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ABSTRACT

Audiobooks are known to contain a variety of expressive speak-
ing styles that occur as a result of the narrator mimicking a character
in a story, or expressing affect. An accurate modeling of this variety
is essential for the purposes of speech synthesis from an audiobook.
Voice quality differences are important features characterizing these
different speaking styles, which are realized on a gradient and are
often difficult to predict from the text. The present study uses a pa-
rameter characterizing breathy to tense voice qualities using features
of the wavelet transform, and a measure for identifying creaky seg-
ments in an utterance. Based on these features, a combination of
supervised and unsupervised classification is used to detect the re-
gions in an audiobook, where the speaker changes his regular voice
quality to a particular voice style. The target voice style candidates
are selected based on the agreement of the supervised classifier en-
semble output, and evaluated in a listening test.

Index Terms— voice quality, audiobooks, expressive speech,
fuzzy support vector machines, speech synthesis, classifier ensemble

1. INTRODUCTION

Audiobooks contain a variety of different expressive speech styles.
These speech styles are non prompted, and can sound very natural,
as they reflect the speakers own decision and represent the variety of
ways the speaker is comfortable using their own voice. This makes
an audiobook an attractive corpus for expressive speech synthesis.

We use the term voice style in this work to describe the different
ways a speaker produces an utterance in terms of changes in voice
quality combined with certain prosodic variation over the course of
the entire utterance. The voice styles occurring in audiobooks are not
only direct expressions of emotion and affect, but often a result of the
speaker deliberately changing their voice quality to imitate different
characters. These voice quality changes are highly speaker specific,
and they need to be modeled accurately to avoid distortions in the
resulting synthetic speech. Moreover, the similar voice styles in the
corpus need to be detected and grouped to serve as homogeneous
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sub-corpora for expressive speech synthesis. Voice quality features
have previously been shown to be important in creating speech syn-
thesis platforms of this kind [1].

The traditional way of detecting different voice styles in an au-
diobook is to use predictions from text. This is often unreliable be-
cause the speaker can use different narrator styles, or they can use
the same voice style to imitate different characters or express differ-
ent emotions. Parameters of voice quality are effective indicators of
voice style changes within an audiobook. A mixture of voice quality
parameters need to be used to reflect the different dimensions and
volume of these voice style changes. A voice style detection method
using a combination of voice quality parameters and single corpus-
based classification is beneficial, because it takes into account the
speakers own variety of voice styles [2].

The work presented here is motivated by the results of a previ-
ous study [2] where glottal source parameters are used to identify the
variety of speaking styles in an audiobook, placing the similar utter-
ances on a continuum of neighboring clusters of a Self-Organizing
Feature Map. In the present study, we investigate the possibility of
using prior knowledge to target a specific voice style present in the
audiobook, and detect the utterances featuring that voice style.

The voice style detection method described here uses a combina-
tion of unsupervised and supervised learning to identify the similar
sounding utterances to a pre-defined target voice style group. The
selection of target voice style candidates is based on agreement op-
timized multiple classifier system voting, using fuzzy support vector
machines and GMMs. In the experiment, we are aiming to detect a
particular voice style featuring tense voice quality with a relatively
low f0 and occasional creaks. Informal listening tests reported that
the speaker often uses this deviation from his modal voice style, to
express affect and involvement. Detecting the utterances using this
voice style can help in building a suitable sub-corpus for expressive
speech synthesis.

2. VOICE QUALITY MEASUREMENTS

We selected acoustic measurements which were both suitable for
characterizing the voice qualities used by the speaker and have also
been shown to be useful at discriminating voice qualities in less than
ideal recording conditions.

2.1. Breathy to tense - PeakSlope

Breathy and tense voice qualities are the most common, and hence
the most studied non-modal voice qualities. Breathy voice quali-
ties are characterized by a smooth glottal closure, which results in
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strong attenuation of higher harmonics [3]. Breathiness also involves
a jet of air which becomes turbulent as it passes through the glot-
tis and manifests itself in the speech spectrum as noise, typically
from around the third formant region [4]. Tense voice qualities, on
the other hand, involve sharp glottal closure, with strong higher har-
monics compared with modal or breathy speech. There is no audible
aspiration noise in tense voice qualities and the type of phonation
is one in which there is a relatively short open phase in the glottal
vibration cycle.

A new parameter, name PeakSlope, was recently described for
discriminating voice qualities on a breathy-to-tense continuum [5].
It performed better than other voice quality measurements even in
the presence of simulated noisy conditions. PeakSlope is derived
following wavelet-based decomposition of the speech signal. This is
done using the mother wavelet:

g(t) = −cos(2πfnt) · exp(−t2

2τ2
) (1)

where the sampling frequency, fs = 16 kHz, fn = fs
2

and τ = 1
2fn

.

The speech signal, x(t), is the convolved with the scaled version of
the wavelet, g( t

si
), where si = 2i and i = 0, 1, 2, ...., 5. This results

in having a filter bank with the frequency responses of the scaled
wavelet having center frequencies at different octave bands: 8 kHz, 4
kHz, 2 kHz, 1 kHz, 500 Hz and 250 Hz. Absolute amplitude maxima
are then measured from each of the outputted waveforms. It was
previously shown that if a regression line was fit to these maxima,
the slope of the line was able to robustly discriminate breathy-to-
tense voice qualities. This is further highlighted in Fig. 1.
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Fig. 1. Wavelet peak amplitudes with regression lines for the center
of an /o/ vowel produced by a male speaker in breathy, modal and
tense voice qualities.

For the current study wavelet based decomposition is carried
out on the whole speech utterance and then measures of PeakSlope
are carried out using a 32 ms rectangular window, on the outputted
waveforms, and a 10 ms frame shift is used.

2.2. Creak detection

Creaky voice qualities (also called vocal fry) are characterised by
an extremely low f0, irregular pulsing and at times the presence of
secondary and even tertiary excitations [6]. These acoustic charac-
teristics are the result low levels of longitudinal and high levels of
adductive vocal fold tension combined with low levels of subglottal
pressure [3]. Creaky voice qualities can occur from a phenomenon

called ventricular incursion [10] where the ventricular folds adduct
on the true vocal folds resulting in additional mass (leading to lower
frequency of vibration) [10]. This can provide conditions for laryn-
geal vibration also occurring above the level of the glottis, which
may account for the secondary and tertiary excitations. For detect-
ing speech segments containing creak we used a set of parameters
described in [7]. It was shown in the original paper that a very short
term power contour, with 4 ms frame length and 2 ms shift, could be
used for detecting candidate creak pulses. One can observe in Fig. 2
(panel B) the very large fluctuations in power towards the end of the
contour, where the speaker produces creaky phonation. This clearly
corresponds to the change in the glottal source waveform at the same
time point (Fig. 2, panel A). A power peaks (PwP) parameter is used
to quantify the amplitude of these fluctuations and highlight candi-
date creak pulses.

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

A
m

pl
itu

de

Glottal source waveform (a)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
60

80

100

120

140

160

Time (seconds)

P
ow

er
 (

dB
)

Short−term power contour (b)

Fig. 2. Glottal source waveform (a), estimated by inverse filtering
and the very short term power contour (b) of an /a/ vowel produced
by a male speaker which begins in a modal voice quality but changes
into creak from around 0.4 seconds.

Then, in order to differentiate between creaky segments and
‘normal’ voiced segments an Intra-Frame Periodicity (IFP) measure
is used. This involves using a normalized autocorrelation function
of a 32 ms windowed frame of the speech signal. One would ex-
pect strong repeating peaks above zero-lag if the frame contains nor-
mal voiced speech. But for creaky segments, as they typically ei-
ther display very long or irregularly spaced glottal pulse lengths one
would expect relatively weaker peaks in the autocorrelation func-
tion. A further measure is used to discriminate between creaky seg-
ments and unvoiced speech. The Inter-Pulse Similarity (measure)
involves taking a cross-correlation function from speech segments
around consecutive creak candidate locations (determined from the
power contour). It is likely that consecutive creak segments would
display a reasonable degree of similarity compared with unvoiced
segments. Hence, this would show comparably stronger peaks in the
cross-correlation function for consecutive creak segments. Finally,
in order to make the binary decision on the presence or absence of
creak we use the suggested parameter thresholds given in the origi-
nal papers, i.e. PwP ≥ 7 dB, IFP ≤ 0.5, IPS ≥ 0.5, for a segment to
be considered to contain creak.

3. SPEECH SAMPLE CANDIDATE SELECTION BASED
ON AGREEMENT OPTIMIZED ENSEMBLE VOTING (AOE

VOTING)

Based on the voice quality measures described in Section 2, we se-
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lect a voice style group as a narrow target style (see Section 4.3),
that we want to widen with similar speech samples, and one oppos-
ing group, that did not fulfill the criteria. Based on this selection, we
trained an ensemble of two classifiers, namely a fuzzy-output sup-
port vector machine (FSVM), and a Gaussian mixture model (GMM)
[8, 9].

The AOE voting is conducted as follows: The remaining unla-
beled samples x ∈ X are classified using the trained ensemble and
selected to be either in the broadened target group (i.e. candidates)
or not, based on the confidence of the classifiers’ output. In the case
of the FSVM the confidence cfsvm is measured as the distance d(x)
of sample x to the separating hyperplane normalized using the sig-
moid function cfsvm(d(x)) = 1

1−exp−d(x) ∈ [0, 1]. For the GMM

the confidence cgmm is measured as the a posterior probability of
sample x given model mj : cgmm = P (x|mj) ∈ [0, 1].

The optimal confidence thresholds for the two classifiers are
identified using a measure of the relative agreement relA, taking
agreement (i.e. the number of agreeing candidates of the ensemble)
between the classifiers’ output candidates for the broadened target
class canden = candfsvm ∩ candgmm and the overall number of
selected candidates candall = candfsvm∪candfsvm into account:

relA(cfsvm, cgmm) =
1

|candall| (
|canden|

|candfsvm| +
|canden|
|candgmm| )

As the candidate lists vary with respect to the confidence thresh-
old of the classifiers, the confidence values cfsvm and cgmm are var-
ied in order to find the maximal relA. The result and experimental
setup for this study is described in Section 4.4.

4. EXPERIMENT

4.1. Corpus

The corpus used for the experiment is part of an open source audio-
book originally published on librovox.org, read by John Greenman.
The segmented audio was made available for Blizzard Challenge
2012 Toshiba Research Europe Ltd, Cambridge Research Labora-
tory. The method used to align the audio with the corresponding text
and segment it into smaller utterances is described in [10]. One of
the four available Mark Twain books, A Tramp Abroad was selected
for this experiment. This was necessary to eliminate changes of the
recording environment. A pilot corpus of 3017 utterances contain-
ing a variety of highly expressive speech styles was formed from the
utterances of A Tramp Abroad that were no longer than 5 seconds.
Based on informal listening tests it was assumed that the vast major-
ity of these utterances contain no abrupt changes of voice style.

4.2. Preparation of parameters

After the voice quality parameters were estimated as described in
sections 2.1 and 2.2, they were transformed into input features of
the classification, one feature per parameter per utterance. This was
necessary so that the length and content of the utterances would not
influence the outcome of the classification. The input feature of the
PeakSlope parameter was produced by calculating the mean of the
minima of the curve of values per utterance. To indicate the pres-
ence of creak in an utterance, a creak rate feature was introduced,
based on the creak decision values in each utterance. The creak rate
was calculated by dividing the number of creaky segments by the
number of voiced segments in an utterance. This method proved to
be suitable in making up for the length differences across utterances.
The third input feature was the mean fundamental frequency over an

utterance. The f0 values were extracted using the ESPS pitch tracker
get f0 [11].

4.3. Selecting the target voice qualities

We targeted a voice style produced using a tense voice quality and
a relatively low f0 with occasional creaky segments. Based on this
limited knowledge, an initial dataset was selected by choosing the
utterances with features located in the tensest 30 % of the overall
number of the utterances (indicated by the PeakSlope values), and
that had features displaying low f0 and more creaky segments than
the median values taken from the whole corpus. 6.9 % (i.e. 207 sam-
ples) of the corpus qualified for all of these requirements and 18.4
% (i.e. 552 samples) that represent the opposite speech styles (i.e.
fulfilling none of the three criteria). Those two groups are utilized
in the training of the classifier ensemble used in the AOE voting
approach. The target selection is aimed to be broadened out with
similar sounding utterances with the help of the AOE voting.

4.4. AOE voting

Figure 3, shows the generated heat map of the algorithm with the
confidence measures cfsvm and cgmm ranging between [0.99, 0.86].
It is clearly seen that a peak (marked with a star in Figure 3) of relA
is found at cfsvm = 0.96 and cgmm = 0.99. For this point out of
|candall| = 370 we find an overlap of |canden| = 150.
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Fig. 3. Ensemble voting heat map. Warm colors indicate good over-
lap measure and the star indicates the optimal value.

5. PERCEPTUAL EVALUATION

5.1. Stimuli

The goal of the subjective evaluation was three-fold: firstly, we were
to assess whether listeners perceive the utterances in the target voice
style group to sound similar to each other. The second aim was to
find out whether the method selected the vast majority of utterances
in the target voice style. Thirdly, we were to show whether there was
a significant difference between the training set of target voice style
utterances and the group of candidates selected by the AOE voting.
The evaluation set consisted of 60 randomly selected utterances: 20
from the Training set of the target voice style group, 20 from the
samples selected by the AOE voting, and 20 from the rest of the
corpus (Other).
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Fig. 4. Illustration of various trial setups in the perception test. There
were equal quantities of each case. Both the order of the cases and
the A-B position of the test utterances was randomized.

Table 1. Results from the perception test. Percentages indicate
agreement with the classification.

Group Accuracy (%) Standard deviation (%)

Uniform 88.48 10.44
Mixed 85.86 10.50

Combined 87.04 7.88

5.2. Experiment

A perception test was carried out in the form of a web applica-
tion where participants were encouraged to use headphones. The
setup of the test is illustrated in Fig. 4. Each participant was pre-
sented with 20 sets each containing three utterances (one reference
and two test utterances). The four cases, shown in Fig. 4, each
appeared in quantities of 5 and were randomly presented to the
participant. Furthermore, the A-B position was randomized. The
reference sample was taken from either of the target voice style
groups. One of the A-B samples originated from the target voice
style groups, the other from the rest of the corpus. The listeners
were asked to decide which of the two test samples sounded more
similar to the reference utterance, in terms of voice characteristics.
They were also asked to ignore the length and the content of the
utterances. The utterances used in the listening test are available at:
http://muster.ucd.ie/∼eva/voicestyletest

6. RESULTS

The subjective evaluation was completed by 27 participants. We
found that listeners judgements were in 87 % agreement (see Table
1) with the classification. This shows that the utterances classified
as belonging to the target voice style were perceived to be similar
to each other and significantly different from the rest of the corpus.
These results also show that the method selected the vast majority of
utterances in the target voice style because the random selection of
test utterances would have detected if there were many target voice
style utterances remaining in the ”Other” part of the corpus.

In order to test whether there was a perceivable difference be-
tween utterances in the training set and the utterances selected by the
AOE voting, we considered participant ratings for presented stimuli
where the reference utterance and one of the test utterances were ei-
ther both from the training set or both from the AOE voting set (see
Fig. 4). This group was called ‘Uniform’. This ‘Uniform’ group

was compared to the ‘Mixed’ group which was defined as partici-
pant ratings for stimuli where the reference utterance came not from
the same set as either of test utterances.

Independent t-tests carried out on participant preferences for
‘Uniform’ and ‘Mixed’ groups revealed no significant difference (t
= -0.919, p = 0.3623). This indicates that there was no perceivable
difference between the training set and the utterances selected by the
AOE voting.

7. CONCLUSIONS AND FUTURE WORK

This study describes a method to detect a targeted voice style in an
audiobook. The experiment showed a successful separation of a par-
ticular voice style from the rest of the corpus. With the help of some
prior knowledge in characterizing the desired voice styles in terms
of voice quality features, parameters indicating voice quality can be
effectively used to find the targeted utterances. Future work will in-
volve including further parameters indicating breathiness and whis-
per in voice styles, as well as implementing the voice style detection
method in expressive speech synthesis.

8. REFERENCES

[1] N. Campbell and P. Mokhtari, “Voice quality: The 4th prosodic
dimension,” in ICPhS, 2003, pp. 2417–2420.

[2] E. Szekely, J. Cabral, P. Cahill, and J. Carson-Berndsen, “Clus-
tering expressive speech styles in audiobooks using glottal
source parameters,” Proceedings of Interspeech, 2011.

[3] J. Laver, The Phonetic Description of Voice Quality, Cam-
bridge University Press, 1980.

[4] D. Klatt and L. Klatt, “Analysis, synthesis, and perception of
voice quality variations among female and male talkers,” J
Acoust Soc Am, vol. 87, no. 2, pp. 820–857, 1990.

[5] J. Kane and C. Gobl, “Identifying regions of non-modal phona-
tion using features of the wavelet transform,” Proceedings of
Interspeech, 2011.

[6] M. Blomgren, Y. Chen, M. L. Ng, and H. R. Gilbert, “Acoustic,
aerodynamic, physiologic, and perceptual properties of modal
and vocal fry registers,” J Acoust Soc Am, vol. 103, no. 5, pp.
2649–2658, 1998.

[7] C. T. Ishi, H. Ishiguro, and N. Hagita, “A method for automatic
detection of vocal fry,” IEEE Trans. on Audio, Speech and
Language Processing, vol. 16, no. 1, 2008.

[8] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its
application to parameter estimation for Gaussian mixture and
hidden Markov models,” Technical report, International Com-
puter Science Institute and Computer Science Division,, 1998.

[9] C. Thiel, S. Scherer, and F. Schwenker, “Fuzzy-input fuzzy-
output one-against-all support vector machines,” in 11th KES.
2007, vol. 3 of Lecture Notes in Artificial Intelligence, pp. 156–
165, Springer.

[10] N. Braunschweiler, M. Gales, and S. Buchholz, “Lightly su-
pervised recognition for automatic alignment of large coherent
speech recordings,” Proc. of Interspeech, 2010.

[11] D.C. Entropic Research Laboratory, Washington, “ESPS ver-
sion 5.0 programs manual,” 1993.

4596


