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1. Introduction 

Neuroinflammation, accompanied by neuronal loss and dysfunction, is a characteristic of 
neurodegenerative disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD). It 
is well documented that inappropriate activation of glia is the primary cause of 
neuroinflammation (Masocha, 2009), but their role in the pathogenesis of neurodegenerative 
diseases is not known. However it is certainly the case that dying neurons act to stimulate 
glia since they release alarmins which activate pathogen recognition receptors (PRR) and 
therefore the possibility exists that activation of glia especially microglia, may be a 
consequence, rather than a cause, of neurodegenerative processes which characterize 
diseases like AD and PD. Understanding microglial function remains a major goal since it is 
widely believed that modulating glial function will provide a possible strategy for limiting 
the progression of neurodegenerative diseases. Consequently it is imperative to increase our 
understanding of the factors which control microglial function and the mechanisms by 
which expression of these factors are controlled. 

2. Microglia adopt different activation states  

Secreted factors including neurotrophins and growth factors like transforming growth factor 
(TGF)-┚, as well as anti-inflammatory cytokines, impact on microglial activation and help to 
maintain these cells in a relatively quiescent state. Similarly, the interaction of microglia 
with other cells affects their activation state. However the recognition that macrophages, the 
peripheral cells which are derived from the same myeloid precursors as microglia, adopt 
different activation states has led to the acknowledgement that microglia can also adopt 
different activation states (Gordon, 2003). As the primary immune cells in the brain, 
microglia express PRR and therefore pathogen-associated molecular patterns (PAMPs) or 
damage-associated molecular patterns (DAMPs) interact with these receptors and trigger 
the innate immune response (Blasko et al., 2004, Koenigsknecht and Landreth, 2004). 
Microglia, like macrophages, are activated by the secreted proinflammatory cytokine, 
interferon-┛ (IFN┛) inducing classical activation, and by the anti-inflammatory cytokines 
interleukin (IL)-4 and IL-13 to induce the alternative activation state (Gordon, 2003). 
Humoral activation of microglia, involving the complement system has also been described 
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(Griffiths et al., 2010). In addition to the modulatory effect of secreted factors like pro- and 
anti-inflammatory cytokines and factors like TGF┚, a deactivation/suppression state of 
microglia has been described, and this state is controlled by neuroimmunoregulatory 
proteins (NIRegs).  

2.1 Neuroimmunoregulatory proteins modulate microglial activation 
NIRegs act on specific receptors expressed on microglia and ensure that cell activation is 
checked. These NIRegs include CD200, CD22, CD47, semaphorin and fractalkine which 

interact with CD200R, CD45, SIRPα, plexin B1 or CD72, and fractalkine receptor 
respectively. In most of these cases, expression of the receptors is relatively restricted to cells 
of the myeloid lineage, whereas expression of the ligands is more widespread.  
CD47 is a membrane glycoprotein and a member of the immunoglobulin superfamily. It is 
expressed on neurons and endothelial cells and its expression on macrophages has also been 
reported (Reinhold et al., 1995). CD47 is a ‘don’t eat me’ signal and circulating cells lacking 

CD47 are rapidly cleared. Activation of SIRPα by CD47 leads to activation of an inhibitory 
signal as a consequence of the interaction between tyrosine phosphatases SHP-1 and SHP2 

with cytoplasmic tyrosine-linked inhibition motifs (Hatherley et al., 2009). SIRPα, and 

another receptor for CD47, thrombospondin, are expressed on microglia, although SIRPα is 
also expressed on neurons (Brown and Frazier, 2001; Lamy et al., 2007).  
CD45 is expressed on microglia, albeit at low levels when cells are unstimulated, contrasting 
with the higher expression on macrophages. It is a transmembrane protein tyrosine 
phosphatase which has been identified as a negative regulator of microglial activation (Tan 
et al., 2000). It has been known for 20 years that CD22 is a ligand for CD45 (Stamenkovic et 
al., 1991), but the fact that CD22 is expressed on neurons, and also released from neurons, 
has been established only relatively recently (Mott et al., 2004). These authors identified a 

role for CD22 in modulating tumour necrosis factor (TNF)-α release from microglia.  
Fractalkine (also known as CX3CL1) is the only member of the CX3C subfamily of chemokines 
(Bazan et al., 1997). In the brain, it is expressed mainly on neurons (Harrison et al., 1998, 
Maciejewski-Lenoir et al., 1999), whereas its receptor is expressed chiefly on microglial cells 
(Harrison et al., 1998). However this expression pattern is probably not exclusive with 
evidence indicating that the ligand is expressed on glia (Maciejewski-Lenoir et al., 1999) and 
the receptor is expressed on neurons (Hughes et al., 2002). The engagement of fractalkine 
with its receptor decreases microglial activation and inhibits lipopolysaccharide (LPS)-
induced proinflammatory cytokine production (Zujovic et al., 2000; Lyons et al., 2009a). 
Evidence from this laboratory suggested that fractalkine expression was decreased in 
hippocampal tissue prepared from aged rats in which microglial activation is upregulated, 
and that the combination of these changes was coupled with a deficit in neuronal plasticity 
(Lyons et al., 2009a). 
Although they were originally identified because of their importance as axon guidance 
molecules, an immunoregulatory role for some semaphorins has been described (Suzuki et 
al., 2008). SEMA4D (also referred to as CD100), a transmembrane protein which belongs to 
class 4 group of the semaphorin family, has been the focus of the studies designed to 
understand this immunomodulatory role. It is expressed on neurons, though not on 
microglia (Hirsch et al., 1999), whereas the 2 major receptors for SEMA4D, plexin B1 and 
CD72 are expressed on microglia (Toguchi et al., 2009). Soluble Sema4D inhibits LPS-
induced microglial activation as assessed by a change in cell morphology, nitric oxide (NO) 
production and cell migration (Toguchi et al., 2009). It also prevents migration of monocytes 
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as a consequence of its interaction with plexin B1 (Chabbert-de Ponnat et al., 2005). 
However, in complete contrast to these findings, a Sema4D fusion protein has been reported 
to increase NO production in microglia and this was abolished in cells prepared from plexin 
B1-deficient mice (Okuno et al., 2010). The possible role of SEMA4D as a regulator of 
microglial function requires further examination. 

3. CD200 and CD200R  

3.1 Expression of CD200 and its receptor  
Interest in understanding the roles of the NIRegs identified above has been increasing in the 
past few years and, to date, most emphasis has been placed on evaluating the role of the 
interaction between CD200 and its receptor on microglial activation. This interaction is 
recognized as a potent immune suppressor and therefore it is predicted that reduced 
inhibitory input from CD200 results in dysregulation of microglial function and the risk of 
inappropriate cellular activation and tissue damage.  
CD200, previously known as OX2, is a 41-47 kDa type-1 cell surface glycoprotein with two 
immunoglobulin domains arranged in a typical V-/C2 set (Clark et al., 1985). The family of 
IgSF glycoproteins to which CD200 belongs includes neural cell adhesion molecule 
(NCAM), Thy-1 and L1, which are expressed on both lymphoid tissue and also neuronal 
tissue; CD200 was originally identified in the thymus and brain (Barclay, 1981) and thereafter 
in several tissues, and cells including neurons, T cells and astrocytes (Webb and Barclay, 
1984, Preston et al., 1997, Wright et al., 2000). Expression of CD200 on vascular endothelium 
has been described with evidence of more intense staining on veins and venules rather than 
arteries, although staining in arteries was increased following injection with LPS. 
Distribution of CD200 in capillaries appears to be tissue-dependent and varies with the type 
of capillary; thus intense immunoreactivity is observed in continuous endothelia (both 
fenestrated and non-fenestrated) compared with relatively lower expression on discontinuous 
endothelia. Interestingly it has been shown that an anti-CD200 antibody blocked the 
adhesion of T cells to endothelial cells but did not affect the adhesion of macrophages; thus 
it was suggested that, whereas the primary role of the interaction between CD200 and its 
receptor may be to reduce activity of macrophages, a second role may be to modulate 
adhesion and migration of T cells into tissues (Ko et al., 2009). CD200 expression has also 
been examined on endothelial cells in the brain and it has been reported that expression in 
the hippocampus was evident only on the luminal surface of endothelial cells that made up 
the blood brain barrier (BBB), whereas in the area postrema, which lacks a BBB, clear 
staining was observed on the luminal and abluminal surfaces (Ko et al., 2009).  
CD200 expression in brain tissue was found to be widespread with stronger staining in grey 
matter compared with white matter (Webb and Barclay, 1984). Immunostaining has been 
reported in the spinal cord, cerebellum and striatum, as well as the hippocampus and 
parietal cortex, and the evidence suggested that while it was expressed on the cell 
membrane in most brain areas, there was evidence of CD200 staining in the cytosol in 
hippocampal neurons. In the spinal cord, axons were CD200-positive whereas myelin did 
not stain for CD200 (Koning et al., 2009).  
CD200 receptor (CD200R), CD200’s cognate receptor is also a glycoprotein and, like the 
ligand, it contains two IgSF domains in a V/C2 set arrangement and cysteine residues in 
their V-like domains. To date, 5 CD200R family members (R1-R5) have been identified in 
mice (Gorczynski et al., 2008). The most studied receptor, CD200R1, is expressed primarily 
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on myeloid lineage cells such as microglia and macrophages (Meuth et al., 2008, Masocha, 
2009) and also monocytes, granulocytes and dendritic cells (DC) (Wright et al., 2000, Wright 
et al., 2003). More recent flow cytometry data suggest that CD200R is also expressed on 
natural killer cells and B cells, as well as on CD4+ T cells which had been reported 
previously (Wright et al., 2003, Rijkers et al., 2008). It was suggested that CD200 is the 
natural ligand for only CD200R1 (Wright et al., 2003) although others suggest that this may 
not be the case (Gorczynski et al., 2004).  

3.2 The signaling events induced by CD200R activation  
Most inhibitory receptors contain immunoreceptor tyrosine-based inhibitory motifs (ITIM) 

which enables cell signalling through recruitment of Src homology 2 domain containing 

phosphatases (SHP), or SHIP, which is an inositol phosphataseSH2-containing inositol 

phosphatase (SHIP). This is not the case with CD200R; instead, CD200R has a long 

cytoplasmic tail of 67 amino acids (Figure 1). 

This longer cytoplasmic domain on CD200R contrasts with the short intracellular domain of 
CD200, which contains 19 amino acids and no signalling motifs (Barclay et al., 2002). The 
cytoplasmic tail of CD200R includes an NPXY signalling motif which interacts with the 
phosphotyrosine-binding (PTB) domains present in several signalling adaptor molecules 
(Wright et al., 2000). The NPXY signalling motif contains 3 tyrosine residues, which are 
phosphorylated following the interaction between CD200 and CD200R (Wright et al., 2000: 
Snelgrove et al., 2008). This initiates a signaling cascade, which involves recruitment and 
phosphorylation of adaptor proteins, downstream of tyrosine kinase (Dok) 1 and Dok 2 and 
the subsequent binding to RasGAP and SHIP (Mihrshahi et al., 2009); the downstream 
events include inhibition of the Ras/mitogen-activated protein kinase (MAPK) pathway 
(Zhang et al., 2004). Ultimately this results in a decrease in release of inflammatory 

cytokines. Thus CD200R agonists inhibited IFN┛-induced release of TNFα from peritoneal 
macrophages, although no effect on LPS-induced release was observed (Jenmalm et al., 
2006). These agonists also increased IFN┛-induced and IL-17-induced release of IL-6, 
although production of monocyte chemoattractant protein-1 (MCP-1) was unaffected. 
Tetanus toxin-induced production of IL-5 and IL-13, but not other cytokines, was inhibited 
by CD200R agonists (Jenmalm et al., 2006). The effects of these agonists were cell-specific; 
activation of DC by several stimuli, including LPS and inflammatory cytokines, increased 
numerous markers of cell activation and resulted in release of many cytokines but these 
changes were resistant to modulation by CD200R agonists.  
Recent evidence suggests that Dok 1 negatively regulates Dok 2-induced signalling 

(Mihrshahi and Brown, 2010) and that the negative regulation induced by CD200R 

activation is mediated by sequential activation of Dok 2 and RasGAP (Mihrshahi et al., 

2009). 

3.3 Characteristics of CD200-deficient mice  
Deletion of the CD200 gene in mice provided a significant insight into the role of CD200 
with the important observation that susceptibility of these mice to autoimmune diseases was 
markedly increased, with evidence of upregulated inflammatory responses (Hoek et al., 
2000). The population of macrophages was increased in these animals and there was 
evidence of an enhanced activation state, even under resting conditions (Hoek et al., 2000). 
Specifically, macrophage numbers in the spleen and mesenteric lymph nodes were increased 
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Fig. 1. CD200-induced signalling downregulates glial production of inflammatory cytokines. 
CD200 is expressed on several cell types including neurons and endothelial cells whereas 
expression of CD200R is relatively restricted to cells of the myeloid lineage. CD200 has a 
short cytosolic domain with no signalling capability whereas the signalling motif in the 
cytosolic domain of CD200R contains 3 tyrosine residues which, when phosphorylated, 
recruits Dok 1and Dok 2 which leads to activation of SHIP and RasGAP respectively, the 
latter of which leads to inhibition of MAP kinases thereby permitting increased production 
of inflammatory cytokines 

and a defect in the organization of the mesenteric lymph nodes was described (Barclay et al., 
2002). The findings of these studies indicated that CD200R activation provides a mechanism 
for negatively modulating cell responses and controlling responses of cells to immunological 
stimuli. An increase in the activation state of microglia was also reported with evidence of 
increased expression of CD11b and CD45, and the response of microglia to trauma is 
markedly enhanced in CD200-deficient mice where activated microglia cluster around the 
lesion area (Hoek et al., 2000). The clustering of activated macrophages or microglia in 
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tissues of CD200-deficient mice has suggested that CD200-CD200R interaction may not 
simply provide a mechanism by which these myeloid cells are maintained in a relatively 
quiescent state, but that this interaction may play a key role in controlling migration of cells 
(Nathan and Muller, 2001). Interestingly, one of the earliest papers on the actions of CD200 
suggested that it was expressed on immature (as well as mature) neurons and that it may be 
involved in migration of these neurons during development of the CNS (Webb and Barclay, 
1984).  
Symptoms in several models of neurodegenerative and/or neuroinflammatory disease, or 
the responses to certain infections, or the effects of injury to neurons (detailed in Section 4 
below) have been examined in CD200-deficient mice. The evidence consistently shows, 
across these experiments, that the symptoms are worse, the mortality rate is higher and 
activation of microglial cells or macrophages is more profound in CD200-deficient, 
compared with wildtype, mice. Thus CD200-deficient mice exhibit increased sensitivity to 
infections like influenza where evidence of greater macrophage activity was linked with 
prolonged symptoms and increased mortality (Snelgrove et al., 2008) and to Toxoplasma 
gondii where the increased macrophage infiltration, accompanied by increased activation of 
these cells and also microglia, was associated with poorer survival rates (Deckert et al., 
2006). In a striking parallel with microglia from CD200-deficient mice, microglia prepared 
from mice lacking either Dok 1 or Dok 2 also respond more profoundly to LPS than cells 
from wildtype mice (Shinohara et al., 2005).  

4. CD200 functions as a neuroimmunoregulatory protein  

4.1 CD200-CD200R interaction maintains microglia in a quiescent state 
The findings of several experiments indicate that the interaction between CD200 and 
CD200R maintains microglia or macrophages in a quiescent state whereas the absence of 
CD200 is linked with evidence of cell activation and inflammatory changes. Evidence from 
this laboratory has revealed that co-culture of neurons with mixed glia inhibited LPS-

induced increases in release of IL-1┚, IL-6 and TNFα. The effect of neurons was blocked 
when the incubation was carried out in the presence of a blocking anti-CD200 antibody 
(Lyons et al., 2009b) pinpointing a role for CD200 in modulating cytokine release. Similarly, 

the A┚-induced release of IL-1┚, IL-6 and TNFα from mixed glia is inhibited when cells are 
co-cultured with neurons and this effect of neurons is also inhibited by the presence of a 
blocking anti-CD200 antibody (Lyons et al., 2007a).  
One factor which increases CD200 expression is IL-4 and, interestingly, a marked reduction 
in CD200 expression has been reported on neurons prepared from IL-4-deficient mice 
(Lyons et al., 2009b). Predictably, therefore, co-incubation of mixed glia with neurons 
prepared from IL-4-deficient mice did not attenuate A┚-induced production of 
inflammatory cytokines (Lyons et al., 2009b), contrasting with the effect of neurons prepared 
from wildtype mice. As highlighted above, endothelial cells express CD200 and, like 
neurons, incubation of LPS-treated mixed glia with endothelial cells inhibits the LPS-
induced release of IL-1┚ from mixed glia (Figure 2).  

4.2 The age-related increase in microglial activation is associated with decreased 
CD200 expression  
It has been recognized for several years that microglial activation is increased in the brain 
with age; the evidence suggests that expression of markers of activation, for example MHCII  
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Fig. 2. Endothelial cells, which express CD200, modulate LPS-induced IL-1┚ production 
from glia in a manner which resembles the effect of neurons. a,b. Neurons (a) and endothelial 
cells (b; bEnd.3) express CD200. Mixed glia were incubated in the presence or absence of 
LPS (100ng/ml), and either neurons (1:2) or endothelial cells (bEnd.3; 1:8) were added. c,d. 
LPS significantly increased supernatant concentration of IL-1┚ (***p < 0.001; ANOVA) and 
this was significantly attenuated when mixed glia were co-cultured with either neurons or 
endothelial cells (+++p < 0.001; ANOVA) 

and CD11b, are increased in hippocampal and cortical tissue with age and these changes are 
accompanied by increased expression of inflammatory cytokines (Lynch, 2010). Evidence 
from this laboratory indicates that CD200 expression is decreased in hippocampal tissue 
prepared from aged, compared with young, rats. We have proposed that this significantly 
contributes to the age-related increase in microglial activation (Lyons et al., 2007a) and 
consequently the age-related decrease in synaptic plasticity, typified by the deficit in long-
term potentiation (LTP). Recent evidence has revealed that intracerebroventricular injection 
of CD200Fc attenuated the age-related deficit in LTP (Cox et al., unpublished). Interestingly, 
amyloid-┚ (A┚), which has been shown to decrease LTP (Lyons et al., 2007a, Lyons et al., 
2007b) is associated with increased microglial activation as demonstrated by increased 
expression of the cell surface markers of microglial activation, MHCII (Lyons et al., 2007a, 
Lyons et al., 2007b), ICAM and CD86 (Clarke et al., 2007), increased production of 
inflammatory cytokines, IFN┛ and IL-1┚ (Minogue et al., 2007) and increased production of 
chemokines MCP-1 and IP-10 (Clarke et al., 2007). Significantly A┚ also decreases CD200 
expression in vitro while expression of CD200 is also decreased in hippocampal tissue 
prepared from rats which received an intracerebroventricular injection of A┚ (Lyons et al., 
2007a).  

4.3 CD200 is a protective molecule during apoptosis  
Apoptosis is an ongoing process which is necessary to permit natural cell turnover. It is 
important to ensure that this occurs without production of inflammatory cytokines which 
can negatively impact on cells in the microenvironment; a key factor in ensuring 
maintenance of this steady state is the expression of immunoregulatory signals. Like other 
peripheral cells, apoptosis of DC occurs on an ongoing basis and, experimentally, apoptosis 
can be induced by growth factor deprivaton. Recent data have indicated that up to 75% of 
apoptotic CD11c+ cells express CD200, whereas about one third of non-apoptotic CD11c+ 

cells express CD200; the evidence indicates that expression of CD200 is p53- and caspase-
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dependent. Similarly γ-irradiation, which induces apoptosis in C1498 leukemia cells, is 
associated with increased expression of CD200 (Rosenblum et al., 2004). 
It has been proposed that CD200 also plays a role in tolerance. This has been demonstrated 
in a model of contact hypersensitivity which is induced by 2,4-dinitro-fluorobenzene. In this 
model, the inflammatory changes which typify contact hypersensitivity are attenuated by 
prior exposure to low dose ultraviolet light (UVB) and it has been proposed that UVB-
induced apoptosis of epidermal DCs is the key to this tolerance. Significantly, and consistent 
with the findings obtained in vitro, this is dependent on CD200, since tolerance was absent 
when this experiment was conducted in CD200-deficient mice. The data suggest that CD200-
CD200R interaction may be a key event in ensuring that inflammatory changes do not 
accompany steady-state ongoing apoptosis (Rosenblum et al., 2004). Interestingly several 
studies have highlighted a role for CD200 in tolerance following transplants (Clark et al., 
2008, Gorczynski et al., 2009) 

5. The importance of the interaction between CD200 and CD200R in 
modulating inflammation  

CD200-CD200R interaction provides a regulatory signal to macrophages (Broderick et al., 
2002) and consequently macrophage numbers in the spleen are increased in CD200-/- mice 
compared with wildtype mice, while CD200-/- mice also have enlarged lymph nodes (Hoek 
et al., 2000). A similar regulatory signal modulates microglia and therefore the absence of 
CD200 is associated with microglial activation. Thus cells prepared from CD200-/- mice 
exhibited an activated phenotype, and had less ramified morphology and shorter processes, 
as well as increased expression of cell surface markers, CD11b and CD45, which are 
indicative of activation (Hoek et al., 2000). Microglia from CD200-/- animals also appeared to 
form aggregates, which occurs in neuroinflammatory and neurodegenerative, but not under 
normal, conditions (Hoek et al., 2000). Predictably, cells prepared from CD200-/- mice 
exhibited a greater response to stimuli including LPS and A┚ (Lyons et al., 2007a). These 
data indicate that disruption of this interaction between CD200-CD200R results in 
dysregulation of macrophages and microglia, with cells shifting to a more tonically active 
state (Hoek et al., 2000).  
Evidence from experimental conditions associated with inflammatory changes and 
microglial activation, adds support to the finding that CD200-CD200R interaction is an 
important regulator of neuroimmune function. For example, Toxoplasma gondii-induced 
encephalitis is characterized by lymphocytic infiltrates and microglial activation and it has 
been reported that infection induced a more profound microglial proliferation and greater 
expression of markers of activation in CD200-deficient, compared with wildtype, mice 
(Deckert et al., 2006). In addition, nerve injury is associated with microglial activation and it 
has been reported that facial nerve transaction induced a greater degree of microglial 
activation in CD200-deficient, compared with wildtype, mice (Hoek et al., 2000). Similarly 
the neurodegenerative changes that occurred following sciatic nerve crush was associated 
with a profound loss of CD200 and evidence of macrophage activation (Chang et al., 2011).  

5.1 CD200-CD200R interaction in inflammatory diseases and models of disease  
One of the most clearcut consequences of the loss of the interaction between CD200 and 
CD200R is the development of inflammatory changes (Masocha 2009), and therefore, as 
described above, CD200-/- mice are more susceptible to inflammatory stimuli and exhibit 
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exaggerated symptoms in models of autoimmune diseases (Feuer, 2007). The majority of 
studies which have examined the role of CD200 as a negative regulator of myeloid cells 
have focussed on three autoimmune disease models, collagen-induced arthritis (CIA), a 
model for rheumatoid arthritis, experimental autoimmune uveoretinitis (EAU), a murine 
model for uveitis and myelin oligodendrocyte glycoprotein (MOG)-induced experimental 
autoimmune encephalomyelitis (EAE), a model of multiple sclerosis.  

5.1.1 CD200-CD200R interaction in CIA 
Rheumatoid arthritis is a classical inflammatory disease of the joints, typified by infiltrates 
of inflammatory cells. The most widely-used model is CIA and the evidence indicates that 
the symptoms of the disease, including inflammation and joint pathology was much more 
severe in CD200-/- mice, compared with their wildtype counterparts (Hoek et al., 2000). In 
contrast, treatment of mice with recombinant CD200 at 3-day intervals, concomitant with 
collagen immunization, markedly reduced symptoms; this included a reduction in 
infiltration of inflammatory cells and reduced bone erosion (Melnyk et al., 2011). A similar 
reduction in the severity of the disease, pathology and production of inflammatory 
mediators was observed when mice were treated with CD200Fc (Simelyte et al., 2008). These 
findings suggest that an agonistic antibody to CD200R, as substitute for the CD200-CD200R 
interaction, might be a useful therapeutic strategy in CIA. Predictably, CD200Fc, an 
immunoadhensin, produced by fusing the extracellular domains of CD200 to a murine 

IgG2a Fc construct, decreases TNFα and IFN┛ production following collagen injection and 
halted the progression of symptoms of CIA (Gorczynski et al., 2002).  

5.1.2 CD200-CD200R interaction in EAU  
EAU, which is induced by immunization with interphotoreceptor retinoid-binding protein, 
is characterized by destruction of the neuroretina and photoreceptors, and the evidence 
indicates that this is T cell mediated; the symptoms include leukocyte infiltration of the 
vitreous and retina, vasculitis and ultimately photoreceptor and ganglion cell death. 
Symptoms become evident more quickly and are more profound in CD200-/- mice, 
compared with wildtype animals with significant additional infiltration of CD45+ CD11b+ 
cells and evidence of photoreceptor death, coupled with increased expression of nitric oxide 
synthase (NOS)-2 (Broderick et al., 2002). These findings were replicated subsequently and 
extended to show that the progression of the disease was suppressed by an agonist CD200R 
antibody (Copland et al., 2007). The modulatory role for CD200 in EAU was also identified 
in a rat model and, in this case, the evidence indicated that blocking CD200-CD200R 
interaction by an antibody accelerated the onset and severity of symptoms (Banerjee and 
Dick, 2004). Experimentally-induced glaucoma, caused by injecting hypertonic saline into 
the superior episcleral aqueous drainage vein, is another inflammatory and degenerative 
condition of the eye which is associated with a time-related increase in microglial activation; 
like EAU a role for CD200-CD200R has been implicated by the finding that the microglial 
activation is coupled with a decrease in CD200 and evidence of retinal ganglion cell death 
(Taylor et al., 2011). 

5.2 CD200-CD200R interaction and Multiple Sclerosis 
Multiple sclerosis is a chronic, progressive, disabling autoimmune disease. The generally-
accepted view is that the disease is caused by uncontrolled inflammatory T cell responses to 
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self antigens (myelin) in the brain and spinal cord. This results in a cascade of events which 
triggers inflammation, as a consequence of microglial and macrophage activation, and is 
followed by demyelination and degeneration of axons. One of the characteristics of this 
disease is the presence of inflammatory plaques, which are detected by magnetic resonance 
imaging (MRI), and post mortem examination has established that the brain lesions are 
associated with the presence of inflammatory cells (Frohman et al., 2006).  

5.2.1 What factors contribute to the pathogenesis of EAE? 
A great deal of progress in understanding the mechanisms which precipitate the disease has 
been made by examining changes which trigger disease symptoms in the widely-used 
animal model of multiple sclerosis, EAE. EAE is induced by stimulating an immune 
response directed against CNS antigens, such as myelin basic protein (MBP), proteolipid 
protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). EAE can be induced by 
immunisation with these myelin antigens in adjuvant or by adoptive transfer of myelin-
specific T cells, both of which result in inflammatory infiltrates into the CNS and 
demyelination (Stromnes and Goverman, 2006).  
Like multiple sclerosis, EAE is characterized by infiltration of macrophages and CD4+ T 
cells into the CNS, accompanied by microglial activation which, together, are responsible 
for the temporary paralysis that typifies the disease. The symptoms have been shown to 
be exaggerated, and the onset of the symptoms is hastened, when CD200-CD200R 
interaction is attenuated (Hoek et al., 2000, Wright et al., 2000, Meuth et al., 2008). 
Specifically, initial symptoms following MOG injection appeared 2-3 days earlier in 
CD200-/- mice than in wildtype mice, and expression of iNOS and CD68 were markedly 
increased in spinal cord of these mice 7 days after immunization (Hoek et al., 2000), while 
more severe symptoms were also observed (Wright et al., 2000). Consistently, an anti-
CD200R antibody increased the severity of the symptoms and, in parallel, increased T cell 
infiltration and macrophage numbers in the spinal cord of MOG-treated mice (Meuth et 
al., 2008). Furthermore, the Wlds mouse, which exhibits unique protection against 
neurodegenerative conditions, including EAE, overexpresses CD200 (Chitnis et al., 2007). 
Interestingly, CD200 expression was reported to be decreased, in parallel with another 
NIReg, CD47, in laser-dissected active lesions of the post mortem brain of individuals 
with multiple sclerosis, although CD200R expression was unchanged and there was also 

no evidence of a change in SIRPα expression (Koning et al., 2007). However more recent 
studies revealed that CD200 was expressed on astrocytes associated with lesions in 
multiple sclerosis (Koning et al., 2009).  

5.2.2 The development of EAE is associated with altered CD200 expression 
MOG-induced EAE is typified by the development of clinical signs which appear initially at 
about day 7 post-immunization; the well-defined changes progress from the initial flaccid 
paralysis manifest by a limp tail and developing to paralysis in hindlimbs and ultimately the 
forelimbs (Stromnes and Goverman, 2006). We have investigated the accompanying changes 
induced in microglial activation and CD200 in the spinal cord following immunization 
(Figure 3). CD40 mRNA, which is indicative of microglial activation, increased after 
immunization whereas CD200 mRNA expression decreased and a significant inverse 
relationship between the 2 measures was observed. IL-4, which modulates CD200 
expression, was decreased at the end of the experiment, paralleling the change in CD200. 
Similar data were obtained in the hippocampus (not shown). 
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Fig. 3. Immunization with MOG increases microglial activation and decreases CD200 
expression. Immunization of mice with MOG induced clinical signs which became evident 
after 7 days. This was accompanied, in the spinal cord, by a time-related increase in CD40 
mRNA, which was significant 10 and 21 days post-immunization (*p < 0.05; ANOVA; 
Figure 3b) and a significant decrease in CD200 mRNA (**p < 0.01; ANOVA; Figure 3c).  
A significant inverse correlation between CD200 mRNA and CD40 mRNA is demonstrated 
(p = 0.0017; Figure 3d). IL-4 mRNA expression was significantly decreased in tissue 
prepared from animals with EAE (*p< 0.05; ANOVA; Figure 3e) 

 

 

Fig. 4. The loss of IL-4 leads to more profound clinical symptoms of EAE. The symptoms of 
EAE developed more rapidly in IL-4-deficient mice compared with wildtype mice (Figure 
3a). CD200 mRNA (Figure 3b) and CD200 protein (Figure 3c) were both decreased in tissue 
prepared from mice with EAE at the end of the 21-day experiment (+p < 0.05; +++p < 0.001; 
ANOVA; Figure 3b,c) and a decrease in both was identified in tissue prepared from IL-4-
deficient, compared with wildtype, mice (*p < 0.05; ANOVA; Figure 3b,c) 
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5.2.3 IL-4 modulates CD200 expression and the course of EAE 
Because the evidence indicates a close parallel between IL-4 and CD200, and because CD200 

appears to be linked with the increase in microglial activation which contributes to the 

inflammatory changes in EAE, the onset and severity of clinical symptoms were compared 

following MOG immunization in wildtype and IL-4-/- mice. The evidence indicates that loss 

of IL-4 exacerbates the clinical symptoms (Figure 4a) and CD200 mRNA expression (Figure 

4b), as well as CD200 protein (Figure 4c) was decreased in spinal cord prepared from IL-4-/- 

mice, compared with wildtype mice. Moreover, the decrease in both measures was 

significantly greater in mice with EAE compared with controls. 

5.2.4 CD200R ligation on specific T cell subtypes may contribute to the development 
of EAE 
A comprehensive analysis of the expression of CD200R on cells and tissue prepared from 

mouse and humans revealed that expression levels were greatest on macrophages, mast 

cells and dendritic cells, and in lymph nodes, spleen, bone marrow and, to a lesser extent, 

in lung and liver (Wright et al., 2003). However the receptor was also found on polarized 

Th2 cells, whereas expression on polarized Th1 cells was markedly less; this differential 

expression on T cells was observed in mice and human cells (Wright et al., 2003). 

Subsequent analysis indicated that CD200R was expressed to a greater extent on CD4+ 

effector memory cells compared with central memory cells and naïve cells. Similarly CD8+ 

central memory cells had higher expression than naïve cells (Rijkers et al., 2008). Clearly 

these findings suggest that CD200R ligation can modulate T cell function in addition to 

myeloid cell function; this may contribute to the exaggerated symptoms in autoimmune 

diseases, for example EAE. 

6. Evidence of a role for CD200-CD200R interaction in other 
neurodegenerative diseases 

6.1 Parkinson’s Disease 
PD is the most common movement disorder and the second most common 

neurodegenerative disease. It shares some characteristics with AD. Both are, at least to  

some extent, age-related disorders, characterized by neuroinflammatory changes 

accompanied by increased expression of inflammatory cytokines. PD is a chronic and 

progressive disorder, resulting in the selective loss of dopaminergic neurons within the 

substantia nigra (SN) of the midbrain. As the disease progresses there is gradual circuitry 

degeneration and neuronal loss within the nigrostriatal pathway, producing cognitive and 

psychiatric symptoms, as well as disturbances in movement (Braak et al, 2003). Cytoplasmic 

accumulations of insoluble proteins are likely to significantly contribute to the neuronal loss 

apparent in both AD and PD. Cognitive dysfunction is particularly marked in AD but there 

is also evidence of deterioration in cognition in PD. It has been suggested that the microglial 

activation which is prevalent in hippocampus and parahippocampal regions, coupled with 

the decrease in hippocampal volume (Laakso et al., 1996) and associated neuronal loss in the 

limbic areas (Emre, 2003a, b) may account for the cognitive dysfunction in PD. Although 

clinical trials have failed to show that NSAIDs are effective in treating AD or PD, 

epidemiological studies have suggested that chronic treatment with NSAIDs reduces the 

risk of both diseases suggesting that inflammatory changes may contribute to the 
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progression of the diseases. Interestingly, the protective effects in AD may be confined to 

particular subpopulations. Recent retrospective studies indicated that statin therapy 

reduced the risk of developing PD  and AD.  

It is unclear whether microglial activation directly contributes to neuronal loss in PD (or 

indeed AD) but post mortem examination has established that activated microglia are 

clustered at high density in the SN (McGeer et al., 1988), the most vulnerable area of the 

brain in PD due to the low intracellular glutathione concentration and high iron level 

within nigrostriatal dopaminergic neurons (Sian et al., 1994). Indeed dopaminergic 

neurons are especially vulnerable to LPS-induced neurodegeneration (Smidt, 2009). 

Interestingly the number of MHCII-positive cells in this area increases in parallel with 

neuronal loss (Imamura et al. 2003). Similarly, an inverse relationship between 11C-(R)-

PK11195 binding (which is indicative of microglial activation) in the midbrain and 

binding of [11C]CFT to the dopamine transporter (which reflects the viability of 

presynaptic dopaminergic neurons) in the putamen has been described. It has been 

reported that the combination of binding of these 2 tracers positively correlates with 

motor deficits in early PD (Ouchi et al. 2009). The correlative changes suggest a role for 

microglial activation in the pathogenesis of PD but do not address the question whether 

microglial activation plays an explicit role in dopaminergic cell death; animal models 

have been used to explore this. Environmental factors including pesticides have been 

implicated in the aetiology of PD and therefore experimental models of the disease 

include those in which animals are treated with rotenone or paraquat (Cicchetti et al., 

2009); the loss of dopaminergic neurons in these models appears to be mediated by 

microglia since the superoxide which is considered to be pivotal to inducing cell damage 

was generated from microglia (Gao et al., 2002, Wu et al., 2005). Another animal model of 

PD involves prenatal exposure to LPS, which ultimately causes protracted inflammation 

and loss of dopaminergic neurons which progresses with subsequent insults; data from 

this model suggests that the priming of microglia is responsible for the ongoing 

degeneration and has led to the development of the ‘multiple hit’ hypothesis (Ling et al. 

2006). An important tenet of this theory is that prolonged inflammation, rather than an 

acute inflammatory response, is responsible for the progressive neuronal loss (Park et al. 

2009, Long-Smith et al. 2009). Interestingly, an age-related increase in microglial-

activation in the SN has been reported (Beach et al., 2007) and the suggestion is that this 

‘priming’ may contribute to development of the disease.  

The most commonly-used models of PD which lead to neurodegeneration of 
dopaminergic neurons and induce Parkinson-like symptoms involve injection of rotenone 
or 6-hydroxydopamine (6-OHDA). It has recently been reported that rotenone+iron-
induced dopaminergic neurotoxicity is mediated by microglia and that the toxicity is 
enhanced by a CD200R blocking antibody (Wang et al., 2011). The evidence indicated that 
microglia were the source of superoxide, that production was enhanced by the antibody 
and that inhibiting CD200R activation in microglia has detrimental effects on neuronal 
function. In addition to the Parkinson-like symptoms, injection of 6-OHDA also induces 
marked microglial activation (Long-Smith et al., 2009). These findings and the 
observations of other groups over many years (Chen et al., 1998, Le et al., 2001, Liu and 
Hong, 2003, Kim and Joh, 2006, Purisai et al., 2007) have provided significant support for 
the thesis that activated microglia play an important part in the onset and/or progression 
of PD. 
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In an effort to further address this question, and specifically to evaluate whether CD200 may 
play a role in modulating microglial activation which accompanies the loss of dopaminergic 
neurons following 6-OHDA injection, we examined the expression of CD200 in the 
ipsilateral and contralateral SN of rats following unilateral injection of 6-OHDA into the 
medial forebrain bundle. Immunocytochemical analysis of sections prepared from these 
animals revealed that there was marked dopaminergic cell loss in the side of the brain in 
which the 6-OHDA injection was made, as shown by decreased expression of tyrosine 
hydroxylase (Figure 5d), but that there was no evidence of cell loss on the contralateral side 
(Figure 5c). No cell loss was evident on either the ipsilateral or contralateral side of sham-
treated rats Figure 5a,b). The data show that the marked 6-OHDA-induced dopaminergic 
cell loss in the ipsilateral SN was coupled with a marked decrease in CD200 expression 
(Figure 5d) whereas there was no discernible loss in the contralateral side of 6-OHDA-
injected animals (Figure 5c) or the ipsilateral or contralateral side of sham-treated rats 
(Figure 5a,b). The loss of dopaminergic neurons was also associated with marked microglial 
activation as indicated by increased OX42 staining (red; Figure 5h); this is consistent with 
previous evidence indicating that loss of CD200 is linked with microglial activation (Lyons 
et al., 2007a). There was no evidence of microglial staining in sections prepared from the 
contralateral side of 6-OHDA-injected animals (Figure 5g) or the ipsilateral or contralateral 
side of sham-treated rats (Figure 5e,f).  

6.2 Alzheimer’s Disease 
Despite an enormous effort, the molecular/cellular events which trigger AD remain 
unknown. It is undoubtedly the case that neuroinflammatory changes characterize the 
disease with evidence of profound microglial activation and, specifically, activated 
microglia and astrocytes clustered around A┚-containing plaques (Xiang et al., 2006) and 
blood vessels (McGeer and McGeer, 2003) where amyloid deposits are also observed. As 
indicated above, several reports suggest that NSAID treatment reduces the risk of 
developing AD (McGeer and McGeer, 1999, Szekely et al., 2008, Vlad et al., 2008, Breitner et 
al., 2009) but NSAIDs are of little value in treating the disease. One possible explanation for 
this might be that inflammatory changes occur very early in the disease, prior to 
development of symptoms, and that preventing or delaying inflammation is beneficial 
because it is factor which contributes to the later neurodegenerative changes. A corollary to 
this previously-rehearsed proposal is that anti-inflammatory agents will not be beneficial 
once neurodegenerative changes are advanced. In support of this view, it has been 

consistently shown that inflammatory cytokines like IL-1┚, IL-6 and TNFα negatively 
impact on neuronal and synaptic function (Lynch, 2010), and that these cytokines can 
contribute to neuronal cell death (Thornton et al., 2008, Long-Smith et al., 2010). Since 
activated glia, particularly microglia, are responsible for releasing these cytokines, it could 
be argued that targeting these cells might be a reasonable strategy for the treatment of AD, 
at least in its very early stages. This argument has been advanced by Walker and colleagues, 
who reported that CD200 expression was decreased in brains of individuals with AD. Thus 
sections prepared from inferior temporal gyrus of non-demented individuals exhibited 
colocalization of CD200 with NeuN but a marked loss of CD200 immunoreactivity was 
observed in sections prepared from post-mortem brains of AD patients. An AD-associated 
decrease in CD200R was also observed. Furthermore, the evidence suggested that the 
plaque density, and also the neurofibrillary tangle score, was inversely related to CD200R 
expression (Walker et al., 2009).  
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Fig. 5. 6-OHDA injection leads to dopaminergic cell loss and a marked reduction in CD200 
immunoreactivity, coupled with microglial activation. Rats were anaesthetized with equal 
amounts of xylazine hydrochloride and ketamine hydrochloride (0.2ml/100g body weight; 
1.5 ml of each compound dissolved in 7 ml PBS). Rats received a single injection of 6-OHDA 

(2μg/μl) into the medial forebrain bundle (AP –2.2 mm, ML + 1.5 mm from bregma; depth 
7.8 mm). Rats were killed 10 days later. a-d: CD200 immunoreactivity (green) and tyrosine 
hydroxylase (TH) immunoreactivity was evident in contralateral and ipsilateral SN and 
there was clear evidence of co-localization indicating the presence of CD200 on dopaminergic 
neurons. There was a marked decrease in TH immunoreactivity in sections prepared from 
the ipsilateral SN of rats which received 6-OHDA, indicative of substantial dopaminergic 
cell loss but no changes were observed in the other treatment groups. TH loss was 
accompanied by a loss in CD200 immunoreactivity. e-h: TH expression (green) was similar 
in the contralateral SN obtained from sham- or 6-OHDA-treated rats and in the ipsilateral 
side of sham-treated rats. In contrast, a marked change in morphology indicative of 
dopaminergic cell loss was observed in sections prepared from the ipsilateral SN of rats 
which received 6-OHDA. Microglial activation was assessed by evaluating OX42 
immunoreactivity (red staining); marked staining was observed in sections prepared from 
the ipsilateral SN of rats which received 6-OHDA but in none of the other groups 

6.3 Stroke  
Ischaemia induces a profound disturbance in homeostasis and significant pathology in the 
brain. Among the earliest changes is infiltration of neutrophils into the brain parenchyma 
and the evidence indicates that, in the endothelin model of stroke, these cells accumulated in 
the core of the lesion 2 weeks after injection and correlated with the infarct volume (Weston 
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Fig. 6. CD40 mRNA is increased and CD200 mRNA is decreased in striatum following 

endothelin injection. Male Wistar rats (3 months; 270-350g; BioResources Unit, Trinity 

College, Dublin, Ireland) were anaesthetized with isofluorane (5% in O2), placed in a 

stereotaxic frame and injected with endothelin-1 (ET-1; 600pmol; 3 µl), delivered through a 

drill hole (0.52 cm lateral to midline, 0.05 cm posterior to bregma; depth 0.05cm from the 

base of the skull ) (Moyanova et al., 2003). Animals were killed and brain tissue harvested 7 

days after injection. Cryostat sections were prepared from part of the brain and striatum 

was taken from the remaining brain tissue to analyse expression of CD40 and CD200 

mRNA. Endothelin induced significant neuronal loss (Figure 1a) and microglial activation, 

as assessed by OX6 staining, particularly in striatum (Figure 1b). Analysis of striatal tissue 

indicated that MHCII mRNA and CD40 mRNA were significantly increased in tissue 

prepared from endothelin-1-injected animals (*p < 0.05; student’s t test for independent 

means; Figure 1c,d) whereas CD200 mRNA was significantly decreased (**p < 0.01; 

student’s t test for independent means; Figure 1e); a significant inverse relationship between 

CD40 mRNA and CD200 mRNA was observed (p = 0.0039; Figure 1f) 

et al., 2007). Neutrophils have also been shown to contribute to the increase in BBB 

permeability following stroke (McColl et al., 2007). Neutrophils release inflammatory 

cytokines, chemokines and reactive oxygen species, all of which contribute to the pathology, 

and also recruitment of immune cells (Denes et al., 2010). However microglia can also act 

similarly and the evidence has indicated that microglial activation is increased following 

ischaemia but the effect of this activation remains unclear. On the one hand, these cells may 

contribute to the cell damage because of their ability to secrete inflammatory molecules but 

their reparative role has also been clearly identified (Denes et al., 2010). It has been known 

for almost 2 decades that release of the inflammatory cytokine, IL-1┚, was increased 

following ischaemia and that the endogenous antagonist, IL-1 receptor antagonist (IL-1ra) 
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reduced the associated neurodegenerative changes (Relton and Rothwell, 1992). However, 

more recent findings have indicated that the reduction in synaptic responses following 

ischaemia, and the decrease in LTP, were partially reversed following intra-arterial injection 

of microglia into rats (Hayashi et al., 2006). Thus microglia exert both a positive and 

negative impact. 

We investigated microglial activation 7 days after endothelin-1 injection and demonstrate 
that markers of activation were increased while CD200 was decreased. Thus staining of the 
tissue revealed that there was marked cell loss (Figure 6a) and extensive OX6 staining 
(Figure 6b), with particularly marked staining in the striatum. PCR analysis revealed that 
there was a significant increase in expression of MHCII mRNA (Figure 6c) as well as another 
marker of microglial activation, CD40 mRNA (Figure 6e), in striatal tissue prepared from 
endothelin 1-treated rats compared with controls (*p < 0.05). CD200 mRNA was markedly 
decreased in striatal tissue prepared from endothelin-1-injected animals and, interestingly, 
there was a significant inverse relationship between these CD200 mRNA and CD40 mRNA 
(p = 0.0039; Figure 6f). These findings indicate that there is a persistent increase in microglial 
activation following ischaemia which has been reported previously (Denes et al., 2010). The 
underlying cause of this increase has not been fully explained. The present results suggest 
that the decrease in CD200, which might be anticipated to accompany the loss of neurons, 
may be a contributory factor.  

6.4 Conclusions 
In the past decade or so, it has become clear that microglia are maintained in a non-activated 
state by soluble factors including growth factors and anti-inflammatory cytokines, as well as 
cell-cell interactions. Among the ligand-receptor pairs which play a key role in modulating 
microglial activation is CD200-CD200R and the evidence indicates that when CD200R 
activation is disrupted, for example in CD200-deficient mice, the result is activation of 
microglia and macrophages, accompanied by inflammatory changes, and exacerbation of 
changes in models of autoimmune disease. The experimental evidence certainly suggests 
that targeting the interaction between CD200 and its receptor is a powerful weapon in 
attenuating inflammation and there is a growing body of evidence suggesting that disruption 
of the interaction, in combination with microglial and/or macrophage activation occurs in    
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Fig. 7. Proposed role for CD200-CD200R interaction in neurodegenerative changes 
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models of neurodegenerative diseases. Figure 7 presents a schematic diagram which 
suggests that CD200R activation plays a pivotal role in modulating microglial activation. It 
is proposed that the secretion of immunomodulatory molecules from activated microglia 
contributes to the development of neurodegenerative changes which characterize 
neurodegenerative and neuroinflammatory diseases, and which also occur with age, these 
changes are inextricably linked with neuronal loss and consequently CD200 expression is 
decreased resulting in a decrease in signalling through CD200R, completing the continuing 
cycle of events. 
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