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Abstract

The present study proposes a new parameter for identifying
breathy to tense voice qualities in a given speech segment us-
ing measurements from the wavelet transform. Techniques that
can deliver robust information on the voice quality of a speech
segment are desirable as they can help tune analysis strategies
as well as provide automatic voice quality annotation in large
corpora. The method described here involves wavelet-based
decomposition of the speech signal into octave bands and then
fitting a regression line to the maximum amplitudes at the dif-
ferent scales. The slope coefficient is then evaluated in terms
of its ability to differentiate voice qualities compared to other
parameters in the literature. The new parameter (named here
Peak Slope) was shown to have robustness to babble noise added
with signal to noise ratios as low as 10 dB. Furthermore, the
proposed parameter was shown to provide better differentiation
of breathy to tense voice qualities in both vowels and running
speech.

Index Terms: Voice quality, glottal source, wavelets

1. Introduction
The majority of approaches to speech processing involve using
fixed window lengths and algorithms which embed assumptions
about the type of signal that is expected. For instance for f0 de-
tection and spectral representations (e.g., MFCCs, LPCs) win-
dow sizes are typically not longer than 32 ms. As two pulse
periods are typically required for periodicity or harmonicity in-
formation this limits possible f0 values to being above 62.5 Hz.
Generally speakers would produce f0 values above this cut-off.
However in the case of creaky phonation f0 values can be as
low 10 Hz, making the above window size unsuitable.

It is a current direction of our research to attempt to identify
various regions in the speech waveform which can then be used
to focus analysis strategies according to that region type. In
the case of creaky phonation a method like that described in [1]
could be used for identifying creaky segments and this could
allow for f0 or glottal closure instant (GCI) detection methods
that allow for very long glottal pulse periods.

In breathy speech segments glottal closure instants may be
much smoother than the sharp closures normally seen in modal
segments. Correctly identifying breathy regions could allow for
the deployment of an algorithm that is suited to analysing this
type of occurrence (e.g., the GCI detection algorithm in [2]).

Furthermore, automatic identification of regions of non-
modal phonation is useful for expressive unit selection synthe-
sis. In the case of short utterances (e.g., “Yeh”), which can have
very different meanings depending on how the utterance was

produced, knowledge of the voice quality used can help facili-
tate the retrieval of appropriate speech units from large corpora.

The characterisation of voice qualities typically requires
source-filter decomposition. The various approaches to this in-
verse filtering problem, however, tend to produce significant er-
rors, particularly when filtering running speech. Also, it would
be advantageous to have some a priori knowledge of the voice
quality mode in order to tailor inverse filtering strategies.

For these reasons a measure of voice quality that does not
require inverse filtering is clearly desired. The current study
looks to utilise features of the wavelet transform for this very
purpose. The use of wavelets has become popular in speech
processing particularly in f0 and GCI detection (see for ex-
ample [2]-[4]). Wavelet based approaches in speech process-
ing have also been shown to be robust against noisy conditions
in voiced/unvoiced detection and other areas [5]. We hope to
demonstrate that features of the wavelet transform can be used
for robust voice quality identification without the need for in-
verse filtering.

2. Proposed method
The method of detecting voice qualities proposed here is in part
motivated by the observations in [2]. In a previous study [3] the
wavelet transform was applied at two or three smallest scales
(relating to higher frequencies). By taking the local maxima,
glottal closure instants (GCIs) could be well detected in voiced
speech where there was sharp glottal closure. It was noted in
[2], however, that for smoother glottal closures (for example in
breathy voice or when voicing is offsetting) only considering
the smallest scales was unsuitable. Hence, the relative impor-
tance of the scale of the local maxima is different for breathy
phonation compared to modal phonation. We wanted to inves-
tigate if an acoustic feature could be designed to characterise
this phenomenon and examine whether such a feature would be
suitable for differentiating voice qualities on a breathy to tense
scale.

We decided to use Eq. (1) as the mother wavelet (equation
comes from [4]), where fs = 16 kHz, fn = fs

2
and τ = 1

2fn

g(t) = −cos(2πfnt) · exp(− t2

2τ2
) (1)

The analysed signal, x(t), is then decomposed by convolving it
with g( t

si
), where si = 2i and i = 0,1,2,....,5. This resulted is

an octave band filter bank, with filters having centre frequencies
of: 8 kHz, 4 kHz, 2 kHz, 1 kHz, 500 Hz and 250 Hz.

For a given speech segment the above decomposition is per-
formed and the local maximum (within a given frame) at each
scale is measured. A straight regression line is then fitted to
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these peak amplitudes, see Fig. 1. In Fig. 1 it can be seen that
the slope of the fitted lines differs for the three voice qualities.
Hence, the proposed parameter is the slope coefficient of the
regression line (henceforth referred to as Peak Slope).
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Figure 1: Wavelet peak amplitudes with regression lines for the
centre of an /o/ vowel produced by a male speaker in breathy,
modal and tense voice qualities.

3. Evaluation
3.1. Speech data

Two sets of speech data were used for evaluating the proposed
method in the current study. The first was a dataset of Finnish
vowels (/A e i o u y æ ø/) produced in three voice qualities (orig-
inally labeled: breathy, normal and pressed) by six female and
5 male speakers. These were the same recordings as used in [6]
and totalled 792 vowel segments. Recording was done using
a unidirectional Sennheiser electret microphone with a preamp
(LD MPA10e Dual Channel Microphone Preamplifier) and a
digital audio recorder (iRiver iHP-140). Audio was digitised
at 44.1 kHz and downsampled to 16 kHz for the present study.
Phase distortion imposed by the recording system was removed
by getting the impulse response of the system and convolving
recorded signals with the impulse response time-reversed.

Due to the ambiguous label of ‘normal’ as a voice quality
we sought to re-label the dataset using Laver’s labelling frame-
work [7] in order to have three independent sets of voice qual-
ities (i.e. breathy, modal and tense). We conducted percep-
tion tests with three judges, all experienced in voice quality
research. Judges rated sound files on a five point scale from
breathy to tense. Vowel samples were excluded from the cur-
rent study if the standard deviation of ratings was more than
one (disagreement on voice quality label) or if the mean rat-
ing was 0.75 away from the corresponding voice quality label
it was originally given. This strict criteria ensured little or no
crossover in terms of the perception of the voice quality sets.
This process resulted in the set of 792 vowels being reduced to
478 for the present work. Cohen’s Kappa (κ) increased from
before (κ = 0.526) exclusions to after (κ = 0.717), demon-
strating largely increased inter-rater agreement.

The second dataset contained 10 sonorant-only sentences
spoken by three male speakers in breathy, modal and tense voice
qualities (i.e. 90 sentences in total). All three speakers were
experienced in speech research and repeated the utterance un-

til it was deemed that the voice quality had been maintained
for the entire sentence. Sentences were recorded in a semi-
anechoic recording studio using high quality recording equip-
ment (a B&K 4191 free-field microphone and a B&K 7749 pre-
amplifier). Audio was digitised at 44.1 kHz (using a Lynx-two
sound card) and then downsampled to 16 kHz. Sentences were
manually segmented and annotated at the phoneme level.

3.2. Experiments

Initially we wanted to test the ability of the Peak Slope pa-
rameter at differentiating breathy, modal and tense voice qual-
ities in simple utterances. We also wanted to test the robust-
ness of the parameter to background noise. To this end we
parameterised each segment in the vowel dataset first with-
out noise, then with babble noise added at 25 dB, 15 dB, 10
dB and 5 dB signal-to-noise ratio (SNR). A long waveform
of babble noise was obtained from http://spib.rice.
edu/spib/data/signals/noise/babble.html and
was added to each clean vowel segment by randomly selecting
start points in the long waveform.

For comparison we selected voice quality parameters that
have been shown to be useful at discriminating breathy to tense
voice qualities (see e.g., [6]) and also parameters which have
been used in applied work on voice quality. As a result we
selected the normalised amplitude quotient (NAQ) [8] and the
difference between the first two harmonics of the narrowband
glottal source spectrum in dB (H1-H2) [9]. These two param-
eters were previously shown to perform well at differentiating
these voice qualities[6].

We also opted to include the H1∗-H2∗, using the inverse
filtering strategy described in [9]. The harmonic amplitudes in
H1∗-H2∗ are obtained by subtracting Eq. (2) from both har-
monics (where f is the frequency of the given harmonic).

20log10
F12

F12 − f2
(2)

A further parameter suggested in [9] is H1∗-A3∗ which is
used to measure spectral slope. H1∗ is again derived using the
method above. A3 refers to the maximum harmonic in the third
formant peak. In order to neutralise the effects of the first two
formants Eq. (3) is added to A3 (where F̃1 and F̃2 are the
formant frequencies of a proposed neutral vowel), giving A3∗.
F̃1 and F̃2 are set as 555 Hz and 1665 Hz as in [9].
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Some researchers also use H1-A3 without any formant
based compensation [10]. As this measure is also used in ap-
plied work on running speech we also consider it in the present
study.

Peak slope values were calculated by measuring the max-
imum peaks at each scale for the middle part of the utter-
ance. NAQ and H1-H2 were measured pulse-by-pulse after au-
tomatic inverse filtering using the iterative adaptive approach
[11]. Throughout the experimentation the window length for
measuring spectral parameters was three pulse lengths centred
on a GCI (obtained using the method in [13]) and using a Ham-
ming window. The parameter values, as well as H1∗-H2∗, H1∗-
A3∗ and H1-A3, were then averaged for each vowel segment.

We first conducted an experiment using a leave-one-
speaker-out approach to test if parameter values could be gener-
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alised to unseen speakers. This was done by establishing thresh-
olds on the basis of individual parameter values for all speakers
but one. These thresholds were then used in order to test iden-
tification accuracy on the held out set. This was repeated for all
11 speakers and results were averaged. Defining thresholds was
done using a multivariate optimisation algorithm [12] to max-
imise identification accuracy in the training set by varying two
threshold values. We then used parameter values for the entire
vowel dataset as a training set for setting thresholds and tested
this on parameter values extracted from the same dataset but
with different noise levels added before parameterisation.

The second set of experiments involved analysing the sen-
tence dataset using the parameters. Parameter values were mea-
sured for each phoneme segment in each sentence. The distri-
butions of the parameter values across the three voice qualities
was then examined. We used thresholds, for each parameter,
which were established on the basis of the distribution of values
from the entire ‘clean’ vowel dataset and measured voice qual-
ity identification accuracy using these thresholds. This would
show, to certain extent, how stable each of the parameters are
when applied to running speech.

Peak slope values were measured in the sentence dataset by
first performing the wavelet-based decomposition of the sen-
tence signal and then measuring maxima on the different scales
within each phoneme boundary. NAQ and H1-H2 were ob-
tained by first doing automatic inverse filtering [11] and then
analysing the pulses within phoneme boundaries and averaging
them for each phoneme. The remaining parameters were mea-
sured using the same method but without inverse filtering.

In both datasets distributions of parameter values were anal-
ysed using Spearman’s Rank Coefficient (ρ) with the voice
quality label being the independent variable and the parame-
ter values being the dependent variable. This was used as a
measure of the ability of the given parameter to differentiate the
three voice qualities.

Finally, it has been suggested in previous studies that voice
source parameters are affected by supraglottal settings in voiced
consonants [14]. To determine whether the new parameter, or
indeed the other parameters, are affected by such settings we
carried out within-speaker two-way ANOVAs (with voice qual-
ity label and vowel/non-vowel as factors) on each of the param-
eter values, taken from the sentence dataset.

4. Results
Initial analysis of the vowel dataset showed Peak Slope (ρ =
−0.85), NAQ (ρ = −0.72), H1-H2 (ρ = −0.67) and H1-
A3 (ρ = −0.52) to be considerably better at differentiating
voice qualities than H1∗-H2∗ (ρ = −0.36) and H1∗-A3∗ (ρ =
−0.11) and hence they were removed from further analysis.

Distributions of the remaining four parameter values across
the three voice qualities are shown in Fig. 2. Derived thresh-
olds are marked with dashed lines. Fig. 3 shows the identifica-
tion accuracies of the leave-one-speaker-out tests on the undis-
torted vowels and accuracy scores on the vowels with the dif-
ferent noise levels added and using thresholds set on the full
vowel dataset without noise. The Peak Slope parameter pro-
duces higher identification accuracy than the other three in the
leave-one-speaker-out tests. It also displays robustness down to
SNR = 10 dB, with higher accuracy at this noise level compared
to the other parameters with the lower noise levels. At SNR =
5 dB the accuracy is dramatically affected with the other three
parameters showing comparable trends. NAQ, as expected, also
displays robustness up to SNR = 10 dB and H1-H2 up to SNR

= 15 dB. H1-A3 produces clearly lower accuracy levels and is
heavily affected by noise from SNR = 15 dB.
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Figure 2: Distributions of the four parameters for breathy,
modal and tense voice qualities from the vowel dataset. Pro-
posed thresholds for voice quality identification (in the vowels
with noise added and the in the sentence dataset) are shown as
a dashed line.
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Figure 3: Voice quality identification accuracy (%) in the vowel
dataset with different levels of babble noise added, for the four
parameters.

Results from the sentence analysis show that in terms of the
overall distribution of values the new parameter provides clear-
est differentiation of the three voice qualities (see Fig. 4). Peak
Slope gave a higher ρ value (-0.67) than NAQ (ρ = -0.61), H1-
H2 (ρ = -0.64) and H1-A3 (ρ = -0.59). Also, using the thresh-
olds set from analysis of the ‘clean’ vowels identification rates
were again highest for Peak Slope (67 %) compared with NAQ
and H1-H2 (49 %) and H1-A3 (46 %).

ANOVAs as expected revealed significant differences
across voice quality labels for Peak Slope (F = 92.1644, df =
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Figure 4: Distributions of the four parameters for breathy,
modal and tense voice qualities for each phoneme in the sen-
tence dataset. Thresholds obtained from the vowel dataset are
marked here with dashed lines.

2, p < 0.001), as well as for NAQ (F = 27.51, df = 2, p <
0.001), H1-H2 (F = 53.62, df = 2, p < 0.001) and H1-A3 (F =
82.38, df = 2, p < 0.001). It was also observed, however, that
the factor vowel/non-vowel did not have a significant effect on
Peak Slope (F = 3.46, df = 1, p = 0.06), NAQ (F = 0.27, df =
1, p = 0.60), H1-H2 (F = 0.01, df = 1, p = 0.91) or H1-A3 (F =
0.76, df = 1, p = 0.38) values.

5. Discussion & conclusion
The experiments conducted in the present study demonstrate the
usefulness of the proposed parameter, Peak Slope, at identifying
regions of different voice quality without the use of inverse fil-
tering. In line with the findings in previous studies (e.g., [6, 8])
the NAQ parameter performs well at differentiating between the
voice qualities in the vowel dataset and shows robustness to
added babble noise. However, the Peak Slope also displayed
robustness to babble noise up to SNR = 10 dB and provided
better differentiation of the voice qualities than NAQ, as well as
H1-H2 and H1-A3. All four parameters were heavily affected
by the babble noise added at SNR = 5 dB suggesting that in
their current state these measures are probably unsuitable for
voice quality analysis in conditions of this noise level (and for
this noise type). We found this trend to be true also for additive
Gaussian noise (data not included in the present study).

The new parameter Peak Slope again performed better than
the other three parameters in the analysis of running speech us-
ing thresholds set from analysis of the vowel data. This was due
to the Peak Slope value ranges (across the three voice qualities)
being more consistent between the two dataset. These findings
in combination with the findings from the leave-one-speaker-
out analysis in the vowel dataset suggest that the new parameter
generalises well, compared to the parameters, across different
speech data types. Furthermore, as the Peak Slope values in the
sentence data were not significantly affected by the speech seg-
ment being a vowel or a non-vowel it may also be suitable for

analysis of voiced consonants.
There are two striking advantages of the Peak Slope pa-

rameter. The first is that it is completely standalone, i.e. no
other algorithms (e.g., f0, GCI detection, inverse filtering) are
needed in order to obtain the values. This is beneficial in
the case of background noise or ‘difficult’ speech segments
which can hamper those algorithms and thus affect the voice
quality parameter values. The second major advantage is that
the Peak Slope parameter was developed without assumptions
which would affect the decision on windowing, which can be
quite complicated particularly when analysing non-modal voice
quality segments. Here only a very simple rectangular window
with phoneme boundaries was required (although a shifted fixed
frame approach could also be used). In particular the parameter
may be useful in the analysis of conversational speech which
would be likely to contain expressive utterances produced with
a range of voice qualities. The Peak Slope parameter is further
suited to this type of analysis as it has been shown to be both
robust to noise and suited to the analysis of running speech.
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