frication and nasals, have a rather sparse occurrence, the deci-
sion threshold, θ, is set for these individual feature extractors
by maximising the F1 score (see below) on the training set. For
the voicing feature extractor, which does not have a sparse oc-
currence, θ is set at 0.5.

In order to validate this approach for extracting phonetic
features, we use the data summarised in Table 1. Leave one
speaker out validation is used, whereby data from one speaker
is held out to be used solely for testing while the rest of the
data is used for training the ANNs. The process is repeated for

Table 2: Leave one speaker out validation results for phonetic
feature extraction training and testing. Detection error and F1
score are given summarised as means (x̂) and standard deviation
(σ).

Phonetic feature Error (%) F1
x̂ σ x̂ σ

Voicing 16.8 3.1 0.89 0.02
Frication 11.1 2.7 0.46 0.16
Nasals 10.6 2.14 0.42 0.13
High vowels 15.7 4.6 0.47 0.11

each speaker. Classification error (i.e. the percentage of speech
frames misclassified) is used as an evaluation metric. However,
for sparsely occurring events (e.g., nasals, which may only oc-
cur in 5 % of the speech data) classification error is unsuitable.
To address this we also include the F1 score, which takes into
account true positives (Tp), false positives (Fp) and false nega-
tives (Fn) and is a more robust metric for skewed datasets:

F1 =
2 · Tp

2 · Tp + Fp + Fn
∈ [0, 1] (1)

Roughly speaking, above 0.7 indicates high accuracy, around
0.5 indicates moderate accuracy and below 0.3 indicates low
accuracy.

2.3. Results

The results from validation of the phonetic feature extraction
method are displayed in Table 2. Unsurprisingly, the detection
accuracy of voicing is very high with an F1 score of 0.89. Frica-
tion and nasals are both detected with reasonably low detection
error rates (approx. 11 %), however with a somewhat lower
F1 score. For frication, the vast majority of false positives are
voiceless stops (/t/, /k/). In effect many of these are probably
not true false positives, as the extractor is detecting the aspira-
tion often accompanying these stops as well as allophonic le-
nition which entails these sounds being produced as fricatives.
Also, for nasals a large proportion of the false positives are later-
als which display a high degree of acoustic similarity to nasals.
High vowels are detected with a slightly higher error rate, but
with also a slightly higher F1 score (0.47).

Although there is clearly potential for improvement in the
accuracy of these extractors, which may be brought about by
better parametric descriptions of the speech specifically rele-
vant to these phonetic classes, they nevertheless, in their cur-
rent form, provide valuable phonetic information. This infor-
mation may be beneficial for, among other applications, opti-
mising glottal source analysis. An illustration showing the out-
put of these feature extractors is shown in Figure 1. The con-
tours above the spectrogram give information on the presence of
the phonetic classes: voicing, frication, nasals and high vowels.
For instance, consider the contour for nasals in the two nasal
regions at 0.1 and 1.8 seconds, which suitably show high confi-
dence of nasals. Similarly, the fricatives at around 0.55 and 1.5
seconds show up with high values indicating high confidence of
the presence of frication.

3. Voice quality classification
Explicit objective evaluation of the effectiveness of glottal
source analysis is far from straightforward, particularly as it is
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Figure 1: Broadband spectrogram of the sentence Not at this
particular case Tom, ... (bottom panel), said by an American
male. The top three panels show confidence of the presence
of voicing, frication, nasals and high vowels. The fourth panel
shows the ARCTIC transcription.

not possible to obtain strictly reliable reference values from nat-
ural speech. In order to objectively evaluate the glottal source
analysis in the present study we propose voice quality classi-
fication experiments with the assumption being that the effec-
tiveness of the analysis will be implicitly shown through the
accuracy of the voice quality classification.

3.1. Speech data

In order to evaluate the ability of the phonetic feature extrac-
tors to improve the effectiveness of glottal source analysis we
required a reasonably large database of speech produced in dif-
ferent voice qualities (note that such databases are not widely
available). For this, we opt to use a section of the speech data
used in [20]. This consists of speech produced by 6 speak-
ers (3 male and 3 female, all experienced in speech research)
recorded in a semi-anechoic chamber. Audio was captured us-
ing high quality recording equipment: a B & K 4191 free-field
microphone and a B & K 7749 pre-amplifier. The signals were
digitised at 44.1 kHz (using a LYNX-two sound card) and were
subsequently downsampled to 16 kHz. Participants were asked
to read 17 sentences in six different phonation types (though
only the breathy, modal and tense samples were used here).
The sentences were chosen from the phonetically compact sen-
tences in the TIMIT corpus, four of which contained all-voiced
sounds. These sentences were chosen in order to obtain a rea-
sonably wide phonetic coverage. Participants were given proto-
type voice quality examples, produced by John Laver 1 and the
present first author, and were asked to practise producing them
before coming to the recording session. For the recordings par-
ticipants were asked to produce the versions of each phonation
type with emphasis and to maintain it throughout the utterance.
During the recording session participants were asked to repeat
the sentence when it was deemed necessary. Note that none of
the speech data used in the development of the phonetic feature
extractors was used in the voice quality classification experi-
ments.

1These examples come as part of Laver (1980)

3.2. Glottal source parameters

We use glottal source parameters derived both from direct mea-
sures of the estimated glottal source signal as well as parame-
ters derived following the fitting of a model to the glottal source
data. Glottal closure instants (GCIs) are first detected using the
SE-VQ algorithm [20]. Glottal inverse filtering is then carried
out using the iterative and adaptive inverse filtering (IAIF; [21])
method. Parameterisation of the glottal source estimate is then
carried out by fitting the Liljencrants-Fant (LF) glottal source
model [22] using the recently proposed DyProg-LF method
which has been shown to be more robust compared to tradi-
tional methods [23]. The DyProg-LF method, employs a dy-
namic programming algorithm to determine an optimal path of
Rd values, the global shape parameter of the LF model, through
the speech signal. There then follows an optimisation procedure
to refine the model fit. The full set of parameters derived from
this procedure includes EE, which is the strength of the main
excitation, Ra, which characterises the return phase, Rk, which
describes the asymmetry of the glottal pulse, and Rg which re-
lates to the normalised frequency of the glottal formant. For the
present study we exclude EE (as we would like to detect voice
quality variation independent of energy related measurements)
and include Rd giving the set: {f0, Ra, Rk, Rg, Rd}.

Parameterisation is also carried out through the use of di-
rect measures. We selected three parameters which were pre-
viously shown to be effective for discriminating breathy, modal
and tense voice [24]. The normalised amplitude quotient (NAQ,
[25]) is calculated with:

NAQ =
fac

dpeak · T0
(2)

where fac is the maximum amplitude of the glottal flow pulse
and dpeak is the amplitude of the maximum negative amplitude
of the glottal derivative pulse (see Figure 2). The quasi-open
quotient (QOQ, [26]) was developed as more robust measure
relating to the standard open quotient. It is calculated by de-
tecting the peak in the glottal flow and finding the time points
previous to and following this point that descend below 50 % of
the peak amplitude (see Figure 2). The duration between these
time locations is used as a ‘quasi-open phase’ and is divided by
the local glottal period in order to derive QOQ. The difference
between the first two harmonics (H1-H2) in the narrowband am-
plitude spectrum of the glottal source signal is also included.
This is calculated on GCI centred glottal source frames, three
times the local glottal period in duration. Combining both di-
rect and model based parameters provides a 8-dimensional fea-
ture vector: {f0, Ra, Rk, Rg, Rd, NAQ, QOQ, H1-H2}.

3.3. Classification experiments

The above described glottal source parameters, derived from
the speech data described in Section 3.1, are used as input fea-
tures to a Support Vector Machines (SVM) classifier, using a
radial basis function kernel and a one-against-one multi-class
architecture. The training targets are the voice quality labels:
breathy, modal and tense voice. 10-fold cross-validation ex-
periments are conducted where the voice quality dataset is ran-
domly partitioned into 10 equal-sized sets. One of the sets is
held out for testing, with the remainder used for training, and
this is repeated for each of the 10 sets. Note that due to the rather
low number of speakers (due to the lack of widely available
voice quality labelled data) we decided not to include speaker
independent validation experiments. Phonetic feature extrac-
tion described in Section 2 (and trained on all the data displayed
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Figure 2: Glottal flow (top) and glottal flow derivative pulse
(bottom) with the measurements required for deriving NAQ
(fac and dpeak) and QOQ (quasi-open phase) highlighted.

in Table 1), is carried out on the voice quality speech data and
this information is utilised in the classification experiments.

The classification experiments involve assessment of five
different systems, which are designed to test the usefulness of
the phonetic feature extractors for optimising the effectiveness
of the glottal source analysis:

Baseline: Using all the glottal source parameters derived from
voiced speech regions.

System 1: Baseline system, excluding glottal source parameters de-
tected in high vowel regions.

System 2: System 1, additionally excluding glottal source parame-
ters detected in fricative regions.

System 3: System 2, additionally excluding glottal source parame-
ters detected in nasal regions.

System 4: Baseline system, only excluding glottal source parame-
ters detected in nasal regions.

System 5: Baseline system, incorporating the four phonetic features
derived using ANNs as additional input features.

3.4. Results

The results of the 10-fold cross validation experiments are plot-
ted as a function of system type in Figure 3. A one-way
ANOVA, with classification error treated as the dependent vari-
able and system type as the independent variable, reveals a
highly significant effect of system type [F(5,54) = 317.2, p <
0.001]. In terms of the median classification errors we observe
the following trend:

baseline > system 1 �∗ system 2 > system 3,
where ∗ indicates a significant difference (at p < 0.001, follow-
ing Tukey’s Honestly Significant Difference (HSD) test). We
can interpret from this that excluding high vowel regions, as
detected by the phonetic feature extractor, only brings a minor
improvement to the voice quality classification. Excluding ar-
eas of frication brings a dramatic reduction in the classification
error and further exclusion of nasals brings a further minor im-
provement in voice quality classification. Considering just ex-
clusion of detected nasal regions (i.e. system 4) we observe a
significant (p < 0.05) reduction in classification error over the
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Figure 3: Distribution of voice quality classification errors in
the 10-fold cross validation experiments, plotted as a function
of system type. The plot shows individual data points, the mean
(red line), 95 % confidence interval (red shading) and standard
deviation (blue shading) of each distribution.

baseline. The effect of removing areas detected as containing
frication and nasals clearly result in an improvement in the ac-
curacy of voice quality classification.

For system 5, which includes the extracted phonetic fea-
ture contours as extra features in the classifier training offers a
slight, but not significant drop in error compared to the baseline
system.

4. Discussion & conclusion
This paper introduces a novel approach to determining optimal
speech regions for glottal source analysis, by exploiting infor-
mation provided by a set of binary phonetic feature extractors.
The effectiveness of glottal source analysis is assessed via a
voice quality classification experiment. This experiment reveals
a dramatic and highly significant reduction in classification er-
ror, particularly when regions detected as containing frication or
nasals are excluded. Although we have not assessed the effec-
tiveness of glottal source parameterisation directly, these find-
ings are indicative of more reliable glottal source modelling.
This development may have important implications for a range
of speech processing applications. For future work, we intend
to extend the set of extractors to cover a richer set of phonetic
features. We are in the process of developing acoustic features
for specific phonetic classes, e.g., nasals, and we hope to utilise
these, along with standard spectral features, to improve the gen-
eralisablilty of these phonetic feature extractors. Finally, we in-
tend to utilise such phonetic information to optimise and create
more adaptive glottal inverse filtering.
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