Soft Robotics ‘Toolkit’ Features Everything a Robot-Maker Needs

25 September 2014

A new resource unveiled by researchers from several Harvard University labs in collaboration with Trinity College Dublin provides both experienced and aspiring researchers with the intellectual raw materials needed to design, build, and operate robots made from soft, flexible materials.

With the advent of low-cost 3D printing, laser cutters, and other advances in manufacturing technology, soft robotics is emerging as an increasingly important field. Using principles drawn from conventional rigid robot design, but working with pliable materials, engineers are pioneering the use of soft robotics for assisting in a wide variety of tasks such as physical therapy, minimally invasive surgery, and search and rescue operations in dangerous environments.  

The Soft Robotics Toolkit is an online treasure trove of downloadable, open-source plans, how-to videos, and case studies to assist users in the design, fabrication, modeling, characterization, and control of soft robotic devices. It will provide researchers with a level of detail not typically found in academic research papers, including 3D models, bills of materials, raw experimental data, multimedia step-by-step tutorials, and case studies of various soft robot designs.

The Soft Robotics Toolkit will allow soft robotics researchers to share ideas and develop prototypes by benefiting from each others' knowledge.

“The goal of the toolkit is to advance the field of soft robotics by allowing designers and researchers to build upon each other’s work,” says Conor Walsh, Assistant Professor of Mechanical and Biomedical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard University.

By creating a common resource for sharing design approaches, prototyping and fabrication techniques, and technical knowledge, the toolkit’s developers hope to stimulate the creation of new kinds of soft devices, tools, and methods.

According to Professor Walsh, Soft robotics is especially well suited to shared design tools since many of the required components, such as regulators, valves, and microcontrollers, are largely interchangeable between systems.

Dónal Holland, now a Lecturer in Engineering Design at SEAS, is one of the lead developers of the toolkit and is especially interested in its potential as an educational resource. Donal contributed to the toolkit’s early development as a graduate student at Trinity College Dublin while undertaking a PhD in engineering design education and as a visiting fellow in the Harvard Biodesign Lab.

He said: “One thing we’ve seen in design courses is that students greatly benefit from access to more experienced peers—say, postdocs in a research lab—who can guide them through their work, but scaling that up is difficult; you quickly run out of time and people. The toolkit is designed to capture the expertise and make it easily accessible to students.”

Just as open-source software has spurred far-flung innovation in computing, “open design” hardware platforms—coupled with advances in computer-aided engineering and more accessible prototyping capabilities—have the potential to foster remote collaboration on common mechanical engineering projects, unleashing crowd sourced creativity in robotics and other fields.

“Open design can have as disruptive an influence on technology development in this century as open source did in the last,” added Dr Gareth J Bennett, Assistant Professor of Mechanical and Manufacturing Engineering in the School of Engineering at Trinity, and a coauthor of a paper in Soft Robotics that describes the toolkit development.

Additional coauthors are Evelyn J. Park ’13, a SEAS research fellow in materials science and engineering, and Panagiotis Polygerinos, a postdoctoral fellow in the Harvard Biodesign Lab at SEAS and the Wyss Institute. The article can be viewed here.

Media Contact

Thomas Deane, Press Officer for the Faculty of Engineering, Mathematics and Science | deaneth@tcd.ie | +353 1 896 4685

Most Read