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Definition

Atomic force microscopy (AFM) in liquids is the

application of AFM in liquid environment, i.e., in

which both the surface under investigation and the

scanning probe are immersed in liquid.
Sample

Tip

Scanner
x

y

z

AFM in Liquids, Fig. 1 Schematic of AFM in liquid. A sharp

tip is scanned across the sample surface while the tip–sample

interaction is monitored via the deflection of the cantilever to

which the tip is attached. The sample is mounted on a (usually

piezoelectric) scanner for three-dimensional positioning with

sub-nanometer accuracy. The sample, the tip, and the cantilever

are immersed in liquid. The bending of the cantilever is usually

detected via a laser beam deflected on a position-sensitive detec-

tor (4-quadrant photodiode)
Overview and Definitions

AFM is a microscopy technique that can provide three-

dimensional images of virtually any surface at nano-

meter-scale resolution. It relies on the force between

a sharp probe and the surface, which is detected while

scanning the probe over the sample. Unlike many other

microscopy techniques at such a resolution, it can

readily be applied in liquid environment.

An atomic force microscope consists of a sharp

probe (“tip”) mounted on a microfabricated cantilever

beam and a mechanism (“scanner”) to scan the tip over

the surface at subnanometer resolution [1], see Fig. 1.

Typically, an optical detection scheme is used to

detect the deflection of the cantilever. Via the

spring constant of the cantilever, the cantilever deflec-

tion can be translated to a force between tip and

sample. For a rectangular lever, the spring constant is

given by
3

k ¼ Et w

4l3
; (1)

where E is the Young’s modulus of the cantilever

material (typically silicon or siliconnitride), and t, w,

and l are its thickness, width, and length, respectively,

which are in the micron range. Most cantilevers for

AFM have spring constants between 0.01 and 100 N/m.

In its most common mode of operation, the deflection

of the cantilever (and thus the tip–sample force) is kept

constant by adjusting the vertical position of the sample

with respect to the tip.

In most instruments, the cantilever deflection is

recorded via the position of a laser beam that is

deflected from the cantilever. Images of the surfaces

are acquired by line-by-line scanning the surface and

tracing its surface contours on a false-color scale. For

AFM in liquid, the surface and the cantilever are

immersed in liquid. Typically, the minimum liquid

volume is some tens of microliters, which can be either

contained in a closed liquid cell, or in the shape of
a droplet that is formed by capillary forces between the

sample surface and the cantilever holder. In principle,

the liquid can be of arbitrary nature, though the optical

deflection detection in most microscopes limit their

use to liquids that are transparent for (near infra-) red

light.

There are many possible imaging modes of AFM

and their names are rather confusing. They are divided

into static mode and a variety of dynamic modes in

which the cantilever is oscillating [2]. The latter are of

particular importance when the lateral (drag) forces on

the sample need to be minimized, e.g., for imaging

DNAmolecules that are loosely bound to a flat surface.

The most common modes of operation in liquid are

static or contact mode and amplitude-modulation or

tapping mode. In contact mode, the bending or deflec-

tion of the cantilever is used to detect the tip–sample

force. In tapping mode, the cantilever is vertically

oscillated above the sample, and the tip–sample inter-

actions detected via the change (usually decrease) of

amplitude of the cantilever oscillation. In variations

along the same theme, the cantilever may be oscillated

and tip–sample interactions are detected via changes in

phase or resonance frequency of the cantilever [3]. An

overview of the most relevant AFMmodes in liquids is

given in Table 1. Confusion may arise because the



AFM in Liquids, Table 1 Different modes of operation in

AFM, with the parameter that is used to control the tip–sample

distance while scanning over the surface

Mode of
operation

Other common
names

Control
parameter

Static Contact mode Static deflection

Amplitude

modulation (AM)

Tapping mode Oscillation

amplitudeIntermittent contact

AFM AC mode

Frequency

modulation (FM)

Non-contact (NC)

AFM

Resonance

frequency
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commonly used terms contact, intermittent-contact,

and non-contact often – but not always – refer to

a mode of operation (as referred to in Table 1), and

not necessarily to the actual contact (or lack of it)

between the tip and the sample. As a particular exam-

ple, FM (“non-contact”) AFM in liquids is usually

performed in the range of repulsive tip–sample inter-

actions, with the tip in actual intermittent contact with

the sample. In addition, if the amplitude is used to trace

and control the tip–sample distance (i.e., tapping

mode), the phase of the cantilever can be recorded

simultaneously for phase imaging, which provides an

additional means to measure tip–sample interactions.

Or, in FM AFM, a frequency shift is used to trace

elastic tip–sample interactions and control the tip–

sample distance, while the oscillation amplitude can

be kept constant by adjusting the cantilever drive sig-

nal. This cantilever drive signal then provides

a simultaneous measure of the dissipative tip–sample

interactions.
Physical and Chemical Principles

The spatial resolution of AFM critically depends on the

sharpness of the tip and on the range of the tip–sample

interactions. Ideally, only the very (nanometer-scale)

end of the tip interacts with the surface, thus avoiding

convolution effects due to interactions between the

sample and the (micron-scale) bulk of the tip. The

presence of long-range tip–sample forces is therefore

decremental to the spatial resolution. On the other

hand, the shorter the range of the tip–sample interac-

tion, the more likely the tip is to enter in hard contact

with the sample, which may damage the tip and/or the

sample.
By immersing the tip and sample in liquid, it is not

only possible to access scientifically and technologi-

cally interesting solid–liquid interfaces (including bio-

logical samples), but also to tune the tip–sample

interactions by varying the ingredients of the liquid.

In particular, the electrostatic sample interaction

between the tip and a flat sample can be approximated

by [4]:

Fel ¼ gkstsse�kz þ g2k s2t þ s2s

 �

e�2kz; (2)

where gk and g2k are constants that depend on the tip

geometry and the dielectric properties of the medium,

st and ss are the surface charges of the tip and the

sample, respectively, z is the tip–sample distance, and

k�1 the Debye screening length [5],

k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0eb kBT
2e2I

r
: (3)

In the latter, e0 is the permittivity of vacuum (8.854�
10�23 F/m), eb the permittivity of the bulk solution (or

the dielectric medium), kB is the Boltzmann’s constant

(1.38 � 10�23 J/K), and T is the temperature in Kelvin.

The parameter I is the ionic strength of the medium,

I ¼ 1

2

X
i

z2i ci: (4)

where zi is the valence of ion i and ci is its concentration.
The Debye length is historically written as an inverse

length (i.e., k has units of m�1). In typical biological

buffers, the Debye length is between 1 and 10 nm.

In a chemically reactive medium, st and ss are

generally not zero. For typical tip terminations such

as silicon oxide or silicon nitride in water, st < 0 at

neutral pH. As can be seen from Eq. 2, the strength of

the electrostatic tip–sample interaction depends on st
and ss. These can be changed by adding or removing

solutes that react with or bind to the tip and sample

surfaces. In aqueous solutions, this is most readily

achieved by changing the pH (i.e., adding H3O
+ or

OH�). Moreover, the dielectric properties – and in

particular the ionic strength (Eq. 4) – of the medium

can be tuned to control the range of the electrostatic

tip–sample interaction. This provides a significant

advantage over AFM in gaseous mediums and vacuum

environment, and is one of the reasons why the first

true atomic resolution (see below) AFM images were
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AFM in Liquids, Fig. 2 (a) Capillary forces for AFM in air

arise due to the thin water layers that are usually present at both

tip and sample under ambient conditions. (b) At small tip–

sample distances, they pull the tip toward the surface to create

a larger contact area and thus limit the lateral resolution. (c) In
liquid environment, these capillary forces are absent. (d) More-

over, long-range electrostatic forces can be screened by ions in

the liquid
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AFM in Liquids, Fig. 3 (a) Schematic resonance curve of a

freely oscillating cantilever (dashed, blue curve), based on

a model of a simple harmonic oscillator. In the presence of a

(repulsive) elastic tip–sample force as well as dissipative tip–

sample interactions, the resonance shifts to higher frequencies,

broadens and decreases in amplitude (red curve). At a fixed

driving frequency od, such as in tapping mode, the effects of

elastic or dissipative interactions will cause the amplitude to

decrease or increase, depending on the choice of od. (b) Sinu-
soidal oscillation of a cantilever above the surface (dashed,
blue). Close to the sample, the oscillation amplitude decreases

and changes phase (red). (c) For heavily damped cantilever

oscillations (Q ~ 1), however, the harmonic-oscillator analysis

is not valid any more. The tip–sample interaction will only affect

the bottom part of the oscillation, where the tip is closest to the

sample
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obtained, in contact mode, in aqueous environment

rather than in vacuum or air [6].

Compared to AFM in air, AFM in liquids has the

additional advantage of preventing the capillary forces

that arise from the humid coverage of both sample and

tip under ambient conditions, as illustrated in Fig. 2.

The capillary forces create a strong pull on the tip

toward the sample at distances of many nanometers.

On close approach, this results in a tip–sample contact

area that covers many atoms at the surface, thus

prohibiting high resolution. Under such conditions,

AFM is likely to result in one of its most extensively

documented artifacts: The apparent “atomic resolution”

that results from the periodic interaction averaged over

many atoms of tip and surface. This represents the

atomic periodicity of the surface rather than individual

atomic-scale features such as atomic defects (which are

often used to demonstrate “true atomic resolution”).

Apart from electrostatic and capillary forces, AFM

in liquids is also (and not exclusively) sensitive to

atomic bonding forces and hard-core repulsion, van

der Waals interactions, dissolution/solvation forces,

and general dissipative interactions.

The latter are particularly important in the dynamic

modes of AFM operation. To illustrate this, it is helpful
to depict the cantilever resonance for different elastic

and dissipative interactions, see Fig. 3.

A repulsive (elastic) tip–sample interaction

increases the effective spring constant of the cantilever

and thus increases its resonance frequency, shifting the

whole resonance curve to the right. Any dissipative

interaction reduces the sharpness of the resonance

curve and the maximum of the curve. The quality

factor Q is the most common measure for this sharp-

ness, defined as o0/Do, where o0 is the natural fre-

quency of the resonator and Do the width of the

resonance curve at 1=
ffiffiffi
2

p � its maximum amplitude.

In tapping mode, the driving frequency is usually set

just below the resonance frequency, such that both

elastic and dissipative interactions cause the amplitude

to decrease when the tip comes into contact with the

sample. In FM AFM, the shift in the resonance fre-

quency provides a direct measure of the elastic inter-

action, and the conversion to a force is straightforward

when the amplitude of the oscillation is (kept) constant

[7]. The dissipated energy can be deduced from the
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AFM in Liquids, Fig. 4 Excitation spectrum such as can be

obtained for a cantilever in water that is actuated by piezoelec-

trically driving the cantilever holder rather than the cantilever

alone. Note the contrast with the ideal resonance shape in Fig. 3a
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energy that is required to maintain a fixed amplitude.

Thus, tapping mode is sensitive to a mixture of elastic

and dissipative tip–sample interactions, whereas FM

AFM can track elastic and dissipative interactions

separately (and simultaneously).

This analysis relies on the cantilever behaving as

a simple harmonic oscillator, which is appropriate for

Q � 1, typical for operation in vacuum ðQ�> 1000Þ
and air ðQ�> 100Þ. However, in liquid, viscous

damping reduces Q to �< 10. In particular for softer

cantilevers k�< 1N=m, Q � 1, and the contact between

tip and sample will prevent the cantilever from follow-

ing a harmonic, sinusoidal oscillation. The cantilever

oscillation will simply be topped off at the bottom of

the oscillation, at the closest tip–sample approach. In

this case, significant information on the tip–sample

interaction will be contained in higher harmonics of

the oscillation. The interpretation of cantilever oscilla-

tion in terms of tip–sample forces thus becomes

considerably more complicated.

The low quality factor has another undesirable side

effect for AFM operation that involves oscillating the

cantilever. Cantilevers are usually driven by a small

piezoelectric element that drives not only the cantile-

ver itself, but also its (macroscopic) support chip and

often the whole cantilever holder. In vacuum and air,

the high Q singles out the cantilever resonance from

other mechanical resonances in the instrument. In liq-

uid, this is not the case any more, and a typical excita-

tion spectrum contains a so-called forest of peaks, i.e.,

a convolution of the broad cantilever resonance with

many sharp(er) mechanical resonances from the

microscope, as illustrated in Fig. 4. Again, this com-

plicates the interpretation of the cantilever behavior in

terms of a simple harmonic oscillator. It also makes the

choice of optimum driving frequency much less

straightforward (usually, this is done by trial and

error). Moreover, since this excitation spectrum

depends on the macroscopic geometry of the fluid

cell, it is much more dependent on drift than the can-

tilever alone. For these reasons, there are a number of

alternative methods to only drive the microscopic can-

tilever (and no macroscopic parts), such as magnetic

and optical actuation. In the former, the cantilever is

coated with a magnetic material and driven by an AC

magnetic field; in the latter, an AC-modulated actua-

tion laser locally heats the metal-coated surface of

cantilever, which acts as a bimetal and thus transduces
laser power to cantilever deflection. These and other

methods have the disadvantage of adding complexity

to the instrument and eventually to the microfabricated

cantilever itself.

These concerns can partly be addressed by so-called

Q-control or self-oscillatory methods [8], in which the

signal from the cantilever oscillation itself is phase-

shifted, amplified, and added to the actuation signal.

This positive feedback is very familiar in electronic

oscillatory circuits. It causes any change to the oscil-

lation to ring for a longer time, stretching its effect over

many oscillations. As a result the effective Q of the

cantilever oscillation is enhanced, and the cantilever is

forced to follow a perfectly harmonic, sinusoidal oscil-

lation. As for problems related to the forest of peaks in

nonideal cantilever excitation, these are not resolved

by Q control, since the positive feedback does not

distinguish between the cantilever resonance and

other mechanical resonances. Q control or self-

oscillatory methods can be applied to each mode of

operation (see Table 1), but for tapping mode has the

side effect of slowing down themeasurement: Changes

in amplitude occur at a timescale of ~Q/o0, unlike

changes in phase or resonance frequency, which are

instantaneous. In FM AFM, the cantilever can even

entirely be driven by its phase-shifted and amplified

thermal noise.
Applications

AFM has been used to probe a vast amount of inter-

faces between (hard and soft) condensed matter and

liquids. It is of particular importance for the study of

surfaces that are instable or show distinctly different

behavior when taken out of the liquid, and for the study
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AFM in Liquids, Fig. 5 Atomic-resolution image of mica in

(aquaeous) buffer solution, obtained by FM AFM (Reproduced

from [12], with permission)

a b

7 nm70 nm

AFM in Liquids, Fig. 6 (a) Tapping-mode AFM image of

DNA adsorbed on mica. Image courtesy Elliot Menter.

(b) Two-dimensional crystal of the membrane protein bacterio-

rhodopsin, obtained by FM AFM on the extracellular side of the

protein. Image courtesy Carl Leung
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of dynamic processes that depend on an exchange of

material (ions, macromolecules) between the surface

and the liquid. AFM in liquids has been important for

the study of, among others, crystal growth/dissolution,

polymer science, and the behavior of liquids in con-

fined geometries. The vast majority of its applications,

however, lie in the life sciences [9]: For most biomo-

lecular structures, aqueous solutions represent their

natural environment. Their structures and functions

are strongly dependent on the presence of water,

a number of ions, and other macromolecules. The

structure and function of biological samples can thus

be studied at (sub)nanometer resolution while they are

still “alive,” and for varying liquid contents. The fol-

lowing represents some illustrative examples of the use

of AFM in aqueous solutions on easily accessible

samples, with a strong focus on biological

applications.

Up to now, highest resolution AFM images in liquid

have been obtained on atomically flat and inorganic

surfaces, with calcite and muscovite mica as most

common examples. On such surfaces, the lateral reso-

lution can be less than an Ångström and the vertical

resolution a few picometers. Though initially such

resolution was only obtained in contact mode [6],

more recently FM AFM has become popular as

a method for atomic-resolution imaging that is signif-

icantly less susceptible to thermal drift. One of the key

steps toward high-resolution imaging in liquids was

the development of low-noise deflection sensors [10,

11]. This has brought the measurement noise down to

the thermal noise of the cantilevers, even for stiff and

heavily damped cantilevers in liquid. As a result, sur-

faces can now be stably measured with Ångström

amplitudes of cantilever oscillation. This enhances

the sensitivity to short-range forces and yields images

such as depicted in Fig. 5. Because it is flat, hydro-

philic, and easily cleaved, mica is one of the substrates

of choice for adsorbing molecules in AFM experi-

ments in aqueous solutions.

AFM has been successful in imaging DNA as well

as DNA–protein complexes. DNA is routinely

adsorbed on mica, where it is generally assumed to

adopt a two-dimensional projection of its original

three-dimensional configuration [13]. The rather flat

geometry required for high-resolution AFM is

a natural one for proteins that are embedded in a lipid

membrane. In particular when two-dimensional

crystals are available, such as for bacteriorhodopsin,
high-resolution images can readily be obtained in the

various modes of AFM operation [14]. DNA and

bacteriorhodopsin represent some of the most often

imaged biomolecules by AFM in liquid (Fig. 6).

On a completely different scale, AFM can image

objects as large as whole cells (Fig. 7). Due to thermal

fluctuations, vibrations, and the overall softness of the

cell, the spatial resolution is considerably lower than

that obtained on flat surfaces or molecules directly

adsorbed on a hard substrate. As, for cell imaging,

alone, the advantage of AFM over optical techniques

is therefore limited.

AFM can also be used to deliberately probe sample

properties other than structure [15]. Single molecules

that are tethered between the tip and the substrate

can be deliberately stretched, unfolded, and allowed

to refold at controlled load force [16], similar to

optical-tweezers experiments. Using the same force



AFM in Liquids, Fig. 7 100 � 100 � 3 mm3 contact-mode

AFM topograph of an osteoblast (bone cell) adsorbed on a glass

coverslip. Image courtesy Guillaume Charras
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spectroscopy techniques, force–distance curves can be

obtained on whole cells, yielding information

about their local elasticity, or – when using chemically

modified tips – local binding sites for specific

ligands [17].

Finally, fast AFM methods [18] have improved the

image rate from the typical frame per minute up to

many frames per second. This gives direct access to the

kinetics of molecular-scale processes at nanometer

resolution.
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AFM Probes, Fig. 1 Schematic of a microcantilever probe
Synonyms

AFM force sensors; AFM tips
Definition

AFM probes are transducers that convert the interac-

tion force with a sample surface into a deformation or

a change of the vibrational state of the probe. Most

probes consist of a sharp microtip and a force trans-

ducer. The former determines the lateral resolution of

the AFM and the latter provides the force sensitivity.
Overview

A typical AFM probe consists of a sharp tip and

a microcantilever, which plays the role of a force trans-

ducer. In this case, the interaction force between the tip

and sample deflects the cantilever. The deflection can

be detected by a displacement measurement method,

such as an optical lever or interference techniques.

Assuming that the deflection and the spring constant

of the cantilever are Dz and k, respectively, the inter-

action force F is given by
F ¼ kDz: (1)
In contact AFM mode, the probe height is

controlled so that the probe deflection is constant,

which means that the interaction force does not change

during the probe scanning. Mapping the controlled

height can thus provide the topography of the sample.

In the early days, a metal foil with a glued micro-

particle or sharpened metal wire was used as an AFM

probe. Here, the particle or wire acted as a tip [1].

Improving the force sensitivity and reproducibility

was not easy with those probes. Then, microfabricated

cantilever probes were introduced [2]. These probes

are made of silicon nitride or silicon and are produced
by microfabrication techniques such as anisotropic

chemical etching. Microfabricated probes enabled to

improve the force sensitivity and expand the freedom

of the probe design. They were also suitable for mass

production. Therefore, microfabricated probes are the

most common at present and various types of them

are commercially available nowadays. Undoubtedly,

the microfabricated probes have been playing an

important role in AFM’s becoming one of the most

widely used methods in nanotechnology.
Probe Design

Since the specifications of the tip are rather limited by

the fabrication method, the main part of the probe

design is the force transducer, such as the rectangular

micro cantilever sketched in Fig. 1. In addition to

rectangular cantilevers, V-shaped cantilevers are

widely used, especially in contact AFM mode. The

force sensitivity of the probe should be high enough

to detect weak interaction forces. From Eq. 1, the

cantilever should convert a small force F into a large

displacement Dz, which requires a small spring

constant k ¼ F/Dz. This means that higher sensitivity

requires softer cantilevers. In addition to the force

sensitivity, the robustness against mechanical distur-

bances from the environment should be considered.

If the vibrations induced by the disturbances exceed

the deflection due to the interaction force, the AFM

signal is buried in the noise. The vibrations due to

disturbances are amplified when the disturbance

frequency is around the resonance frequency (natural

frequency) of the probe. Since the disturbance frequen-

cies are generally low, the resonance frequency

http://dx.doi.org/10.1007/978-90-481-9751-4_100018
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should be set at a high value, typically larger than

about 10 kHz. If the force transducer of the probe is

simplified as a point mass and spring system, the

resonance frequency is given by

fr ¼ 1

2p

ffiffiffiffi
k

m

r
; (2)

where m is the mass of the transducer. The sensitivity

needs low values of k whereas the robustness against

the environmental disturbances requires high values of

fr. This means that low values of m are required.

Therefore, the force transducer of the probe should be

soft and small. If a rectangle cantilever is chosen as

a force transducer, it has to be thin and small.

Microfabricated cantilevers meet this demand and,

for this reason, they became standard probes for AFM.

The design details of a rectangular cantilever are

considered below. If the length, width, and thickness of

the cantilever are l, w, and h, respectively, the spring

constant k is given by
Ewh3

k ¼

4l3
; (3)

where E is the Young’s modulus of the cantilever. It

should be noted that the spring constant is proportional

to (h/l)3. This means that longer and thinner cantilevers

can provide higher force sensitivity. The force F to be

measured depends on the interaction between the tip

and sample and the deflection Dz depends on the sen-

sitivity of the displacement measurement method.

Therefore, the spring constant k should be determined

by considering the typical values of F and Dz for the
targeted samples and the measurement system. On the

other hand, the resonance frequency of a rectangular

cantilever is given by
2
ffiffiffiffiffiffis
fr ¼ l
4p

h

l2
E

3r
; (4)
where r is the density of the cantilever and l
is a constant that depends on the vibrational mode.

For the first mode l is about 1.875. It should be noted

that the cantilever width is not included in Eq. 4.

Since fr is proportional to h/l2, higher resonance

frequencies fr require shorter and thicker cantilevers.

However, as described above, high sensitivity requires
opposite conditions. Thus, a balance between the

spring constant and the resonance frequency has to

be found in designing the probe. An example for

contact mode cantilevers is shown in Fig. 2, where

the thickness dependencies of the spring constant and

resonance frequency are plotted using Eqs. 3 and 4

for a length l ¼ 500 mm and a width w ¼ 50 mm,

respectively. If a spring constant of less than 1 N/m

and a resonance frequency larger than 10 kHz are

selected, the former curve requires a thickness of

more than 1.9 mm and the latter curve requires a thick-

ness of less than 4.0 mm. Therefore, a thickness in the

overlapping range should be selected. A probe with

these dimensions is not easy to fabricate by conven-

tional machining and requires micromachining

techniques.

Measurements of the spring constant k and

resonance frequency fr are important for converting

the measured deflection signal into a force signal.

The resonance frequency fr can be measured by

varying the drive frequency as it is routinely done in

commercial AFM equipments. However, the accurate

measurement of the spring constant k is not easy.

An approximate value can be calculated from the

dimensions of the cantilever using Eq. 3. An experi-

mental method using the thermal fluctuation was

presented in Ref. [3].
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Many types of AFMs using a vibrating cantilever

have been developed, such as cyclic contact mode

and non-contact mode AFMs. The probe vibrations

can be induced using a quartz-oscillator. In this case,

the resonance properties, especially the quality factor

Q, are very important. The quality factor Q is defined

as Q ¼ 1/2z, where z is the damping coefficient.

A probe with a high Q is able to resonate effectively

and its vibration is hard to damp. The minimum

detectable force gradient in the frequency-modulation

detection, which is widely used in highly sensitive

AFMs such as non-contact AFMs and magnetic force

microscopy, is given by
� � ffiffiffiffiffiffiffiffiffiffiffiffiffis

@F

@z min

¼ 2

A

kkBTB

orQ
; (5)

where B, or, and A are the measurement band width,

resonance angular frequency, and vibration amplitude,

respectively [4]. Higher force sensitivity requires

a higher Q. Since the vibration damping of the probe

is caused by the internal friction and by friction

between the probe and environmental gas such as air,

the quality factor Q usually depends on the probe

structure and environment. Typical values of Q of

silicon cantilevers are on the order of 10–100 in air

whereas they can increase up to more than 10,000 in

vacuum. A method to increase Q electronically was
presented, where the deflection signal is fed back to the

drive signal after the phase of the deflection signal is

shifted by 90� [5].
Probe Fabrication

At present, most of the probes are fabricated by

microfabrication techniques and various types of

probes have been designed. Moreover, a considerable

number of them are commercially available because

microfabricated probes are suitable for mass produc-

tion. The fabrication methods have also been

improved, corresponding to a general improvement

of the probe quality. Here, the fabrication methods

for two typical types of probes are outlined. We will

first address the probes made of silicon nitride. These

probes are widely used in contact AFM mode. The

fabrication process is shown in Fig. 3 [6]. In this

method, a small pit that is formed in a silicon substrate

by anisotropic wet etching is used as a mold. The

silicon oxide layer is formed as an etching mask for

the later substrate removal (Figs. 3a and b). A silicon

nitride film is deposited onto the substrate and the

cantilever is patterned by lithography. At this point,

the cantilever with tip is shaped (Figs. 3c and d). By

attachment of the glass base by anodic bonding and

removal of the silicon substrate by wet etching,
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a freestanding cantilever is obtained (Fig. 3e). Another

type of probes are silicon cantilevers [7]. Silicon

cantilevers are the most widely used probes in AFM

and they are operated in various modes. By using the

undercut etching of the underneath of a circular mask,

a tip is formed. Then the cantilever is patterned. The

substrate silicon is removed by wet etching with pro-

tection of the fabricated tip and cantilever. Sharpening

the tip end can be achieved by thermal oxidation

followed by oxide removal [6].
Future Directions for Research

In addition to standard silicon or silicon nitride canti-

lever probes, various types of probes have been

recently introduced. In a piezoresistive probe

a piezoresistive strain sensor is embedded with

a silicon cantilever [8]. The embedded sensor detects

the cantilever deflection and makes the detection sys-

tem such as an optical lever unnecessary. This not only

makes the setup compact but also provides easier oper-

ation in the special case of liquid or vacuum environ-

ments. Along the growth of microfabricated cantilever

probes, probes that use a quartz-oscillator as a force

transducer have also been developed. Various types of

oscillators such as tuning fork or linear-extension res-

onators are used [9]. In many probes, a microtip is

manually glued to the quartz-oscillator although the

oscillator is microfabricated. Quartz-oscillator probes

have advantages of high Q and large spring constant.

The latter allows to avoid the jump-in of the probe. In

addition, quartz-oscillator probes provide self-sensing

as piezoresistive probes.

As stated above, the improvement of the probes is

essential for the development of AFM. Recent

advances in micro/nanomachining are promoting this

improvement, which is expected to open up new appli-

cations of AFM.
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of a dynamic force microscope

based on the frequency
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used in UHV. A significant

feature is the positive feedback

of the self-driven cantilever.
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before it is used to drive the

piezo. The measured quantity

is the frequency shift due to

the tip-sample interaction,

which serves as the feedback
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application in vacuum where standard AFM cantile-

vers made from silicon or silicon nitride exhibit very

high quality factors Q, what makes the response of the

system slow if driven in AM or tapping mode (▶AFM,

Tapping Mode). The technique to oscillate the cantile-

ver also in high Q environments is called frequency-
modulation (FM) mode. In contrast to the tapping or

AM mode typically applied in air or liquids, this

approach features a so-called self-driven oscillator,

which uses the cantilever deflection itself as drive

signal, thus ensuring that the cantilever instanta-

neously adapts to changes in the resonance frequency.

The NC-AFM technique is the method of choice

to obtain true atomic resolution on non-conduction

surfaces with an atomic force microscope.
Overview

To obtain high resolution images with an atomic force

microscope it is most important to prepare clean sam-

ple surfaces free from unwanted adsorbates. Therefore,

these experiments are usually performed in ultra-high

vacuum with pressures below 1 � 10–10 mbar.

As a consequence most dynamic force microscope

experiments in vacuum utilize the so-called frequency

modulation (FM) detection scheme introduced by

Albrecht et al. [1]. In this mode the cantilever is self-

oscillated, in contrast to the AM- or tapping-mode

(▶AFM, Tapping Mode). The FM-technique enables
the imaging of single point defects on clean sample

surfaces in vacuum and its resolution is comparable

with the scanning tunneling microscope, while not

restricted to conducting surfaces [2–6]. In the years

after the invention of the FM-technique the term

non-contact atomic force microscopy (NC-AFM) was

established, because it is commonly believed that

a repulsive, destructive contact between tip and sample

is prevented by this technique.

Set-Up of FM-AFM

In vacuum applications, the Q-factor of silicon

cantilevers is in the range of 10,000–30 000. High

Q-factors, however, limit the acquisition time (band-

width) of a dynamic force microscopy, since the oscil-

lation amplitude of the cantilever needs a long time to

adjust. This problem is avoided by the FM-detection

scheme based on the specific features of a self-driven

oscillator.

The basic set-up of a dynamic force microscope

utilizing this driving mechanism is schematically

shown in Fig. 1. The movement of microfabricated

cantilevers is typically measured with the laser beam

deflection method or an interferometer. A

self-detecting sensor like a tuning fork do not need an

additional detection sensor. In any case the amplitude

signal fed back into an amplifier with an automatic
gain control (AGC) and is subsequently used to excite

the piezo oscillating the cantilever. The time delay

between the excitation signal and cantilever deflection

http://dx.doi.org/10.1007/978-90-481-9751-4_33
http://dx.doi.org/10.1007/978-90-481-9751-4_33
http://dx.doi.org/10.1007/978-90-481-9751-4_33


E

z
D + 2A

D

tip−sample potential

cantilever potential

effective potential

V(z)

AFM, Non-contact Mode, Fig. 2 The frequency shift in

dynamic force microscopy is caused by the tip-sample interac-

tion potential (dashed line), which alters the harmonic cantilever

potential (dotted line). Therefore, the tip moves in an

anharmonic and asymmetric effective potential (solid line)

AFM, Non-contact Mode 95 A

A

is adjusted by a time (“phase”) shifter to a value of

� 90�, since this ensures an oscillation at resonance.

Two different modes have been established: The con-
stant amplitude-mode [1], where the oscillation ampli-

tude A is kept at a constant value by the AGC, and the

constant excitation mode [7], where the excitation

amplitude is kept constant. In the following, however,

only the constant amplitude mode is discussed.

The key feature of the described set-up is the posi-

tive feedback-loop which oscillates the cantilever

always at its resonance frequency f [8]. The reason

for this behavior is that the cantilever serves as the

frequency determining element. This is in contrast to

an external driving of the cantilever in tapping mode

by a frequency generator (▶AFM, Tapping Mode). If

the cantilever oscillates near the sample surface, the

tip-sample interaction alters its resonant frequency,

which is then different from the eigenfrequency f0 of
the free cantilever. The actual value of the resonant

frequency depends on the nearest tip-sample distance

and the oscillation amplitude. The measured quantity

is the frequency shift D f, which is defined as the

difference between both frequencies (D f :¼ f – f0).

For imaging the frequency shift D f is used to control

the cantilever sample distance. Thus, the frequency

shift is constant and the acquired data represents planes

of constant D f, which can be related to the surface

topography in many cases.

Origin of the Frequency Shift

Before presenting experimental results obtained in

vacuum the origin of the frequency shift is analyzed

in mode detail. A good insight into the cantilever

dynamics is given by looking at the tip potential

displayed in Fig. 2. If the cantilever is far away from

the sample surface, the tip moves in a symmetric par-

abolic potential (dotted line), and its oscillation is

harmonic. In such a case, the tip motion is sinusoidal

and the resonance frequency is given by the

eigenfrequency f0 of the cantilever. If, however,

the cantilever approaches the sample surface, the

potential – which determines the tip oscillation – is

modified to an effective potential Veff (solid line) given

by the sum of the parabolic potential and the

tip-sample interaction potential Vts (dashed line). This

effective potential differs from the original parabolic

potential and shows an asymmetric shape.

As a result of this modification of the tip potential

the oscillation becomes anharmonic, and the resonance
frequency of the cantilever depends now on the oscil-

lation amplitude A. Since the effective potential expe-
rienced by the tip changes also with the nearest

distance D, the frequency shift is a functional of both

parameters () D f :¼ D f (D, A)).
Figure 3 displays some experimental frequency

shift versus distance curves for different oscillation

amplitudes [9]. The obtained experimental frequency

shift vs. distance curves show a behavior expected

from the simple model explained above. All curves

show a similar overall shape, but differ in magnitude

in dependence of the oscillation amplitude and the

nearest tip-sample distance. During the approach

of the cantilever towards the sample surface, the

frequency shift decreases and reaches a minimum.

With a further reduction of the nearest tip-sample

distance, the frequency shift increases again and

becomes positive. For smaller oscillation amplitudes,

the minimum of the D f (z)-curves is deeper and the

slope after the minimum is steeper than for larger

amplitudes, i.e., the overall effect is larger for smaller

amplitudes.

This can be explained by the simple potential model

as well: A decrease of the amplitude A for a fixed

nearest distanceDmoves the minimum of the effective

potential closer to the sample surface. Therefore, the

relative perturbation of the harmonic cantilever poten-

tial increases, which increases also the absolute value

of the frequency shift.

http://dx.doi.org/10.1007/978-90-481-9751-4_33
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Fig. 3 (a) Experimental

frequency shift versus distance

curves acquired with a silicon

cantilever (cz ¼ 38 N/m;

f0 ¼ 171 kHz) and a graphite

sample for different

amplitudes (54–180 Å) in

UHV at low temperature

(T ¼ 80 K). (b)
Transformation of all

frequency shift curves shown

in (a) to one universal curves

using Eq. 6. The normalized

frequency shift g (D) is nearly
identical for all amplitudes. (c)
The tip-sample force

calculated with the

experimental data shown in (a)
and (b) using the formula Eq. 7
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Theory of FM-AFM

As already described in the previous subsection it is

a specific feature of the FM-modulation technique that

the cantilever is “self-driven” by a positive feedback

loop. Due to this experimental set-up, the

corresponding equation of motion is different from

the case of the externally driven cantilever discussed

for the tapping-mode. The external driving term has to

be replaced in order to describe the self-driving mech-

anism correctly. Therefore, the equation of motion is

given by
2pf m zðtÞ ¼ d þ A cosð2pftÞ (2)

m€zðtÞ þ 0

Q
_zðtÞ þ czðzðtÞ � dÞ

þ gczðzðt� t0Þ � dÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
driving

¼ Fts½zðtÞ; _zðtÞ�:

(1)
where z :¼ z(t) represents the position of the tip at the

time t; cz, m, and Q are the spring constant, the effec-

tive mass, and the quality factor of the cantilever,

respectively. Fts ¼ – (∂ Vts)/(∂z) is the tip-sample

interaction force. The last term on the left describes

the active feedback of the system by the amplification

of the displacement signal by the gain factor g

measured at the retarded time t – t0.

The frequency shift can be calculated from the

above equation of motion with the ansatz
describing the stationary solutions of Eq. 1. Again, it is

assumed that the cantilever oscillations are more or

less sinusoidal and develop the tip-sample force Fts
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into a Fourier-series. As a result the following equation

for the frequency shift is obtained
Z dþA

Z1
A

Df ¼ 1

pczA2
d�A

ðF# þ F"Þ z� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � ðz� dÞ2

q dz (3)

and the energy dissipation
1 f
� �
DE ¼ g�
Q f0

pczA2: (4)

Since the amplitudes in FM-AFM are often

considerably larger than the distance range of the

tip-sample interaction, apply the “large amplitude

approximation” [10, 11] can be applied. This yields

the formula

Df ¼ 1ffiffiffi
2

p
p

f0
czA3 2=

ZDþ2A

D

FtsðzÞffiffiffiffiffiffiffiffiffiffiffiffi
z� D

p dz (5)

It is interesting to note that the integral in this

equation is virtually independent of the oscillation

amplitude. The experimental parameters (cz, f0, and A)
appear as pre-factors. Consequently, it is possible to

define the normalized frequency shift [10]
3 2=
gðzÞ:¼ czA

f0
Df ðzÞ (6)
This is a very useful quantity to compare experi-

ments obtained with different amplitudes and cantile-

vers. The validity of Eq. 6 is nicely demonstrated by

the application of this equation to the frequency shift

curves already presented in Fig. 3a. As shown in

Fig. 3b all curves obtained for different amplitudes

result into one universal g-curve, which depends only

on the actual tip-sample distance D.
These equations help to calculate the frequency

shift for a given tip-sample interaction law. The

inverse problem, however, is even more interesting:

How can the tip-sample interaction be determined

from frequency shift data? Several solutions to this

question have been presented by various authors and

have lead to the dynamic force spectroscopy (DFS)

technique, which is a direct extension of the

FM-AFM mode [12].
Here the approach of D€urig [11] is presented, which
is based on the inversion of the integral Eq. 5. It can be

transformed to
FtsðDÞ ¼
ffiffiffi
2

p czA
3 2=

f0

@

@D
D

Df ðzÞffiffiffiffiffiffiffiffiffiffiffiffi
z� D

p dz; (7)
which allows a direct calculation of the tip-sample

interaction force from the frequency shift versus

distance curves.

An application of this formula to the experimental

frequency shift curves already presented in Fig. 3a is

shown in Fig. 3c. The obtained force curves are nearly

identical although obtained with different oscillation

amplitudes. Since the tip-sample interactions can

be measured with high resolution, dynamic force

spectroscopy opens a direct way to compare experi-

ments with theoretical models and predictions.

Applications of FM-AFM

The excitement about the NC-AFM technique in

ultrahigh vacuum was driven by the first results of

Giessibl [13] who achieved to image the true atomic

structure of the Si(111)-7 � 7-surface with this tech-

nique in 1995. In the same year Sugawara et al. [14]

observed the motion of single atomic defects on InP

with true atomic resolution. However, imaging on

conducting or semi-conducting surfaces is also possible

with the scanning tunneling microscope (STM)

and these first NC-AFM images provided no new infor-

mation on surface properties. The true potential of

NC-AFM lies in the imaging of non-conducting surface

with atomic precision. A long-standing question about

the surface reconstruction of the technological relevant

material Aluminium oxide could be answered by Barth

et al. [15], who imaged the atomic structure of the high

temperature phase of a-Al2O3(0001).

The high resolution capabilities of non-contact

atomic force microscopy are nicely demonstrated by

the images shown in Fig. 4. Allers et al. [16] resolved

atomic steps and defects with atomic resolution on

Nickel oxide. Today such a resolution is routinely

obtained by various research groups (for an overview

see, e.g., Refs. [2–6]). Recent efforts have also been

concentrated on the analysis of functional organic

molecules, since in the field of nanoelectronics it is

anticipated that in particular organic molecules will



AFM, Non-contact Mode, Fig. 4 Imaging of a NiO(001) sam-

ple surface with a non-contact AFM. (a) Surface step and an

atomic defect. The lateral distance between two atoms is 4.17 Å.

(b) A dopant atom is imaged as a light protrusion about 0.1 Å

higher as the other atoms (Images courtesy of W. Allers and

S. Langkat, University of Hamburg; used with kind permission)
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AFM, Non-contact Mode, Fig. 5 (a) Principle of 3D-force

spectroscopy. The cantilever oscillates near the sample surface

and measure the frequency shift in a x-y-z-box. The three

dimensional surface shows the topography of the sample

(image size: 10 Å � 10 Å) obtained immediately before the

recording of the spectroscopy field. (b) The reconstructed force

field of NiO(001) shows atomic resolution. The data is taken

along the line shown in (a)
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play an important role as the fundamental building

blocks of nanoscale electronic device elements.

The concept of dynamic force spectroscopy can be

also extended to 3D-force spectroscopy by mapping

the complete force field above the sample surface [12].

Figure 5a shows a schematic of the measurement

principle [17]. Frequency shift vs. distance curves are

recorded on a matrix of points perpendicular to the

sample surface. Using Eq. 7 the complete three-

dimensional force field between tip and sample can

be recovered with atomic resolution. Figure 5b shows

a cut through the force field as a two-dimensional map.

If the NC-AFM is capable of measuring forces

between single atoms with sub-nN precision, why

should it not be possible to also exert forces with this

technique? In fact, the new and exciting field of
nanomanipulation would be driven to a whole new

dimension, if defined forces can be reliably applied to

single atoms or molecules. In this respect, Loppacher

et al. [18] achieved to push on different parts of

an isolated Cu-TBBP molecule, which is known to

possess four rotatable legs. They measured the force-

distance curves while one of the legs was pushed by the

AFM tip and turned by 90�, thus being able to measure

the energywhich was dissipated during “switching” this

molecule between different conformational states. The

manipulation of single Sn-atomswith the NC-AFMwas

nicely demonstrated by Sugimoto et al. who manipu-

lated single Sn-atoms on the Ge(111)-c(2 � 8) semi-

conductor surface (Fig. 6). By pushing single Sn-atoms

from one lattice site to the other they finally succeeded

to write the letter “Sn” with single atoms.



AFM, Non-contact Mode, Fig. 6 Final topographic NC-AFM

image of the process of rearranging single Sn-atoms on a Ge

(111)-c(2 � 8) semiconductor surface at room temperature

(Reproduced from [19])
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Definition

The tapping or AM-mode is the most common

dynamic mode used in atomic force microscopy.

In dynamic mode AFM the cantilever is oscillated

with (or near) its resonance frequency near the sample

surface. Using a feedback electronic the cantilever

sample distance is controlled by keeping either the

amplitude or the phase of the oscillating cantilever

constant. Since lateral tip–sample forces are avoided

by this technique the resolution is typically higher
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Fig. 1 Setup of a dynamic

force microscope operated in

the tapping (or AM-) mode.

A laser beam is deflected by

the back side of the cantilever,

and its deflection is detected

by a split photo-diode. The

cantilever vibration is caused

by an external frequency

generator driving an excitation

piezo. A lock-in amplifier is

used to compare the cantilever

driving with its oscillation.

The amplitude signal is held

constant by a feedback loop

controlling the cantilever

sample distance
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compared to the classical contact mode AFMwhere tip

and sample are in direct mechanical contact.
Overview

Since its introduction in 1986 [1], the atomic force

microscope became a standard tool in nanotechnology.

In early experimental setups, a sharp tip located at or

near the end of a microstructured cantilever profiled

the sample surface in direct mechanical contact

(contact mode) to measure the force acting between

tip and sample. Maps of constant tip–sample interac-

tion force, which are usually regarded as representing

the sample’s “topography,” were then recovered by

keeping the deflection of the cantilever constant

(▶Friction Force Microscopy). This is achieved by

means of a feedback loop that continuously adjusts

the z-position of the sample during the scan process

so that the output of the deflection sensor remains

unchanged at a preselected set-point.

Despite the widespread success of contact mode

AFM in various applications, the resolution was

frequently found to be limited (in particular for soft

samples) by lateral forces acting between tip and

sample. In order to avoid this effect, it is advantageous

to vibrate the cantilever in vertical direction near the

sample surface. AFM imaging with an oscillating

cantilever is often denoted as dynamic force
microscopy (DFM) [2].
The cantilever dynamics are governed by the tip–

sample interaction as well as by its driving method.

For instance, the historically oldest scheme of cantilever

excitation in DFM imaging is the external driving of the

cantilever at a fixed excitation frequency chosen to be

exactly at, or very close to, the cantilever’s first reso-

nance. For this driving mechanism, different detection

schemes measuring either the change of the oscillation

amplitude or the phase shift between driving signal and

resulting cantilever motion were proposed. Over the

years, the amplitude modulation (AM) or tapping

mode, where the actual value of the oscillation ampli-

tude is employed as a measure of the tip–sample dis-

tance, has been established as the most widely applied

technique for ambient conditions and liquids.

Experimental Setup

A schematic of the experimental setup of an atomic

force microscope driven in amplitude modulation

mode is shown in Fig. 1. In this mode the cantilever

is vibrated close to its resonant frequency near the

sample surface. Due to the tip–sample interaction

the resonant frequency (and consequently also

amplitude A and phase f) of the cantilever changes

with the cantilever sample distance d. Therefore, the

amplitude as well as the phase can be used as feedback

channels. A certain set-point for example, the

amplitude is given, and the feedback loop will adjust

the tip–sample distance such that the amplitude

remains constant. The cantilever sample distance is

http://dx.doi.org/10.1007/978-90-481-9751-4_37
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AFM, Tapping Mode, Fig. 2 (a) A dynamic force microscopy

image of a monomolecular DPPC (L-a-dipalmitoyl-phophati-

dycholine) film adsorbed on mica. (b) The phase contrast is

different between substrate and DPPC film. Equation 6 explains

how this contrast is related to the energy dissipation caused by

the tip–sample contact interaction
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recorded as a function of the lateral position of the tip

with respect to the sample and the scanned height

essentially represents the surface topography.

The deflection of the cantilever is typically

measured with the laser beam deflection method.

During operation in conventional tapping mode, the

cantilever is driven with a fixed frequency and

a constant excitation amplitude using an external

function generator, while the resulting oscillation

amplitude and/or the phase shift are detected by

a lock-in amplifier. The function generator supplies

not only the signal for the dither piezo; its signal

serves simultaneously as a reference for the lock-in

amplifier.

This setup is mostly used in air and in liquids.

A typical image obtained with this experimental

setup in ambient conditions is shown in Fig. 2. The
phase between excitation and oscillation can be

acquired as an additional channel and gives informa-

tion about the different material properties

of DPPC and the mica substrate. As shown at the

end of the next section, the phase signal is closely

related to the energy dissipated in the tip–sample

contact.

Due to its technical relevance the investigation of

polymers has been the focus of many studies and

high-resolution imaging has been extensively

performed in the area of material science. Using

specific tips with additionally grown sharp spikes

Klinov et al. [3] obtained molecular resolution on

a polydiacetylene crystal. Imaging in liquids opens

up the avenue for the investigation of biological

samples in their natural environment. For example,

Möller et al. [4] have obtained high-resolution images
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of the topography of hexagonally packed intermediate

(HPI) layer of Deinococcus radiodurans with tapping-
mode AFM. A typical example for the imaging of

DNA in liquid solution is shown in Fig. 3.

Theory of Tapping-Mode AFM

Many features observed in tapping-mode AFM can be

described by a simple spring-mass model which

includes the tip–sample interaction force.
2pf0m

m€zðtÞ þ

Q0

_zðtÞ þ czðzðtÞ � dÞ

¼ adcz cosð2pfdtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
external driving force

þFts½zðtÞ; _zðtÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
tip�sample force

: (1)
zðt � 0Þ ¼ d þ A cosð2pf tþ fÞ; (3)
Here, z(t) is the position of the tip at the time t; cz,m,

and f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcz=mÞ

p
=ð2pÞ are the spring constant, the

effective mass, and the eigenfrequency of the cantile-

ver, respectively. The quality factor Q0 combines the

intrinsic damping of the cantilever and all influences

from surrounding media, such as air or liquid. The

equilibrium position of the tip is denoted as d.

The first term on the right-hand side of the equation

represents the external driving force of the cantilever

by the frequency generator. It is modulated with the

constant excitation amplitude ad at a fixed frequency

fd. The (nonlinear) tip–sample interaction force Fts is

introduced by the second term.

The actual tip–sample force is unknown in nearly

all cases. However, in order to understand the most

important effects it is often sufficient to apply the

DMT-M theory [5]. In this approach it is assumed the
tip is nearly spherical and that the noncontact forces

are given by the long-range van-der-Waals forces

while the contact forces are described by the

well-known Hertz model. The resulting overall force

law is given by
FDMT�MðzÞ ¼
�

6z2 for z  z0;
4
3
E	 ffiffiffi

R
p ðz0 � zÞ3=2 for z < z0;

(2)

where AH is the Hamaker constant, E* the effective

modulus, and R the tip radius. At z0 tip and sample

come in contact. Figure 4 displays the resulting tip–

sample force curve for this model.

For the analysis of dynamic force microscopy,

experiments only on the steady states with sinusoidal

cantilever oscillation are of interest. Consequently, the

steady-state solution is given by the ansatz
d

where f is the phase difference between the excitation

and the oscillation of the cantilever.

Here, the situation where the driving frequency is

set exactly to the eigenfrequency of the cantilever

(fd ¼ f0) is analyzed. With this choice, which is also

very common in actual DFM experiments, defined

imaging conditions are given leading to a handy

formula relationship between the free oscillation

amplitude A0, the actual amplitude A, and the equilib-

rium tip position d [6].
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A0 ¼ A 1þ ðQ0Iþ½d;A�Þ2; (4)

where
Z 1=fd
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AFM, Tapping Mode, Fig. 5 Amplitude vs. distance curve for

tapping-mode AFM assuming the parameters A0 ¼ 10 nm,

f0 ¼ 300 kHz, and the tip–sample interaction force shown in

Fig. 4. The overall amplitude decreases the sample surface

distance, but instabilities (indicated by arrows) occur during

approach and retraction
Iþðd;AÞ ¼ 2fd
czA 0

Fts½zðtÞ; _zðtÞ� cosð2pfdtþ fÞdt

¼ 1

pczA2

Z dþA

d�A

ðF# þ F"Þ z� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � ðz� dÞ2

q dz:

(5)

The function I+(d, A) depends on the actual oscilla-
tion amplitude A and cantilever–sample distance d and

it is a weighted average of the tip–sample forces during

approach and retraction (F# + F").
The solution of this equation allows us to study

amplitude vs. distance curves as shown in Fig. 5 for

a Q-factor of 300. Most noticeable, the tapping mode

curve exhibits jumps between unstable branches,

which occur at different locations for approach and

retraction. The resulting bistable regime then causes

a hysteresis between approach and retraction and

divides the tip–sample interaction into two regimes.

In order to identify the forces acting between tip and

sample in these two regimes, the oscillation amplitude

is plotted as a function of the nearest tip–sample

distance in Fig. 6. In addition, the bottom graph depicts

the corresponding tip–sample force (cf. Fig. 4).

The origin of the nearest tip–sample position D is

defined by this force curve. Since both, the amplitude

curves and the tip–sample force curve, are plotted as

a function of the nearest tip–sample position, it is
possible to identify the resulting maximum tip–sample

interaction force for a given oscillation amplitude.

During the approach of the vibrating cantilever

toward the sample surface, there is discontinuity in the

nearest tip–sample position D. This gap corresponds to

the bi-stability and the resulting jumps in the amplitude

vs. distance curve. After the jump from the attractive to

the repulsive regime has occurred, the amplitude

decreases continuously. The nearest tip–sample posi-

tion, however, does not reduce accordingly, remaining

roughly between �0.8 and �1.5 nm. As a result, larger

A/A0 ratios do not necessarily result into lower tip–

sample interactions, which is important to keep in
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Fig. 6 A comparison between

the maximum tip–sample

forces (tip–sample forces

acting at the point of closest

tip–sample approach/nearest

tip–sample position D)
experienced by conventional

“tapping mode” AM-AFM

assuming the same parameters

as in Fig. 5. The upper graph
shows the nearest tip–sample

position D vs. the actual

oscillation amplitude A for

tappingmode. The graph at the

bottom reveals the force

regimes sensed by the tip. The

maximal tip–sample forces in

tapping mode are on the

repulsive (tapping regime) as

well as attractive (bistable

tapping regime) part of the

tip–sample force curve
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mind while adjusting imaging parameters in tapping

mode. For practical applications, it is reasonable to

assume that the set-point of the amplitude used for

imaging has been set to a value between 90% and 10%

of the free oscillation amplitude. With this condition,

one can identify the accessible imaging regimes indi-

cated by the horizontal (dashed) lines and the

corresponding vertical (dotted) lines. Therefore, in tap-

ping mode, two imaging regimes are typically accessi-

ble: the tapping regime (left) and the bistable tapping
regime (middle). The bistable imaging state is only

accessible during approach. Imaging in this regime is

indeed possible with the limitation that the oscillating

cantilever might jump into the repulsive regime [7, 8].

In the above paragraphs, the influence of the tip–

sample interaction on the cantilever oscillation was

analyzed, the maximum tip–sample interaction

forces based on the assumption of a specific

model force was calculated, and subsequently possible

routes for image optimization were discussed. How-

ever, in practical imaging, the tip–sample interaction is

not a priori known. Therefore, several authors [9–14]

suggested solutions to this inversion problem,

but some of them need further technical equipment.

However, most commercial systems give access to
amplitude and phase vs. distance data which already

allows the reconstruction of the tip–sample force curve

applying numerical procedures [11, 12, 14].

The energy dissipation caused by the tip–sample

interaction can be easily calculated using the

conservation of energy principle [15].
DE ¼
Q0

d

f0
þ d

A
sinf pczA2: (6)
Since all parameters – except the phase f – are

constant during scanning, this formula shows that the

energy dissipation is roughly proportional to sin f as

already mentioned in the caption of Fig. 2.
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2. Garcia, R., Pérez, R.: Dynamic atomic force microscopy

methods. Surf. Sci. Rep. 47, 197–301 (2002)

3. Klinov, D., Maganov, S.: True molecular resolution in

tapping-mode atomic force microscopy with high-

resolution probes. Appl. Phys. Lett. 84, 2697–2698 (2004)
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Scanning electron microscopy and secondary-electron

imaging microscopy
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Definition

A scanning electron microscope (SEM) is an instru-

ment that uses high-energy electrons in a raster-scan

pattern to form images, or collect other signals, from

the three-dimensional surface of a sample.
Introduction

The scanning electron microscope (SEM) is one of

the most popular and user-friendly imaging tools

that reveal the surface topography of a sample. It is

also widely used for structural characterization of

materials and devices, especially in the field of nano-

technology. Today there are in excess of 50,000 SEMs

worldwide and it is often seen as a “must-have” appa-

ratus for research institutes and industry laboratories.

In the SEM, incident electrons interact with the atoms

that make up the sample-producing signals that contain

information about the sample’s surface morphology,

composition, and other physical and chemical proper-

ties. The most common imaging mode in SEM lies in

using secondary electrons. Since secondary electrons

have very low energies, they are generated in, and

escape from regions near the sample surface.

Combined with various detection systems,

a SEM also can be used to determine the sample’s

chemical composition through energy-dispersive

x-ray spectroscopy and Auger electron spectroscopy,

and identify its phases through analyzing electron-

diffraction patterns, mostly via high-energy

backscattered electrons. Besides backscattered elec-

trons, Auger electrons, characteristic x-rays, other sig-

nals are generated from the interactions of the incident
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beam and the sample under a SEM include plasmons,

bremsstrahlung radiation (noncharacteristic x-rays),

cathodoluminescence, and electron-beam-induced

current. This entry is focused on secondary-electron

imaging related instrumentation, signal-generation

processes, and state-of-the-art imaging capabilities in

SEM.
A Brief History

SEM was invented by Max Knoll in 1935 in Germany

[1] to study the targets of television tubes. The instru-

ment consisted of electron-beam deflector coils that

scan the beam on a plate as the sample in a cathode

ray tube (CRT), and an amplifier that boosts the plate

current to display the signal on another CRT (Fig. 1a).

Two years later Manfred von Ardenne built an electron

microscope with a highly demagnified probe using two

condenser lenses for scanning transmission electron

microscopy and also tried it as an SEM. Zworykin

and his coworkers of the RCA Laboratories in the

USA designed and built a dedicated SEM in 1942. Its

electron optics includes three electrostatic lenses with

scan coils placed between the second and third ones.

A photomultiplier was first used to detect secondary
electrons (Fig. 1b). The essential components of this

apparatus are similar to those used in modern SEMs.

The probe size of the incident, or primary, electron

beam had a diameter of about 10 nm. However, com-

pared with transmission electron microscopes (TEMs)

at that period, it could not image secondary electrons

satisfactorily due to the poor signal-to-noise ratios of

the images [3]. Sir Charles Oatley and Dennis

McMullan built their first SEM at Cambridge

University in 1948. The SEM technology was further

pioneered by many postgraduate students at

Cambridge including Gary Stewart. The first commer-

cial instrument, named as “Stereoscan,” was launched

in 1965 by the Cambridge Scientific Instrument

Company for DuPont [4]. The instrument consists of

electron multiplier detector with beryllium–copper

dynodes to detect scattered electrons from

the specimen surface. Images were displayed

on a CRT, while another synchronized CRT recorded

them on camera film. An Everhart-Thornley type

secondary-electron detector [5] significantly improved

the detection efficiency of the low-energy secondary-

electron signals (Fig. 1c). JEOL produced

first commercial Japanese SEM, JSM-1, in 1966,

while Hitachi commercialized its SEM, HSM-2,

in 1969.
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aberration-corrected scanning electron microscope, Hitachi

HD2700C, that routinely achieves an atomic resolution in imag-

ing using secondary electrons and transmitted electrons. Two
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bright-field, ADF annular dark-field, SE secondary electrons,

TE transmitted electrons, and BES backscattered electrons. The

SE images clearly give a topographic view of the area, and

higher brightness of the light element C, compared with the

corresponding ADF images
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Instrumentation

A typical SEM consists of an electron gun, an electron

lens system, various electron-beam deflection coils,

electron detectors, and display and recording

devices [6]. In a SEM, an electron beam is emitted

from an electron gun sitting on a thermionic filament

cathode, or from a field-emission needle tip. Tungsten

is often used for thermionic electron guns due to its low

cost, high melting point, and low vapor pressure so that

it tolerates heating to about 2,800 K for electron

emission. Other types of electron emitters include

lanthanum hexaboride (LaB6) cathodes, which offer

higher brightness but require a better vacuum to

avoid oxidizing the gun. Field emission guns

(FEGs) often used in modern SEMs can be the

thermally assisted Schottky type, using emitters of zir-

conium oxide (ZrO), or the cold-cathode type using

tungsten <310 > single crystal emitters and operated

at room temperature. A cold field-emission gun has

amuch smaller source size (5 � 10 nm) than a tungsten

filament (1 � 10 mm) with three to four orders of mag-

nitude larger current density and brightness [7].
The typical energy range of the electron beam used

in SEM is from 0.5 to 40 keV. The electron-condenser

lens system usually demagnifies the electron source

more than hundreds of times to form a small probe on

the sample. The beam passes through pairs of deflec-

tion coils, or scanning coils, in the electron column,

typically in the final lens, which deflect the beam in the

x and y axes by applying an incremental current into

the scan coils, so that it scans in a raster fashion over

a rectangular area of the sample surface.

Historically, SEM incorporates an objective lens.

Unlike the objective lens in optical microscopes or

transmission electron microscopes (TEMs), its

purpose in SEM is not to image the sample, but to

focus the small probe on the sample. There are three

types of objective lenses: out-lens (Fig. 2a); in-lens

(Fig. 2b); and, semi in-lens (Fig. 2c). Most early

SEMs had the simplest out-lens design, in which the

sample sits beneath the lens leaving a large area avail-

able in the sample chamber. However, the yoke gap

across the optical axis acts as a lens with leakage field,

thus yielding significant imaging aberration. The

in-lens pole piece, originally designed for TEMs, was
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adopted for SEM to reduce spherical aberration.

Hitachi developed the first commercial SEM with

such a design in 1985 [8]. Their microscope operating

at 30 kV reaches a probe size of 0.5 nm with spherical

aberration coefficient Cs of 1.6 mm. The drawback of

the design is that a conventional thin sample, similar to

that used in TEM, is required because the sample sits

inside the pole-piece gap. A design resulting from

a compromise between the out-lens and in-lens is the

semi in-lens pole piece (Fig. 2c), offering reasonable

spatial resolution but with larger open space for the

sample chamber so that a thick sample can be used.

Such a design allows the sample to be placed a fewmm

from the pole piece, and a large magnetic field to be

applied to produce a smaller focal length and less

spherical aberration. SEMs with the semi in-lens

design played a significant role in characterizing

devices for the semiconductor industry in early 1990s.

It is noteworthy that the in-lens design shown in

Fig. 2b is very similar to that used in conventional

TEM and/or STEM (scanning transmission electron

microscope). Thus, with an efficient secondary-

electron detector, a TEM, or an STEM also can

image a sample surface [9, 10]. Figure 2d shows a sche-

matic of the objective lens (in-lens design), the sample,

and the arrangement of detectors in the Hitachi

HD2700C aberration-corrected SEM/STEM [11].

The instrument operates at 80 ~ 200 kV, allowing

simultaneous acquisition of bright-field (BF), annular

dark-field (ADF), and secondary-electron (SE) images.

In the BF and ADF modes, the transmitted electrons

are used to form the images, thus providing structural

information from the sample’s interior. In contrast, in

the SE mode electrons emerging from the surface with

low energies, or short escape length, are used, and thus,

the signals are surface sensitive. Different imaging

modes have their own advantages and limitations.

Since the BF signals are close to the phase contrast

seen in TEM, they offer high spatial resolution, but are

difficult to interpret. ADF images, on the other hand,

are based on Rutherford scattering, and thus their

image intensity is directly related to the sample’s

atomic number Z (the so-called Z-contrast imaging).

Since BF- and ADF-images are projected images they

give little structural information in the direction of the

beam’s trajectory. In contrast, SE imaging offers depth

information on the surface topography, and is more

sensitive to the light elements than is ADF imaging

(see Fig. 2d). Combining these different imaging
modes in an electron microscope with an in-lens

design, it has been demonstrated that simultaneously

imaging both surface (SE) and bulk (ADF) at atomic

resolution is possible in thin samples for a wide range

of elements, from uranium and gold to silicon and

carbon [11, 12].

The electron detector is another important part of

the SEM instrumentation. Although detector itself

does not determine the image resolution in SEMs, it

is essential to improving the SEM resolving power in

terms of the signal-to-noise ratio. The commonest

detector used in SEMs today still is that developed by

Everhart and Thornley in 1957 [5], the so-called E-T

detector. The detector consists of a photomultiplier,

a light guide, and a positively biased scintillator. To

attract low energy electrons effectively, the scintillator

is applied a 10 kV dc bias to accelerate the electrons.

The energized electrons cause the scintillator to

emit flashes of light (cathodoluminescence) that then

are transmitted to the photomultiplier. The amplified

output of the electrical signals by the photomultiplier is

displayed as a two-dimensional intensity distribution

that can be viewed and photographed on an analogue

video display. The Everhart-Thornley detector, which

normally is positioned to one side above the specimen,

exhibits low efficiency in detecting backscattered

electrons because few such electrons are emitted in

the solid angle subtended by the detector. Furthermore,

its positive bias cannot readily attract the high-energy

backscattered electrons (close to the energy of

the incident electrons). Backscattered electrons are

usually collected above the sample in a “doughnut

type” arrangement, concentric with the electron

beam, to maximize the solid angle of collection.
Secondary-Electron Signal Generation

Secondary-electron (SE) imaging is the most

frequently used mode of imaging in SEM. Secondary

electrons, defined as the electrons with energy below

50 eV, are generated along the primary electrons’

trajectories within the sample, but are subject to elastic

and inelastic scattering during their passage through

the sample. These electrons can be valence electrons or

are ejected from the orbits of the inner shells (most

likely the k-shells) of the sample. The consequence of

their low kinetic energy is their shallow escape depth,

which is about 1 nm for metals, and up to 10 nm for



Scanning Electron Microscopy, Fig. 3 SEM micrographs of

a polymer membrane that consists of electrospun fibrous

scaffold for water filtration. The fibrous scaffold has an average

diameter of 200 nm. The high-resolution SEM image on the right

shows cellulose nanofibers (5–10 nm in diameter) infused into

the scaffold form a cellulose network to enhance the

membrane’s ability to remove bacteria and viruses. The images

were taken with JEOL7600 SEM at operation voltage of 0.5 eV.

A thin layer of carbon was coated on the sample to avoid

charging. Note the bright contrast at the edge of the fibers

generates a topological view of the fibrous structure
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insulators. The probability of escape decreases contin-

uously with the increase of the depth below the surface.

However, there is a nonzero probability of secondary-

electron emission arising from inelastic scattering

below the escape depth, as, for example, when

a primary electron creates a fast secondary electron

(energy > 50 eV) that travels toward the surface and

generates a lower-energy secondary electron within

the escape depth. The production of the secondary

electron signals involves the generation, propagation,

escape from the surface, and arrival at the

detector. These four processes are detailed in

the atomic-imaging section.

The secondary electrons discussed here are often

referred to as SEI, i.e., the secondary electrons gener-

ated by the incident beam upon entering the sample.

Secondary electrons generated by backscattered

electrons when leaving the sample are termed SEII.

Secondary electrons generated when the backscattered

electrons strike a lens pole piece or the sample cham-

ber’s wall, and by primary electrons hitting the aper-

ture are, respectively called SEIII and SEIV. Although

SEIII contain the information on the sample, SEIV do

not. Furthermore, there are fast secondary electrons,

with energy higher than 50 eV. Bias experiments,

wherein a positive dc voltage is applied to the sample

to suppress the emission of the secondary electrons,

were mainly designed to separate the SEI from

backscattered electrons; they cannot distinguish SEI

from SEII, which for a very thin specimen should be

negligible. Measuring other types of secondary elec-

trons, including those with high energy, would require

a different bias experiment. Heavy elements (high
atomic number) that backscatter electrons more

strongly than do light elements (low atomic number),

and thus appear brighter in the image, can be used to

yield contrast that contains information of a sample’s

chemical composition.

Figure 3 shows SEM images of a nanofiber-

containing polymer membrane developed for water

filtration with enhanced ability to remove bacteria

and viruses. The image on the right shows the

structural network formed by the 5–10 nm diameter

cellulose nanofibers. It reveals astonishing topographic

details on how the cellulose nanofibers are interwoven

with scaffold. In SEM images flat surfaces give

even contrast while curved surfaces and sharp edges

often appear brighter (high image intensity). This is

due to the increased escape of secondary electrons

from the top and side surfaces when the interaction

volume intercepts them. Since the secondary electron

detector is biased with a high acceleration

voltage, a surface facing away from the detector still

can be imaged. Surfaces tilted away from the normal

to the beam allow more secondary electrons to

escape [13].
Atomic Imaging Using Secondary Electrons

In the last decade or so, high-resolution SEM has

proven an indispensable critical dimension metrology

tool for the semiconductor industry. The roadmap for

semiconductor nanotechnology identifies the need

for ultra-high-resolution SEM in the quest for

ever-decreasing device sizes. In a SEM, the size of



Scanning Electron
Microscopy, Fig. 4 (a–b)
Simultaneous atomic imaging

using secondary electrons

(secondary-electron

mode, a) and transmitted

electrons (annual dark-field

mode, b) of uranium
individual atoms on a carbon

support (raw data). The circles

mark the single uranium

atoms. The atoms shown

in (b) but not in (a) are
presumably those on the

back side of the support. (c–d)
Simultaneous atomic

imaging using secondary

electrons (c) and transmitted

electrons (d) of YBa2Cu3O7

superconductor viewing along

the [010] direction (raw data).

The scale bar in (c) is 0.7 nm
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the imaging probe often determines the instrument’s

resolution power. The probe size d (measured in full-

width and half maximum) is a function of the beam

convergence half-angle a is an incoherent sum of con-

tributions from source size, diffraction limit, spherical

aberration, and chromatic aberration, and is given by
� �2 � �2
d2 ¼ 4ip
bp2a2

þ 0:6l
a

þ ð0:5Csa3Þ2

þ Cca
DE
E

� �2

where ipis the probe current, a is the convergence

half-angle, b is the source brightness, l is the electron

wavelength at beam energy E, DE is the energy spread,

and Cs and Cc are, respectively, the spherical- and

chromatic-aberration coefficients of the probe-forming

lens. The first term on the right side of the equation is

the probe size defined by the source size, the second

term is due to the diffraction limit, and the third and the

fourth terms are due, respectively, to the spherical and

chromatic aberrations. Recent advancement on

correcting spherical aberration in SEM and STEM

diminishes Cs to zero, thus eliminating the third term

and produces a small probe. It is important to note that

the probe size also depends on the energy spread in the

fourth term that includes the energy distribution of

the primary electron beam and the fluctuation of the

instruments’ acceleration voltage.
In SEM, the image resolution depends not only on

the instrument, but also on the sample, or, more accu-

rately, on the sampling volume of the sample from

which the signal is generated When the incident elec-

trons impinge on a point of the sample’s surface, they

interact with atoms in the sample via elastic- (change

trajectory) and inelastic- (lose energy) interactions.

The size of the interaction volume depends on the

electron’s landing energy, the atomic number of

the sample, and its density. The simultaneous energy

loss and change in trajectory spreads beam into the

bulk of the sample and produces an interaction volume

therein, that, for a thick sample, can extend from less

than 100 nm to around 5 mm into the surface, i.e., more

than an order of magnitude larger than the original

probe size. For a very thin sample (a few nm thick),

the interaction volume, as the first approximation,

might be defined as the probe size.

Figure 4 illustrates the atomic resolution images

using secondary electrons on single uranium atoms

(a) and the (010) surface of a YBa2Cu3O7 crystal (c)

recorded on the Hitachi HD2700C SEM/STEM

(Fig. 2d). For comparison, the corresponding annular

dark-field images using transmitted electrons, (b) and

(d), respectively, are included. The equally sharp

images in SE and ADF suggest negligible imaging

delocalization. Such an attainable resolution was

attributed to the combination of several factors: Better

design of the electro-optics of the instrument (includ-

ing ultrahigh electric and mechanical stabilities) and
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the detector; aberration correction that reduces the

probe size and increases the probe current; and, the

higher operation voltage that beneficially assures a

very small volume of beam interaction for a thin

sample.

The physical mechanism of producing the

low-energy secondary electrons traditionally is

ascribed to inelastic scattering and decay of collective

electron excitation with the incident electron giving

up, say 20 eV, to produce a secondary electron with

energy 20 eV minus the work function of the surface.

Since the momentum transfer (scattering angle) of the

scattering with 20 eV energy loss is small, the transfer

should be delocalized to an area >1 nm; thus atomic

imaging using secondary electrons was not considered

possible. Recent studies suggest that this is not the

primary mechanism for secondary-electron imaging

at least on a thin sample [11]. The secondary electrons

responsible for atomic-scale resolution are generated

by inelastic scattering events with large momentum

transfer, including those from inner shell orbitals,

which give rise to a sharp central peak in the point-

spread function for signal generation.

In general, four steps are involved in producing the

signal that is used to form a secondary electron (SEI)

image [12]. (1) The generation of secondary electrons

through the inelastic scattering of primary electrons in

the sample, at a generation rate, G; (2) random motion

of these secondary electrons, which are scattered by

atoms of the specimen both elastically and inelastically

(potentially creating other secondary electrons of

lower energies), such that, on average, T electrons

reach the sample surface for each secondary electron

generated; (3) the escape of secondary electrons over

the potential barrier at the sample surface of the

specimen, with an average probability P; and, (4) the

acceleration of the emitted electrons in vacuum, such

that a fraction D reaches the electron detector.

The secondary-electron signal S is a product of

these four factors: S ¼ G � T � P � D. To generate

contrast in a scanned-probe image, one or more of the

above steps must depend on the x-coordinate of the

electron probe in the scan direction, i.e.,
dS dG dT dP dD
dx
¼ I0TPD

dx
þ I0GPD

dx
þ I0GTD

dx
þ I0GTP

dx

For most non-atomically resolved SE images

obtained in an SEM, dT
dx provides the main contrast
mechanism: Secondary electrons created at an inclined

surface or close to a surface step have an increased

probability of escape, resulting in surface-topography

contrast [14]. Less commonly, variations in surface

work function contribute additional contrast by pro-

viding a nonzero dP
dx . In voltage-contrast applications,

changes in surface voltage provide a nonzero dD
dx .

Atomic-number contrast is possible if the specimen is

chemically inhomogeneous and G varies with atomic

number, yielding a nonzero dG
dx . However, for atomic

imaging in a thin sample (Fig. 4), the dominant

mechanism can be quite different. dG
dx is likely to play

an important role in the atomic-scale contrast as

a consequence of Z-dependence inelastic scattering

cross section and channeling effect for crystals (for

thickness in the order of extinction distance it should

be minor). Because secondary electrons are generated

through inelastic scattering of the incident electrons,
dG
dx is limited by the delocalization of the scattering

process, which may be described by the point-spread

function for inelastic scattering. The term dT
dx should be

small, for adatoms or surface atoms that lie on

the detector side of the sample. dP
dx would not become

important unless the effective work function varies on

an atomic scale, and dD
dx must be also negligible

at atomic scale. These assumptions are reasonable

because the scattering process disperses secondary

electrons over a range of x that is comparable to the

escape depth, typically 1–2 nm. Consequently, T, P,
and D are x-averages that vary little with x on an

atomic scale. For uranium atoms on a carbon substrate,

the argument is even simpler; these atoms lie outside

the solid, so the terms T and P are not applicable.
Future Remarks

Secondary-electron imaging is the most popular mode

of operation of the scanning electron microscope

(SEM) and traditionally is used to reveal surface

topography. Nevertheless, this imaging method never

was regarded as being on the cutting edge of perfor-

mance, due to its perceived limited spatial resolution in

comparison with its TEM or STEM counterparts using

transmitted electrons. Recent work using aberration-

corrected electron microscopes demonstrated that

secondary electron signals in the SEM can resolve

both crystal lattices and individual atoms, showing

SEM’s unprecedented and previously unrealized
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imaging capabilities. Furthermore, the work demon-

strates the incompleteness of present understanding of

the formation of secondary-electron images. Second-

ary-electron imaging using high acceleration voltage

with thin samples can now compete with TEM on

spatial resolution, and provide new capabilities, such

as depth-resolved profiles, at the atomic level. There

seems to be no fundamental reason why atomic

resolution in secondary-electron imaging could not

be achieved at the accelerating voltages of 0.5–40

keV that are currently used in conventional SEMs. It

remains to be seen whether the integrated spherical and

chromatic aberration of a probe-forming objective lens

can be corrected to a sufficient degree at low operation

voltages. One clear outcome thus far is the importance

of preparing samples with clean surfaces in order to

obtain interpretable and reproducible results.
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Definition

Scanning near-field optical microscopy (SNOM) is a

microscopic technique for nanostructure investigation

that achieves sub-wavelength spatial resolution by

exploiting short-ranged interactions between a sharply

pointed probe and the sample mediated by evanescent

waves. In general, the resolution of SNOM is deter-

mined by the lateral probe dimensions and the probe-

sample distance. Images are obtained by raster-scan-

ning the probe with respect to the sample surface

corresponding to other scanning-probe techniques. As

in conventional optical microscopy, the contrast mech-

anism can be combined with a broad range of spectro-

scopic techniques to study different sample properties,

such as chemical structure and composition, local

stress, electromagnetic field distributions, and the

dynamics of excited states.
S

Introduction

Optical microscopy forms the basis of most of the nat-

ural sciences. In particular, life sciences have benefited

from the fascinating possibility to study smallest struc-

tures and processes in living cells and tissue. Optical

techniques feature extremely high detection sensitivity

reaching single molecule sensitivity in fluorescence,

Raman scattering and absorption spectroscopy. Besides

the direct visualization, chemically specific information

is obtained through Raman spectroscopy.

The resolution of conventional optical microscopes,

however, is limited by diffraction, a consequence of

the wave nature of light, to about half the wavelength.

Concepts extending optical microscopy down to

nanometer length scales below the diffraction-limit

are distinguished into far-field and near-field tech-

niques. Far-field techniques rely on the detection of

propagating waves at distances from the source larger

than the wavelength, while near-field techniques

exploit short ranged evanescent waves.

Scanning near-field optical microscopy, initiated

by pioneering work of Pohl, Lewis and others in

the late 1980s and the beginning of 1990s gave

access to nanoscale resolution for the first time.

The history of near-field optics is reviewed in [1].

In addition numerous review articles and books

exist describing fundamentals and applications

(see e.g., [2–4]).
This entry introduces first the key physical

principles beginning with the role of evanescent and

propagating waves, and the loss of spatial information

upon light propagation. Concepts of near-field

detection are shown using different pointed probes.

The next sections describe the experimental realization

and present several applications of SNOM. The

outlook addresses future prospects of SNOM and

remaining challenges.
Key Principles and Concepts

Near-field optics has its origin in the effort of

overcoming the diffraction limit of optical imaging.

The physical origin of this limit is sketched in

the following starting with the distinction between

propagating waves that form the optical far-field of

a radiation source and their evanescent counterpart

that dominate the optical near-field. A powerful tool

to describe wave propagation is the so-called angular

spectrum representation of fields expressing the

electromagnetic field E in the detector plane at z as

the superposition of harmonic plane waves of the form

exp ði~k~r � iotÞ with amplitudes �Eðkx; ky; z ¼ 0Þ ema-

nating from the source plane at z ¼ 0 [2].

Eðx; y; zÞ ¼
Zþ1
�1

Z
�Eðkx; ky; z ¼ 0ÞeiðkxxþkyyÞe�ikzzdkxdky

(1)

The wave vector ~k describing the propagation

direction of the wave is represented by its components

~k ¼ ðkx; ky; kzÞ while its length is fixed by the wave-

length of light l and the refractive index of the medium

n through ~k
��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z

q
¼ 2pn=l. In Eq. 1, the

time dependence of the fields has been omitted for

clarity. For simplicity the following discussion is

limited to the x-z-plane and n ¼ 1 such that

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2=l2 � k2x

q
. In Eq. 1 the term e�ikzz controls

the propagation of the associated wave: For kx � 2p/l
the component kz is real and the corresponding wave

with amplitude �Eðkx; z ¼ 0Þ propagates along the

z-axis oscillating with e�ikzz. If kx > 2p/l the compo-

nent kz becomes complex and e�jkzzj describes an expo-
nential decay of the associated wave that is therefore

evanescent. As a result, only waves with kx� 2p/l can
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Scanning Near-Field Optical Microscopy, Fig. 1 Scheme

illustrating the propagation of waves and the loss of spatial

information. Initial field distribution E(x, z ¼ 0) at a 10-nm

wide source in the x-z-plane (center) and corresponding angular

spectrum �Eðkx; z ¼ 0Þj j (right). Near the source the spectrum

contains both evanescent and propagating waves. Upper panels

illustrate the evolution of the fields at z ¼ 30 nm and z ¼ 90 nm

distance for a source wavelength of l ¼ 500 nm in vacuum.

Only waves with kx � 2p/l propagate. Evanescent waves decay
exponentially following e�jkz jz. The decay of high spatial

frequencies leads to spatial broadening and loss of spatial

information in the far-field
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propagate and contribute to the field far from the

source forming the far-field. Figure 1 schematically

illustrates this behavior: In the center, the electric

field E(x, z) emanating from a narrow sub-wavelength

source at z ¼ 0 is shown together with its angular

spectrum �Eðkx; z ¼ 0Þ calculated by the inverse of

Eq. 1. The wave amplitudes �E result from the

Fourier-transformation of E with respect to the spatial

coordinate x. As for the correlation between time and

frequency domain, where a short optical pulse requires

a broad frequency spectrum, a sharp field distribution

requires a broad spectrum of spatial frequencies kx.

Since only waves with limited spatial frequencies

can propagate, the spectral width rapidly decreases

with increasing distance from the source z leading to

fast broadening of the electric field distribution in real

space. In other words, propagation corresponds to

low-pass filtering with frequency limit kx, max ¼ 2p/l.
The far-field thus contains limited spatial frequencies

equivalent to limited spatial information. To overcome

this limitation different near-field concepts have been

developed that are outlined in the following.

The key concept of SNOM is the probing of the

sample near-field that contains the evanescent waves

using a sharply pointed probe. Since evanescent waves

decay rapidly for increasing distance to the source, the

probe needs to be in close proximity to the sample.

Waves with large kx components that carry high spatial

information decay most rapidly following e�jkzjz as can
be seen from Fig. 1. Hence the spatial resolution

obtained in an SNOM experiment drops fast with

increasing tip-sample distance z. As for other scanning

probe techniques that exploit short-ranged interactions,

such as atomic force and scanning tunneling micros-

copy, AFM and STM, respectively, the lateral resolu-

tion is also determined by the lateral dimension of the

probe. Two conceptually different types of probes can

be distinguished: The first confines and samples elec-

tromagnetic fields using an aperture with sub-

wavelength diameter (Fig. 2a). The second exploits

the antenna concept that couples locally enhanced

near-fields to propagating waves and vice versa

(Fig. 2b–d). The two types, termed aperture and antenna

probe, respectively, are illustrated in the following.

Aperture Probes

Aperture probes confine light by squeezing it through

a sub-wavelength hole (Fig. 2a). This approach,

termed aperture-SNOM, provides an enormous flexi-

bility regarding signal formation. Different operation

modes can be used that are capable of local sample

excitation and/or local light collection. Depending on

which step of the experiment exploits near-field inter-

actions to obtain sub-wavelength resolution, aperture-

SNOM can be implemented in excitation①, collection

② and excitation-collection ③ mode (Fig. 2a).

The original scheme was proposed by Synge in

1928. He suggested to use a strong light source behind
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Scanning Near-Field Optical Microscopy, Fig. 2 Schematics

of the most common SNOM probes and configurations:

(a) Aperture probes are utilized in different modes: Near-field

excitation – far-field collection ①, far-field excitation – near-field

collection ② and near-field excitation – collection mode ③.

(b) Tip-enhanced near-field optical microscopy (TENOM)

using local field enhancement at a sharp metal antenna probe

upon far-field excitation. (c) Tip-on-aperture (TOA) probe using

local field enhancement at an antenna probe that is excited in the

near-field of an aperture probe. (d) Scattering-SNOM (s-SNOM)

based on far-field illumination and detection of local scattering at

a sharp antenna probe. The label d indicates the structural parameter

that determines the achievable spatial resolution
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a thin, opaque metal film with a 100-nm diameter hole

in it as a very small light source. In 1984, two groups

adopted this scheme and presented the first experimen-

tal realizations in the optical regime [1]. The aperture

was formed at the apex of a sharply pointed transparent

probe tip coated with metal. Raster-scanning the probe

was made possible by the scanning technology devel-

oped in the context of scanning tunneling microscopy

(STM). In Fig. 3a, a scanning electron microscopy

(SEM) image of an aperture probe consisting of a

metal-coated tapered glass fiber is shown. At the front

surface a well-defined aperture with diameter of 70 nm

is seen.

Analytical expressions for the electric field distribu-

tion in a sub-wavelength aperture in a metallic screen

were already presented in 1944 and 1950 by Bethe and

Bouwkamp. Numerical simulations for metal-coated

tapered fiber probes show that strong fields pointing in

axial direction occur at the rim due to local field-

enhancement by the metal coating (see Fig. 4). The

center of the aperture is dominated by a weaker hori-

zontal component [2]. The optical field distribution can

be determined experimentally by raster-scanning single

fluorescentmolecules that act as point-like dipoles across

the aperture while recording the fluorescence intensity

[5] (see section “Fluorescence Microscopy” and Fig. 3).

Tapered aperture probes suffer from low light trans-

mission due to the cut-off of propagating wave-guide

modes. For probe diameters below the cut-off diameter

only evanescent waves remain and the intensity decays
exponentially toward the aperture (Fig. 2c, d). Probe

designs, therefore, aim at maximizing the cone angle

that determines the distance between aperture and

cut-off diameter. Hollow-cantilever probes feature rel-

atively large cone-angles as compared to fiber-based

probes (Fig. 2b). On the other hand, the input power

needs to be limited because of the damage threshold of

the metal coating in case of fiber-based probes. Due to

the limited transmission and the skin-depth of the

optical fields on the order of several tens of nanome-

ters, most aperture-SNOM measurements are carried

out with apertures of 50–100 nm.

Antenna Probes

Antenna probes act as transmitter and receiver cou-

pling locally enhanced near-fields to propagating

waves and vice versa (Fig. 2b–d) [8]. To distinguish

this approach from the earlier implementations based

on apertures, it is also termed apertureless-SNOM or a-

SNOM. Antenna probes can be used in two different

techniques: (1) Scattering type microscopy [9, 10],

also termed scattering-SNOM or s-SNOM, in which

the tip locally perturbs the fields near a sample surface.

The response to this perturbation is detected in the

far-field at the frequency of the incident light

corresponding to elastic scattering (Fig. 2d). (2) Tip-

enhanced near-field optical microscopy (TENOM) in

which locally enhanced fields at laser-illuminated

metal structures are used to increase the spectroscopic

response of the system at frequencies different from
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Scanning Near-Field Optical Microscopy, Fig. 3 (a) Scan-
ning-electron microscopy (SEM) image of an aperture probe

formed by a metal-coated tapered fiber with an aperture diameter

of 70 nm (scale bar 200 nm) (Reprinted with permission from

Veerman et al. [5]. Copyright 1999, John Wiley and Sons) (b)
SEM image of a metallic hollow aperture probe microfabricated

on a Si cantilever. The aperture diameter is about 130 nm

(Reprinted with permission from Mihalcea et al. [6]. Copyright

1996, American Institute of Physics) (c) Schematic of the mode

propagation in a tapered aperture probe. For probe diameters

below the cut-off diameter, here d ¼ 160 nm, the intensity

decays exponentially toward the aperture. (d) Transmission of

tapered probes determined as the ratio of input versus output

power Pin/Pout as a function of the cone angle a defined in (c).
For smaller cone angles, the distance between cut-off and aper-

ture increases leading to extremely low transmission (c and d)
(Reprinted with permission from Hecht et al. [7]. Copyright

2000, American Institute of Physics)
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that of the incident light [8, 11] (Fig. 2b, c). The

flexibility of this technique allows the study of

a variety of spectroscopic signals including Raman

scattering (tip-enhanced Raman spectroscopy

(TERS)), and fluorescence as well as time-resolved

measurements. In the following, the signal formation

in the case of optical antennas is sketched.

Elastic scattering signal. The near-field interaction

can be treated within a simplified model in which the

tip is replaced by a polarizable sphere. Due to the

antenna properties of the tip, laser excitation with
incident fiel Ei creates a dominating dipole oriented

along the tip axis in z-direction normal to the sample

surface. This dipole induces a mirror dipole in the

sample depending on its dielectric properties. The mir-

ror dipole’s field, decreasing with the third power of

distance, interacts with the tip dipole. Solving the

system of electrostatic equations that describes the

multiple interaction between tip and mirror dipoles

neglecting retardation yields an effective polarizability

of the coupled tip-sample systemwhich fully expresses

the influence of the sample.
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Scanning Near-Field Optical Microscopy, Fig. 4 Schematic

of an experimental setup applicable to aperture-probe SNOM

(laser (a), excitation mode) and TENOM (laser (b)) in case of

transparent samples. In the case of TENOM the fiber probe

would be replaced by an optical antenna, for example, an etched

metal wire. The probe tip is positioned in the focus of the

microscope objective by piezo-electric actuators. The sample is

raster-scanned using a closed-loop x-y-scanner while both laser

and probe position remain fixed. The tip-sample distance is

controlled using a tuning-fork shear-force feedback scheme.

The optical signal is collected by the objective and detected

either by a highly sensitive avalanche photodiode (APD) or

energetically resolved using a spectrograph and a CCD
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aeff ¼ ða ð1þ bÞ = 1� ðabÞ
ð16p ðaþ zÞ3Þ (2)

The scattered field can then be calculated from

Es / aeffEi reflecting the short-ranged interaction

required for sub-diffraction resolution. Since the laser

illuminates a greater part of the tip and the sample,

elimination of background-scattering contributions is

crucial. Efficient background suppression can be

achieved by demodulating the detected intensity signal
at higher harmonics of the tapping mode frequency

(see section “Instrumentation”). Besides the amplitude

of the scattered field, its phase can be retrieved using

interferometric heterodyne detection [9].

Raman scattering signal. In the case of Raman

scattering, the total signal depends on the product of

the excitation and emission rates kex(lex) krad(lrad). As
a consequence, the total signal enhancement scales

with the fourth power of the field enhancement for

small differences between the excitation lex and emis-

sion wavelength lrad and assuming that the field

enhancement at the tip does not depend sensitively on

the wavelength.

MRaman ¼
kextip
kex0
� k

rad
tip

krad0

� f 4 (3)

The factor f measures the ratio between tip-

enhanced Etip and non-enhanced electric field E0

in the absence of the tip. For the general case of

surface-enhanced Raman scattering (SERS), Raman

enhancement factors are reported reaching up to 12

orders of magnitude for particular multiple particle

configurations involving interstitial sites between par-

ticles or outside sharp surface protrusions. Since the

signal scales with the fourth power, already moderate

field enhancement, predicted for a single spherical

particle to be in the range of f ¼ 10–100 is sufficient

for substantial signal enhancement.

Fluorescence signal. The fluorescence intensity

depends on the excitation rate kex and the quantum

yield � denoting the fraction of transitions from excited

state to ground state that give rise to an emitted photon.

The quantum yield is expressed in terms of the radia-

tive rate krad and the non-radiative rate knonrad through

� ¼ krad/(krad + knonrad). Accordingly, the fluorescence
enhancement due to the presence of the metal tip can

be written as

MFlu ¼ Etip

E0

� �2 �tip
�0

� �
¼ f 2

�tip
�0

� �
: (4)

Here, it is assumed that the system is excited far from

saturation. From Eq. 4 it is clear that TENOM works

most efficiently for samples with small fluorescence

quantum yield �0 such as semiconducting single-

walled carbon nanotubes [11]. For highly fluorescent

samples such as dye molecules, the quantum yield �0 is

already close to unity and cannot be enhanced further.
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Because of the small separation between emitter

and metal tip required for high spatial resolution,

non-radiative transfer of energy from the electronically

excited state to the metal followed by non-radiative

dissipation in the metal has to be taken into account.

This process represents an additional competing non-

radiative relaxation channel and reduces the number of

detected fluorescence photons. Metal-induced fluores-

cence quenching can also be exploited for image con-

trast formation (see e.g., [12]). In this caseMFlu in Eq. 4

becomes smaller than unity.

While the theory of energy transfer between mole-

cules and flat metal interfaces is well understood in the

framework of phenomenological classical theory,

nanometer-sized objects are more difficult to quantify

[2]. Tip- and particle-induced radiative rate enhance-

ment and quenching has been studied in literature both

experimentally and theoretically. Experiments on

model systems formed by single dipole emitters such

as molecules and semiconductor nanocrystals and

spherical metal particles revealed a distance-

dependent interplay between competing enhancement

and quenching processes. While semiconducting tips

cause less efficient quenching, they also provided

weaker enhancement because of their lower conduc-

tivity at optical frequencies.

Polarization and angular-resolved detection of the

fluorescence signal of single emitters demonstrated

that the fluorescence rate enhancement provided by

the optical antenna also results in a spatial redistribu-

tion of the emission [13]. The same redistribution can

be expected to occur for tip-enhanced Raman scatter-

ing. The spatial distribution of the enhanced electric

field follows approximately the outer dimensions of

the tip apex. Since the signal enhancement scales

with higher orders of field enhancement, the optical

resolution can surpass the size of the tip [11]. Stronger

fields and field confinement are observed for so-called

gap modes formed by metal tips on top of metal

substrates.

The scheme depicted in Fig. 2b shows that in

addition to the signal resulting from the near-field

tip–sample interaction the confocal far-field signal

contribution is detected, representing a background.

This background originates from a diffraction-limited

sample volume that is far larger than the volume

probed in the near-field. The near-field signal has to

compete with this background, and strong enhance-

ment is required to obtain clear image contrast. This
requirement is relaxed in case of low-dimensional

sample structures such as spatially isolated molecules

or one-dimensional nanostructures [11]. The near-field

signal to background ratio can be improved by

exploiting the non-linear optical response of sample

and tip. Examples include two-photon excitation of

fluorescence using a metal tip antenna and the appli-

cation of the four-wave mixing signal of a metal par-

ticle dimer as local excitation source.
Instrumentation

Near-field optical microscopy exploits short-ranged

near-field interactions between sample and probe.

SNOM instruments thus require a mechanism for tip-

sample distance control working on the scale of nano-

meters. Typical implementations utilize other non-

optical short-ranged probe–sample interactions such

as force or tunneling current used for topography mea-

surements in AFM and STM, respectively. During

image acquisition by raster-scanning the sample with

respect to the tip, optical and topographic data are thus

obtained simultaneously. Due to the strong tip-sample

distance dependence of the near-field signal, cross-talk

from topographic variations is possible that can lead to

artifacts in the optical contrast. Tip-sample distance

curves need to be measured to prove unequivocally the

near-field origin of the observed image contrast. Since

the optical signal results from a single sample spot

only, SNOM instruments are often based on

a confocal laser scanning optical microscope equipped

with sensitive photodetectors.

Scattering-SNOM is often implemented with

intermittent-contact-mode AFM in which the tip-

sample distance is modulated sinusoidally at frequen-

cies typically in the range of 10–500 kHz. The elasti-

cally scattered laser light intensity is demodulated by

the tapping-mode frequency using lock-in detection

for background suppression.

Since Raman and fluorescence signals are typically

weak requiring longer acquisition times, signal

demodulation is more challenging. In the case of

single-photon counting time-tagging can be used to

retrieve the signal phase with respect to the tapping

oscillation. While this can be applied to single-color

experiments, spectrum acquisition using CCD cameras

in combination with spectrometers is not feasible at

typical tapping frequencies.
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In most aperture-SNOM and TENOM experiments,

the tip-sample distance is kept constant by either

using STM, contact/non-contact AFM, or shear-force

feedback. Sensitive piezoelectric tuning-fork detection

schemes operating at small interaction forces have

been developed and are used for fragile fiber and

antenna probes [2].

Probe Fabrication

The near-field probe forms the crucial part of

an SNOM setup since both optical and topographic

signals are determined by its short-ranged interactions

with the sample. Instrument development, therefore,

focuses mainly on the design of optimized tip concepts

and tip geometries as well as on fabrication procedures

for sharp and well-defined probes with high reproduc-

ibility. These continuing efforts benefit substantially

from improving capabilities regarding nanostructuring

and nanocharacterization, using, for example, focused

ion beam milling (FIB) or electron beam lithography

(EBL).

Aperture Probes

Optical fiber probes. Sharply pointed optical fiber

probes were the first to provide sub-diffraction spatial

resolution and are widely used as nanoscale light

sources, light collectors or scatterers (Fig. 2a and 3a).

Probe fabrication requires a number of steps starting

with the formation of a tapered optical fiber. Typically

two different methods are used. Chemical etching of

a bare glass fiber dipped into hydro-fluoric (HF) acid

yields sharp tips [4, 7]. The surface tension of the

liquid forms a meniscus at the interface between air,

glass, and acid. A taper is formed due to the variation

of the contact angle at the meniscus, while the fiber is

etched and its diameter decreased. Chemical etching

allows reproducible production of larger quantities of

probes in a single step. A specific advantage is that

the taper angle can be tuned and optical probes with

correspondingly large transmission coefficient can be

produced.

The second method combines local heating using

a CO2 laser or a filament and subsequent pulling until

the fiber is split apart. The resulting tip shapes depend

heavily on the temperature and the timing of the

heating and pulling, as well as on the dimensions of

the heated area. The pulling method has the advantage

of producing tapers with very smooth surfaces, which

positively influences the quality of the evaporated
metal layer. Etched probes, on the other hand, typically

feature rough surfaces. Pulled fibers, however, have

small cone angles and thus reduced optical transmis-

sion as well as flat end-faces limiting the minimum

aperture size.

The aperture is formed during the evaporation of

aluminum. Since the evaporation takes place under an

angle slightly from behind, the deposition rate of metal

at the apex is much smaller than on the sides. This

geometrical shadowing effect leads to the self-aligned

formation of an aperture at the apex.

The ideal aperture probe should have a perfectly flat

end face to position a sample as close as possible into

the near-field of the aperture. Conventional probes

generally have a roughness determined by the grain

size of the aluminum coating, which is around 20 nm at

best. Due to the corrugated end face the distance

between aperture and sample increases, which lowers

the optical resolution and decreases the light intensity

on the sample. Furthermore, these grains often obscure

the aperture, which makes the probe ill-defined and

not suited for quantitative measurements [4, 5, 7].

Subsequent focused ion beam (FIB) milling can be

used to form high definition SNOM probes with

well-defined end face (Fig. 3).

Microfabricated cantilevered probes. Hollow-

pyramid cantilevered probes can be batch-fabricated

with large taper angles. Lithographic patterning of an

oxidized silicon wafer first defines the position of the

aperture and the dimensions of the cantilever beam by

structuring the oxide layer [6]. Anisotropic etching of

the exposed silicon with buffered HF forms

a pyramidal groove for the tip and trenches for the

cantilever beam. After removing the oxide layer on

the opposite side anisotropic etching is used to open

a small aperture in the pyramidal groove. A 120-nm

chromium layer is deposited on the back side forming

the hollow pyramidal tip that is finally freed by isotro-

pic reactive ion etching.

Si3N4 tips can be fabricated by dry etching in

a CF4 plasma and covering with thin aluminum films.

Microfabricated probes based on quartz tips attached

to silicon cantilevers have also been reported [2, 7].

First sharp quartz tips were produced in hydrofluoric

acid followed by coating with thin films of aluminum

and silicon nitride. Reactive ion etching was then used

to selectively remove the silicon nitride from the tip

apex, while the remaining film served as a mask for

wet-etching of the protruding aluminum in a standard



S 2288 Scanning Near-Field Optical Microscopy
Al-etching solution, leaving a small aperture on the

apex of the tip. For light coupling, windows are etched

into the backside of the levers at the position of the tip.

Microfabricated tips provide several advantages

over fiber-based probes. The mechanical stability is

typically increased and often sufficient to measure

also in contact AFM mode without destroying the tip.

A reproducible fabrication of the tips leads to a well-

defined aperture shape. Large taper angles of around

70� shift the position of the mode cut-off closer to the

aperture, resulting in higher transmission.

Antenna Probes

Sharp metal tip are fabricated in a single step by simple

electrochemical etching. In the case of gold, pulsed or

continuous etching in hydro-chloric acid (HCL) or

a mixture of HCL and ethanol routinely yields tips

with diameters in the range of 30–50 nm. These tips

can either be used in shear-force mode after gluing to

the prong of a tuning-fork or in STM-mode. Silicon or

silicon nitride cantilevered probes can be coated by

a thin metal film through evaporation. Subsequent

nanostructuring by FIB-milling can be used to opti-

mize tip parameters.

Tip-on-aperture probes need to be fabricated in

a series of sequential steps [14] (Fig. 2c). First,

a fiber-based aperture probe is produced on which

a well-defined end face is formed by FIB-milling. In

the second step, a nanoscale tip is grown by electron

beam–induced deposition of carbon. Next, the carbon

tip is coated by a thin layer of chromium to improve

adhesion of an aluminum layer evaporated during the

final preparation step. Since the length of the tip can be

controlled during electron beam deposition, TOA

probes can be tailored to provide optimum antenna

enhancement for a chosen wavelength [8].
Applications in Nanoscience

The energy of light quanta – photons – is in the range of

electronic and vibrational excitations of materials.

These excitations are directly determined by the chem-

ical and structural composition of matter. Optical spec-

troscopy, the energy-resolved probing of the material

response to light exposure, thus provides a wealth of

information on the static and dynamical properties of

materials. Combining spectroscopy with near-field

microscopy is particularly interesting since spectral
information is obtained spatially resolved at the nano-

scale. In the following several representative examples

covering different material responses including fluo-

rescence, Raman scattering and elastic scattering are

briefly illustrated to highlight the capabilities of

SNOM techniques.

Fluorescence Microscopy

Fluorescence measurements were among the first

applications of SNOM. In these experiments, aper-

ture-based probes were used to probe highly fluores-

cent dye-molecules on substrates. Aluminum-coated

fiber tips were used for excitation while the fluores-

cence was collected in the far-field by a high-

numerical aperture objective. A molecule is excited

only if the optical electric field is polarized parallel to

its transition dipole moment. The resulting fluores-

cence patterns rendered by a single molecule with

known orientation can thus be used to visualize the

local electric field distribution at the probe. Con-

versely, the molecular orientation can be determined

for known field distributions. These experiments

showed that the strongest electrical fields do not

occur in the center of the aperture, but at the rims of

the metal coating. This is the result of local field

enhancement at the thin metal rim (see section

“Aperture Probes”). Two lobes with strong fields ori-

ented in axial direction occur located on opposite sides

of the aperture in the direction of the polarization of the

incident linearly polarized light. Molecules with

a transition dipole moment oriented parallel to the tip

axis are excited efficiently by these field components

as can be seen in Fig. 5 [5]. Rotating the polarization of

the incident linearly polarized light is seen to rotate the

resulting double lobe pattern that indicates the area

with strongest fields.

Fluorescence measurements typically do not

require high excitation densities and in many cases,

the small light transmission of aperture probes repre-

sents no major drawback. In fact, fluorescence imaging

of single dye molecules with 32 nm spatial resolution

has been demonstrated using a microfabricated

cantilevered glass tip covered with a 60-nm-thick alu-

minum film. Due to the thickness of the virtually

opaque film, possible contributions from surface

plasmons propagating on the outside of the film have

been discussed [4]. Examples of fluorescence micros-

copy measurements based on aperture probes also

include, for example, studies of single nuclear pore
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Scanning Near-Field Optical Microscopy, Fig. 5 Series of

three successive aperture-SNOM fluorescence images of the

same area (1.2 	 1.2 mm) of a sample of dye molecules

embedded in a thin transparent polymer film. The excitation

polarization, measured in the far-field, was rotated from linear

vertical (a) to linear horizontal (b) and then changed to circular

polarization (c). Circular features marked by arrows result from

molecules with transition dipole moments oriented parallel to

the sample plane. The double lobe structure marked by

the dashed circle results from a molecule with perpendicularly

oriented transition dipole moment. This molecule senses the

strong electrical fields that occur at the rim of the metal aperture

at positions determined by the far-field polarization. Scale bar

300 nm (Reprinted with permission from Veerman et al. [5].

Copyright 1999, John Wiley and Sons)
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complexes and the kinetics of protein transport under

physiological conditions.

Optical antennas have been used for a variety of

samples and materials including photosynthetic pro-

teins, polymers, semiconductor quantum dots, and car-

bon nano-tubes [11]. The image contrast was based on

local field enhancement provided by the tip. The spatial

resolution achieved in these experiments was essen-

tially determined by the diameter of the tip and ranged

between 10 and 20 nm. Imaging can be combined with

local spectroscopy to visualize emission energies on

the nanoscale. Single-molecule experiments revealed

the field distribution at the tip-antenna in analogy to the

discussion made above for aperture probes [14].

While most of the reported studies were exploiting

local signal enhancement, distance-dependent metal-

induced quenching of fluorescence can also be used for

high-resolution imaging. This approach provides sub

10 nm spatial resolution and has been applied to single

fluorescent organic molecules and inorganic semicon-

ductor nanorods (see e.g., [12]). In these experiments,

the spectrally integrated fluorescence signal was

demodulated by the tapping-mode frequency of the

AFM cantilever after recording photon-arrival times.

Raman Microscopy

Raman scattering probes the unique vibrational spec-

trum of a sample and directly reflects its chemical

composition and molecular structure. A main draw-

back of Raman scattering is the extremely low scatter-

ing cross-section which is typically 10–14 orders of
magnitude smaller than the cross-section of fluores-

cence in the case of organic molecules. Raman mea-

surements thus require higher laser intensities and in

many cases the low transmission of aperture probes

prohibits their application. The signal enhancement

provided by the antenna tip in TENOM is substantial

for the detection of nanoscale sample volumina. In the

following, a review of selected examples is given to

illustrate the possibilities of tip-enhanced Raman scat-

tering (TERS) (see e.g., [11, 15]).

In Fig. 6, simultaneous near-field Raman and topo-

graphic imaging of individual single-walled carbon

nanotubes is shown. The optical image in (a) reflects

the intensity of the G’ band, a particular Raman-active

vibrational mode of carbon nanotubes. The optical

resolution obtained in this experiment was about

25 nm as can be seen from the width of the peaks in

the cross-section in Fig. 6c.

The strong fields required for sufficient enhance-

ment of the Raman scattering signal can cause laser-

induced decomposition and photochemical reactions

in the presence of oxygen. TERS of single electroni-

cally resonant molecules has been demonstrated for

ultra-high vacuum conditions. A review focusing on

single-molecule surface- and tip-enhanced Raman

scattering can be found in [15].

Elastic Scattering Microscopy

Elastic scattering SNOM probes the dielectric proper-

ties of the sample and has been used from the visible to

the microwave regime of the electromagnetic
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Scanning Near-Field Optical Microscopy, Fig. 6 Tip-

enhanced Raman spectroscopy (TERS) of single-walled carbon

nanotubes on glass. Simultaneous near-field Raman image (a)
and topographic image (b). Scan area 1 	 1 mm2. The Raman

image is acquired by detecting the intensity of the G’ band upon

laser excitation at 633 nm. No Raman scattering signal is

detected from humidity-related circular features present in the

topographic image. (c) Cross-section taken along the dashed line
in the Raman image indicating a spatial resolution around 25 nm.

(d) Cross-section taken along the indicated dashed line in the

topographic image. Vertical units are photon counts per second

for c and nanometer for d (Reprinted with permission from

Hartschuh et al. [16]. Copyright 2003, American Physical

Society)
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spectrum. Reviews of the fundamentals of the tech-

nique and representative applications can be found in

[9, 10]. The majority of s-SNOM experiments have

been reported for the IR to THz spectral range. Appli-

cations include detection of the Mott-transition in

nanodomains, mapping of the doping concentration

in semiconductors, surface characterization with

a sensitivity of a single monolayer, strain-field map-

ping, and infrared spectroscopy of a single virus.

As an example nanoscale infrared spectroscopic

near-field mapping of single nano-transistors is shown

in Fig. 7. A cantilevered metallized Si-tip operating in

tapping-modewith an oscillation frequency of 300 kHz

and an amplitude of about 60 nm was used [17]. The

data clearly demonstrates the potential of s-SNOM for

infrared spectroscopic recognition of materials within

individual semiconductor nanodevices.
Based on the antenna approach, s-SNOM typically

provides 10–20 nm spatial resolution determined by

the diameter of the tip-apex. In most of the s-SNOM

experiments to date, monochromatic laser sources

were used. Since only the optical response at this

frequency is determined, the acquisition of scattering

spectra or spectrally resolved images can only be

obtained sequentially with a series of image scans at

different laser frequencies. New developments

exploiting broadband NIR laser sources aim at over-

coming this limitation, and recently obtained a spectral

bandwidth exceeding 400 cm�1.

Plasmonics and Photonic Nanostructures

SNOM plays a vital role in the field of plasmonics

which deals with the study of optical phenomena

related to the electromagnetic response of metals
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Scanning Near-Field Optical Microscopy, Fig. 7 Material-

specific mapping of transistor components using s-SNOM:

Cross-sectional images of a single transistor fabricated at the

65 nm technology node. (a) Topography. (b) Sketch of the

transistor with materials indicated. (c–e) Near-field amplitude

and phase images recorded at three different laser frequencies.

Amorphous SiO2 and Si3N4 render reversed optical contrast and

are clearly distinguished. A spatial resolution better than 20 nm

has been achieved (Reprinted with permission from Huber et al.

[17]. Copyright 2010, IOP)
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[18]. Near-field optical probes are particularly impor-

tant for two reasons. First, they provide a means to

locally excite propagating surface plasmon polaritons

(SPPs) in metal films, a process that is not possible in

case of propagating light waves because of momentum

(k-vector) mismatch. The broad k-spectrum associated

with the near-field of the probe contains sufficient

bandwidth for efficient SPP-excitation (see Fig. 1).

Second, near-field probes can be used simultaneously

to convert SPPs back into propagating waves, thereby

probing the local distribution of electromagnetic fields

in the vicinity of metallic nanostructures. As an exam-

ple, the near-field associated with SPPs has been visu-

alized along gold nanowires using an aperture probe in

collectionmode (see Fig. 2a, [4]). This approach is also

termed photon scanning tunneling microscopy

(PSTM) to illustrate the analogy between evanescent

electromagnetic waves and the corresponding expo-

nentially decaying electron wavefunctions within the

tunnel barrier of an STM. PSTM has been widely used

to spatially resolve light wave propagation also in

dielectric photonic nanostructures [4].

Besides the visualization of static field distribu-

tions, optical spectroscopy also allows for the study

of their temporal evolution and the propagation of

pulses. Figure 8 illustrates ultrafast and phase-sensitive
imaging of the plasmon propagation in a metallic

waveguide by PSTM [19]. In this case the near-field

microscope uses an aperture-probe in collection mode

and incorporates a Mach-Zehnder–type interferometer

enabling heterodyne time-resolved detection.

Scattering-SNOM with antenna tips has been used

extensively to study localized surface plasmon

polaritons (LSPP) in different metal nanostructures.

By varying the laser excitation frequency near-field

optical imaging allowed for distinguishing higher

order plasmonic resonances [20].
Perspectives

During the last 25 years SNOM has demonstrated its

capabilities for sub-wavelength optical imaging and

spectroscopy of surfaces and sub-surface features.

The strength of SNOM results from its enormous flex-

ibility with respect to sample types as well as measure-

ment configurations and in particular, from its

combination with a broad range of spectroscopic tech-

niques. Ongoing developments aim at increasing

antenna efficiencies and new aperture-type schemes

[18]. In addition, the combination of nano-optical

approaches and ultrafast laser technique is explored
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Scanning Near-Field Optical Microscopy, Fig. 8 Phase-

sensitive and ultrafast near-field microscopy of a surface

plasmon polariton (SPP) waveguide. The local electric field is

collected by an aperture-probe and detected interferometrically

in a Mach-Zehnder–type configuration. (a–e) Normalized ampli-

tude information of the SPP wavepacket E-field. Succeeding

frames are new scans of the probe. In between the frames the

delay line is lengthened to 14.4 mm. Therefore, the time between

two frames is 48 fs. The scan frame is 15	 110 mm2, scan lines run

from top to bottom. (f) Topography of the SPPwaveguide obtained
by shear-force feedback (Reprinted with permission from Sandtke

et al. [19]. Copyright 2008, American Institute of Physics)
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to achieve enhanced light localization and the control

of optical near-fields on the time scale of few optical

cycles.
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tip [20]. These techniques have the potential for pro-

filing the surface temperature distribution of devices

with a spatial resolution of a fraction of the IR wave-

length. Similarly, the spatial resolution of Raman ther-

mograph or thermal reflectance techniques can

potentially be improved with either a near-field or

far-field nanoscopy technique.
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Definition

A scanning tunneling microscope (STM) is a device

for imaging surfaces with atomic resolution. In STM,

a sharp metallic tip is scanned over a conductive sam-

ple at distances of a few Å while applying a voltage

between them. The resulting tunneling current depends

exponentially on the tip-sample separation and can be

used for generating two-dimensional maps of the sur-

face topography. The tunneling current also depends

on the sample electronic density of states, thereby

allowing to analyze the electronic properties of

surfaces with sub-nm lateral resolution.
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Fig. 1 Schematic

representation of a STM. Tip

and sample are held at

a distance s of a few Å and

a bias voltage V is applied

between them. The resulting

tunneling current I is recorded
while the tip is moved across

the surface. The coordinate

system is also shown
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Overview and Definitions

If two electrodes are held a few Å apart and a bias

voltage is applied between them, a current flows even

though they are not in contact, due to the quantum

mechanical process of electron tunneling. This current

depends exponentially on the electrode separation, and

evenminute, subatomic variations produce measurable

current changes. In 1981, Gerd Binnig and Heinrich

Rohrer at IBM in Z€urich realized that this phenomenon

can be used to build a microscope with ultrahigh spa-

tial resolution [1], if one of the electrodes is shaped as

a sharp tip and is scanned across the surface of the

other (Fig. 1). Moreover, since the tunneling current

depends also on the electronic properties of the elec-

trodes, this microscope has the ability to probe the

electronic density of states of surfaces at the atomic

scale. A few years later, Don Eigler at IBM in

Almaden, showed that, due to the extremely localized

interaction between tip and sample, it is also possible

to use this instrument to manipulate individual atoms,

to position them at arbitrary locations and therefore to

build artificial structures atom-by-atom [2]. This

remarkable achievement brought to reality the vision-

ary predictions made by Richard Feynman in his

famous 1959 lecture “There’s plenty of room at the

bottom” [3].

The construction of this instrument, dubbed the

scanning tunneling microscope (STM), was awarded

the 1986 Nobel Prize in Physics and has since then

revolutionized contemporary science and technology.

The STM has enabled individual atoms and molecules

to be imaged, probed, and handled with an unprece-

dented precision, thereby essentially contributing to

our current understanding of the world at the nano-

scale. Together with its offspring, the atomic force

microscope (AFM) [▶AFM], the STM is considered
as the main innovation behind the birth of

nanotechnology.

This entry will start with a discussion of the phys-

ical principles and processes at the heart of STM in

section Theory of Tunneling. This will be followed by

a description of the experimental setup and the techni-

cal requirements needed for actually operating

such a microscope in section Experimental Setup.

Section STM Imaging is dedicated to the most frequent

use of STM, namely imaging of surfaces, while

section Scanning Tunneling Spectroscopy gives

a brief account of the spectroscopic capabilities of

this instrument. Finally, section Applications discusses

several applications and possible uses of STM.
Theory of Tunneling

Figure 2 is a schematic representation of the energy

landscape experienced by an electron when moving

along the z axis of a metallic-substrate/insulator/metal-

lic-tip tunneling junction. The following treatment can

easily be extended to include also semiconducting tips

or samples. Usually, the tip and the sample are not

made of the same material and therefore have different

work functions, fT and fS, respectively. At equilib-

rium, the two metals have a common Fermi level,

resulting in an electric field being established across

the gap region and in different local vacuum levels,

depending on the difference fT – fS (Fig. 2a). Since

the work functions in metals are of the order of several

eV, the potential in the gap region is typically much

higher than the thermal energy kT and thus acts as

a barrier for sample and tip electrons. A classical par-

ticle cannot penetrate into any region where the poten-

tial energy is greater than its total energy because this

requires a negative kinetic energy. However, this is

http://dx.doi.org/10.1007/978-90-481-9751-4_100017
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Scanning Tunneling Microscopy, Fig. 2 Energy potential

perpendicular to the surface plane for an electron in a tip-

vacuum-sample junction. z is the surface normal direction, and

s is the tip-sample distance. The gray boxes represent the Fermi–

Dirac distribution at 0 K. fT,S and ET;S
F are the work functions

and the Fermi levels of tip and sample, respectively. (a) Tip and

sample in electrical equilibrium: a trapezoidal potential barrier is

created. (b) Positive sample voltage V: the electrons tunnel from
occupied states of the tip into unoccupied states of the sample.

The thickness and the length of the arrows indicate the expo-

nentially decreasing probability that an electron with the

corresponding energy tunnels through the barrier
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possible for electrons which, being quantum mechan-

ical objects, are described by delocalized wave func-

tions. This phenomenon goes under the name of

quantum tunneling. In an unpolarized tip-sample junc-

tion the electrons can tunnel from the tip to the sample

and vice versa, but there is no net tunneling current. On

the contrary, if a voltage V is applied between sample

and tip, the Fermi level of the former is shifted by –eV
and a net tunneling current occurs, whose direction

depends on the sign of V (Fig. 2b). Here the convention

is adopted to take the tip as a reference since

experimentally the voltage is often applied to the

sample while the tip is grounded. If V is the bias

voltage, the energy for an electron in the sample will

change by –eV, that is, it will decrease for positive

values of V.

The tunneling current can be evaluated by

following the time-dependent perturbation approach

developed by Bardeen [4, 5]. The basic idea is to

consider the isolated sample and tip as the unperturbed

system described by the stationary Schrödinger

equations:

ðT þ USÞcm ¼ Emcm (1)

and
T n n n

where T is the electron kinetic energy. The electron

potentials US and UT and the unperturbed

wavefunctions cm and wn are nonzero only in the sam-

ple and in the tip, respectively. Based on this, it can be

shown [5] that the transition probability per unit time

wmn of an electron from the sample state cm to the tip

state wn is given by Fermi’s golden rule:
wmn ¼
�h
jMmnj2dðEn � EmÞ; (3)

where the matrix element is:
Mmn ¼ wnð~xÞUT ð~xÞcmð~xÞd3~x: (4)

The d function in Eq. (3) implies that the electrons

can tunnel only between levels with equal energy, that

is, (3) accounts only for an elastic tunneling process.

The case of an inelastic tunneling process will be

considered in section Scanning Tunneling Spectros-

copy. The total current is obtained by summing

wmn over all the possible tip and sample states and by

multiplying this by the electron charge e. The sum over
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the states can be changed into an energy integral by

considering the density of states (DOS)

rðEÞ : S! 2
R
f ðeÞrðeÞde, where the factor 2

accounts for the spin degeneracy while f, the Fermi–

Dirac distribution function, takes into consideration

Pauli’s exclusion principle and the electronic state

population at finite temperatures.

As a consequence, the total current can be written

as:

I ¼ 4pe
�h

Z 1
�1
½ fTðET

F � eV þ eÞ � fSðES
F þ eÞ�

	 rTðET
F � eV þ eÞrSðES

F þ eÞjMj2de
; (5)

where EF is the Fermi energy and the indexes

T and S refer to the tip and the sample, respectively.

Equation 5 already accounts for the movement of

electrons from the sample to the tip and vice versa.

Several approximations can be made to simplify

Eq. 5 and to obtain a manageable analytical expression

for I. If the thermal energy kBT << eV, the

Fermi–Dirac distributions can be approximated by

step functions and the total current reduces to:

I ¼ 4pe
�h

Z eV

0

rTðET
F � eV þ eÞrSðES

F þ eÞjMj2de:
(6)

(Note that Eq. 6 is valid only for V > 0. For V <

0 the integrand remains identical but the integration

limits become�e|V| and 0). In this case, only electrons
with an energy differing from EF by less than eV can

participate to the tunneling current. This can be

directly seen in Fig. 2b for the case of positive sample

bias: tip electrons whose energy is lower than ET
F � eV

cannot move because of Pauli’s exclusion principle,

while there are no electrons at energies higher than ET
F.

The main problem in determining expression (5) is,

however, the calculation of the tunneling matrix ele-

mentsM since this requires a knowledge of the sample

and the tip wave functions, which can be very compli-

cated. On the other hand, for relatively small bias

voltages (in the �2 V range), Lang [6] showed that

a satisfactory approximation of Mj j2 is given

by a simple one-dimensional WKB tunneling proba-

bility. In the WKB approximation [7], the probability

D(e) that an electron with energy e tunnels

through a potential barrier U(z) of arbitrary shape is

expressed as:
DðeÞ ¼ exp �
�h 0

½2mðUðzÞ � eÞ�2dz : (7)

This semiclassical approximation is applicable if

(e << U) which is generally satisfied in the case of

metal samples where the work function is of the order

of several eV. In order to obtain a simple analytical

expression for D, the trapezoidal potential barrier of

a biased tip-sample junction (see Fig. 2b) is further

approximated with a square barrier of average height

feff ðVÞ ¼ ðfT þ fS þ eVÞ=2. By using this, the inte-

gral in Eq. 7 becomes:

Dðe;V; sÞ ¼ expð�2ksÞ; (8)

where
k ¼ 2m

�h2
ðfeff � eÞ: (9)

In order to evaluate k, it must be noted that electrons

closest to the Fermi level experience the lowest

potential barrier and are therefore characterized by an

exponentially larger tunneling probability (see Fig. 2b).

Thus, in a first approximation, it can be assumed that

only these electrons contribute to the tunneling current

which, for positive bias, is equivalent to set e � eV in

(Eq. 9). Moreover, if the bias is much smaller than the

work functions, eV can be neglected, resulting in

k ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðfT þ fSÞ

p
�h

¼ 5:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT þ fS

2

r
nm�1; (10)

where the work functions are expressed in eV. Using

typical numbers for metallic work functions, the

numerical value of the inverse decay length 2k in

Eq. 8 becomes of the order of 20 nm�1. Therefore,
variations in s of 1 Å correspond to one order of

magnitude changes in the tunneling probability and,

as a consequence, in the measured current. This very

high sensitivity provides the STM with a vertical res-

olution in the picometer regime. The lateral resolution

of STM depends on how different points of the tip

contribute to the total tunneling current. By consider-

ing a spherical tip shape with radius R, most of the

current originates from the central position since this is

closest to the surface. A point laterally displaced by Dx
from the tip center is Dz � Dx2

2R further away from the

substrate (higher order Dx terms are neglected in this
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evaluation). As a consequence, with respect to the tip

center, the corresponding tunneling probability is

reduced by a factor:

exp �2kDx
2

2R

� �
: (11)

By considering a tip radius R � 1 nm, the current

changes by one order of magnitude for variations

Dx ¼ 3 Å. The actual lateral resolution is typically

smaller than this upper limit and can reach down to

fractions of an Å. Its specific value however depends

on the precise shape of the tip which is unknown

a priori. These values, together with the vertical reso-

lution discussed above, lie at the basis of the STM

atomic imaging capabilities.

Finally, if the tunneling probability (Eq. 8) is

substituted for the tunneling matrix jMj2 in Eq. 6, the

total tunneling current can be expressed as:

I ¼ 4pe
�h

Z eV

0

rTðET
F � eV þ eÞrSðES

F þ eÞe�2ksde:
(12)

Therefore, for a fixed lateral position of the tip

above the sample, the tunneling current I depends on

the tip-sample distance s, the applied voltage V and the

tip and sample density of states rT and rS, respectively.
S

Experimental Setup

As seen in the previous section, variations of 1 Å in s

induce changes in the tunneling probability of one

order of magnitude. The exponential dependence in

Eq. 8 is responsible for the ultimate spatial resolution

of STM but places stringent constraints on the preci-

sion by which s must be controlled, as well as on the

suppression of vibrational noise and thermal drift.

Moreover, typical tunneling currents are in the

0.01–10 nA range, requiring high gain and low noise

electronic components. The following subsections are

dedicated to a general overview of technologies and

methods used to meet these specifications.

Scanner and Coarse Positioner

The extremely fine movements of the tip relative to the

sample required for operating an STM are realized by

using piezoelectric (▶Piezoresistivity) ceramic
actuators (scanners) which expand or retract

depending on the voltage difference applied to their

ends. In a first approximation, the voltage-expansion

relation can be considered as linear with

a proportionality factor (piezo constant) usually of

few nanometer/Volt. The main requirements for

a good scanner are: high mechanical resonance fre-

quencies, so as to minimize noise vibrations in the

frequency region where the feedback electronics

operates (see section Electronics and Control System);

high scan speeds; high spatial resolution; decoupling

between x, y, and z motions; minimal hysteresis and

creep; and low thermal drift. Although several types of

STM scanner have been developed, including the bar

or tube tripod, the unimorph disk and the bimorph [8],

the most frequently used is a single piezoelectric tube

whose outer surface is divided into four electrode

sections of equal area. By applying opposite voltages

between the inner electrode and opposite sections of

the outer electrode, the tube bends and a lateral dis-

placement is obtained. The z motion is realized by

polarizing with the same voltage the inner electrode

in respect to all four outer electrodes. By applying

several hundred Volts to the scanner, lateral scan

widths up to 10 mm and vertical ones up to 1 mm can

be obtained, while retaining typical lateral and vertical

resolutions of 0.1 nm and 0.01 nm, respectively.

While scanning is typically done by one individual

piezoelectric element, larger displacements up to sev-

eral millimeters are needed to bring the tip in close

proximity to the sample, to move it to different regions

of the surface or to exchange samples or tips. These are

achieved by mounting the scanner onto a coarse posi-

tion device. Several designs have been developed to

this aim including micrometric screws driven either

manually or by a stepper motor, piezoelectric walkers

like the louse used in the first STM [9] or the inch-

worm [10], magnetic walkers where the movement is

obtained by applying voltage pulses to a coil with

a permanent magnet inside and piezoelectric driven

stick-slip motors, as the Besocke-beetle [11] or the

Pan motor [12].

Electronics and Control System

The voltages driving the piezoelectric actuators and

their temporal succession and duration are generated

by an electronic control system. The electronics are

also used to bias the tunneling junction, to record the

tunneling current and to generate the STM images.

http://dx.doi.org/10.1007/978-90-481-9751-4_222
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In most of the modern instruments, these tasks are

digitally implemented by a computer interfaced with

digital to analog (DAC) and analog to digital (ADC)

converters. The tunneling current is amplified by

a high gain I–V converter (108–1010 V/A) usually

positioned in close proximity of the tip, so as to reduce

possible sources of electronic interference. This signal

is then acquired by an ADC and processed by the

control system. DACs are used to apply the bias volt-

age (from a few mV to a few V) between tip and

sample and, in conjunction with high voltage ampli-

fiers, to polarize the piezo elements. A feedback

loop is integrated into the control system and is

activated during the frequently used constant

current imaging mode (see section STM Imaging).

By acting on the z motion of the scanner, the feedback

varies s to keep the tunneling current constant. This is

controlled by a proportional-integral and derivative

(PID) filter whose parameters can be set by the opera-

tor. Finally, a lock-in amplifier is often used to improve

the signal-to-noise ratio in scanning tunneling

spectroscopy (STS) measurements (see section

Scanning Tunneling Spectroscopy).

Tip

Sharp metal tips with a low aspect ratio are essential to

optimize the resolution of the STM images and to

minimize flexural vibrations of the tip, respectively.

Ideally, in order to obtain atomically resolved topog-

raphies and accurate spectroscopic measurements, the

tip should be terminated by a single atom. In this case,

because of the strong dependence on the tip-sample

separation (see section Theory of Tunneling), most of

the tunneling current would originate from this last

atom, whose position and local DOS would precisely

determine the tunneling conditions. In practice, how-

ever, it is almost impossible to determine the exact

atomic configuration of the tip and the actual current

is often due to a number of different atoms. This is still

compatible with good tunneling conditions as long as

these atoms are sufficiently localized (in order to avoid

“multiple tip effects”) and their structural and chemi-

cal state remains constant during scanning.

The most commonly used methods to produce STM

tips are to manually cut or to electrochemically etch

thin wires of platinum-iridium and tungsten, respec-

tively. These materials are chosen because of their

hardness, in order to prevent tips becoming irreversible

damaged after an accidental crash. Other metallic
elements and even semiconductor materials have

been used as tips for specific STM applications. Due

to their chemical inertness, Pt-Ir tips are often used to

scan in air on atomically flat surfaces without the need

of any further processing. However, they typically

have inconsistent radii, while etched W tips are char-

acterized by a more reproducible shape. These latter

have the drawback that a surface oxide up to 20 nm

thick is formed during etching or exposure to air. For

this reason,W tips are mostly used in ultrahigh vacuum

(UHV) where the oxide layer can be removed through

ion sputtering and annealing cycles. Prior to use, tips

are often checked by optical microscopy, scanning

electron microscopy (▶ SEM), and field ion micros-

copy or transmission electron microscopy (▶TEM).

The quality of a tip can be further improved during

scanning by using “tip forming” procedures, including

pulsing and controlled crashing into metal surfaces.

These processes work because the desorption of

adsorbed molecules or the coating with atoms of the

metallic substrate can produce a more stable tip apex.

If STM is performed in polar liquids (▶EC-STM),

electrochemical processes might generate Faradaic or

non-Faradaic currents which can be of the same order

of magnitude or even larger than the tunneling current.

In order to minimize these effects, the tip, except for

its very apex, must be coated with an insulating

material.

Vibration Isolation

A low level of mechanical noise is an essential require-

ment for any type of scanning probe microscopy. For

this reason, the core of a STM, where the tip-sample

junction is located, is always equipped with one or

several types of vibration damping systems. These

can be stacks of metal plates separated by elastic

spacers, suspension springs, or eddy current dampers

composed of copper elements and permanent magnets.

The low-frequency components of mechanical noise

(<10 Hz), which are the most difficult to eliminate, are

minimized by building a small and rigid STM with

a high resonance frequency. Depending on the overall

size and weight of the microscope, further noise

damping strategies can be adopted. Smaller, typically

ambient conditions STMs can be placed on metal or

granite slabs suspended by springs or bungee cords or

floating on pneumatic isolators. Sometimes, piezo-

driven, feedback-controlled active vibration suppres-

sors are also combined with passive systems. Larger

http://dx.doi.org/10.1007/978-90-481-9751-4_100746
http://dx.doi.org/10.1007/978-90-481-9751-4_100825
http://dx.doi.org/10.1007/978-90-481-9751-4_100203
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versions of pneumatic isolators and active damping are

often used to float the frames and the chambers of big

UHV STMs. The laboratory where a STM instrument

is located also plays an essential role for its perfor-

mance. Ground floor rooms are always preferred since

they minimize low-frequency natural building oscilla-

tions, which can be very difficult to counteract. High-

resolution instruments are sometimes placed on large

concrete blocks which are separated from the rest of

the laboratory floor and rest either on a sand bed, an

elastomer barrier or on second-stage pneumatic iso-

lators. Moreover, they are also often surrounded by an

acoustically insulating box. All these systems essen-

tially act as low-pass mechanical filters whose effec-

tiveness improves with decreasing cutoff frequencies,

that is, with increasing mass and decreasing rigidity.

For this reason, the body of a STM is typically

a relatively heavy block of metal and the frames,

slabs, and vacuum chambers supporting or containing

the microscope often have a considerable weight.

Setups for Different Environments and

Temperatures

Different types of STMs have been developed that can

operate in various environments such as air, inert

atmosphere (N2, Ar), vacuum, high pressure, liquid,

or in an electrochemical cell. The core of the different

instruments is essentially the same, although the exper-

imental chambers and setups in which they are located

can vary substantially. Ambient condition STMs are

typically quite compact and rigid and do not need

elaborated anti-vibrational mechanisms. On the other

hand, since sound waves represent a major problem,

atmospheric pressure STMs are usually contained in an

acoustic enclosure. A STM operating in vacuum must

be hosted in a chamber with vibration-free pumps

(typically ionic pumps for UHV) and must be equipped

with sophisticated sample and tip manipulation mech-

anisms. Such systems often also have an in situ surface

preparation stage allowing the handling of samples

without air exposure.

STM can be performed at high pressures (1–30 bar)

by installing the microscope head into gas manifolds

under conditions similar to those used in industrial

catalytic processes. Also in this case, sample and tip

manipulation and preparation stages are mandatory

parts of the system. Since these types of studies are

typically performed at elevated temperatures (up to

600 K) and in the presence of highly reactive gases,
the metallic parts of the STM scanner and of the

chamber are often gold plated, the volume of the

STM chamber is kept as small as possible and the tip

material is chosen to be inert toward the gases [13].

Moreover, low voltages are used for polarizing the

piezos in order to avoid gas discharges at intermediate

pressures (10�3–10 mbar) and shields are added to

protect the STM from the deposition of conductive

materials which could create electrical shorts.

STM at the liquid/solid interface and electrochem-

ical STM (EC-STM) (▶EC-STM) need the tip and

sample to be inside a liquid cell which, in turn,

may be placed in a humidity-controlled atmosphere.

In the case of low vapor pressure liquids, the STM

can be simply operated under ambient conditions

by dipping the tip into a liquid droplet deposited

on the sample. A special coating must be applied to

the tip when working with polar liquids (see

section Tip).

STM can also be performed at different tempera-

tures (in vacuum or controlled atmosphere chambers):

variable temperature STM (VT-STM) able to cover the

5–700 K range, low temperature STM (LT-STM) oper-

ating at 77 K or 5 K and even milli-Kelvin STM

instruments are currently available. A VT-STM is typ-

ically used to study thermally activated processes such

as diffusion and growth, phase transitions, etc. These

systems have sample heating and cooling stages which

can be operated in a combined way so as to achieve

a very precise temperature stabilization. Resistive

heating is normally employed to increase the temper-

ature, while both flow and bath cryostats with liquid

nitrogen or helium as cryogenic fluids are used to

reduce it. Continuous flow cryostats offer a high flex-

ibility in temperature but are characterized by lower

thermal stability, by inherent mechanical vibrations

and do not easily attain temperatures below 20 K.

Bath cryostats are more stable, are able to reach

lower temperatures but are often also much bulkier

(e.g., in order to limit the He consumption rate,

a liquid He cryostat is actually a double-stage cryostat

with an outer liquid nitrogen mantle). For most of these

instruments the variable temperature capabilities refer

to the possibility of choosing different (fixed) temper-

atures at which the microscope is run. However, few

systems endowed with specific position tracking and

drift compensating capabilities allow a “true” variable

temperature operation where the same surface area can

be imaged with atomic resolution while its temperature

http://dx.doi.org/10.1007/978-90-481-9751-4_100203
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is changed. LT-STMs are operated at a fixed tempera-

ture and are typically inserted inside double stage

cryostats which significantly complicates the tip and

sample access. However, these instruments are

extremely stable with a very low thermal drift and are

therefore the best choice for STS and manipulation

experiments (see sections Scanning Tunneling Spec-

troscopy and Applications). Milli-Kelvin STMs enable

temperatures to be reached where extremely interest-

ing magnetic, quantum Hall physics and superconduc-

tivity phenomena occur. Moreover, the thermal

broadening of electronic features is strongly reduced,

which is required for high-resolution measurements.

These systems operate based on the evaporative

cooling of liquid 3He to temperatures of about 300

mK or liquid 3He and 4He mixtures below 10 mK.

The STM heads can be further placed inside large-

bore superconducting magnets (up to 15 T), enabling

the low temperature and high magnetic field conditions

necessary to access superconductive phase transitions

or to detect single spin flip processes.
STM Imaging

STM images are generated by recording the tunneling

current as a function of the tip position while the tip is

scanned across the sample surface. This can be done in

two different ways which define the two main STM

imaging modes:

• Constant height mode. The z section of the piezo

scanner is kept fixed while the tip is moved over the

substrate at a constant bias voltage (Fig. 3a). Vari-

ations of the tip-sample distance due to the surface

topography produce a corresponding variation of

the tunneling current which is recorded point-by-

point and used to build the STM gray-level image.

This mode is employed only in small areas of

extremely flat surfaces, where the probability of

crashing into protrusions such as steps or defects

is relatively small. Very high scanning speeds can

be used because of the absence of a feedback

control.

• Constant current mode. While the x and y sections

of the piezo scanner are used to laterally move the

tip across the surface, the z section is driven by the

electronic feedback so as to maintain a constant

tunneling current (Fig. 3b). The corresponding z-
voltage applied to the scanner (feedback signal) is
recorded point-by-point and used to build the STM

gray-level image. This mode can be employed for

any type of surface topography and is therefore the

most frequently used.

Since the constant height mode is applied to atom-

ically flat surfaces with sub-Å height variations, the

exponential I – s relation derived from Eq. 12 can

be approximated by a linear dependence. As a conse-

quence, constant height STM images are a good

representation of flat surfaces. On the other hand, for

less planar substrates, one must use the constant

current mode which directly reproduces the surface

height due to the linear voltage-extension relation

of piezoelectric materials. However, even constant

current STM images are a reliable representation

of the “true” surface topography only if the sample

local DOS does not vary across the scanned area. If

this is not the case, a constant current profile corre-

sponds to a complex convolution of topographical and

electronic features (see Eq. 12) which can be particu-

larly relevant for surfaces covered with molecular

adsorbates.
Scanning Tunneling Spectroscopy

Besides complicating the interpretation of STM

images, the dependence of the tunneling current on

the sample DOS also offers the unique opportunity of

probing the electronic characteristics of surfaces with

sub-nm spacial resolution. Having fixed the tip lateral

position, the tunneling current I is a function of the

applied bias voltage V and the tip-sample separation s

only, the precise relation being established by Eq. 12.

In a STS experiment, the relation between two of these

three parameters is measured while the remaining one

is kept constant (STS). I(V) spectroscopy, where the

tunneling current is measured as a function of the bias

voltage for a constant tip-sample separation, is the

most widely used technique because it provides

indications about the DOS of the sample.

Due to the spatial localization of the tunneling cur-

rent (see section Theory of Tunneling), STS enables

the characterization of the electronic properties of

individual atoms and molecules in relation to their

structure, bonding and local environment. Moreover,

STS can also be used to create 2D maps of the sample

DOS with sub-nm resolution. Such measurements are

particularly interesting for quantum confined
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representation of (a) the
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electronic systems (e.g., quantum dots or quantum

corrals) or for determining the shape of molecular

orbitals [14] (wavefunction mapping). By changing

the polarity of the bias voltage, STS gives access to

both the occupied and the unoccupied states of the

sample. In this sense, it is often considered as comple-

mentary to ultraviolet photoemission spectroscopy

(UPS), inverse photoemission spectroscopy (IPS) and

electron energy loss spectroscopy (EELS), where the

signal is averaged over a large area of the surface

(between 0.1 and 2 mm in diameter). On the other

hand, STS does not provide direct chemical informa-

tion and tip artifacts can strongly influence the spec-

troscopic data.

So far we have assumed that electrons conserve

their energy during the tunneling process (see Eq. 3).

However, electrons can also tunnel inelastically

between the tip and the sample by exchanging energy

and inducing the excitation of vibrational modes, spin-

flips, magnons, plasmons, excitons, etc. These extra

tunneling channels become available only above
specific voltage thresholds since only beyond these

values a part of the electron energy can be converted

into the excitation. The additional inelastic pathways

increase the overall tunneling probability and therefore

show up as discrete step-like features in the tunneling

conductivity or as slope changes in I(V) curves. This
technique is called inelastic electron tunneling spec-

troscopy (IETS) and benefits from the same spatial

resolution as STM and STS. IETS has been used to

measure vibrational modes of individual molecules,

spin excitations of single magnetic atoms, collective

plasmon excitations in 2D materials and magnons in

ferromagnets.

A different way of detecting tunneling-induced

molecular vibrations by means of a STM is to rely on

their coupling with dynamical processes such as

molecular motions. In particular, by measuring the

frequency of molecular hopping events as a function

of the applied bias voltage, it is possible to create so-

called action spectra which reflect the vibrational

spectrum of an individual molecule in a quantitative
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manner [15]. Optical excitations can also be revealed

in an alternative way by coupling the STM with

a photon detection system able to collect and analyze

the luminescence stimulated by inelastically tunneling

electrons [16]. Such a setup has been used to charac-

terize plasmon emission from metallic surfaces and

luminescence from semiconductor quantum structures

and adsorbed molecules.
Applications

Since the first STM images of the surfaces of CaIrSn4
and Au [1] were published back in 1982, STM has been

used to analyze a wide range of materials: clean and

adsorbate covered metal surfaces, semiconductors,

superconductors, thin insulating layers, small and

large organic molecules, individual atoms, liquid-

solid interfaces, magnetic layers and surfaces, quasi-

crystals, polymers, biomolecules, nanoclusters, and

carbon nanotubes. Imaging is the most frequent appli-

cation of STM used to determine the structural prop-

erties of substrates and their reconstructions, the

presence of defects, sites of adsorption for adatoms

and molecules and the symmetry and periodicity of

adsorbate superstructures. Nevertheless, right from

the beginning, it became clear that the ultimate spatial

resolution of STM, in combination with its dependence

on the electronic properties of tip and sample, could

allow a much wider range of applications of this instru-

ment. These include the characterization of surface

electronic, vibrational, optical, and magnetic proper-

ties, the measurement of single molecule conductivi-

ties, and the study of dynamic processes. In the

following, we will only touch upon some of the most

frequent applications, without any presumption of

being exhaustive.

Equation 12 shows that the tunneling current

depends on the sample DOS close to the Fermi energy

EF. As a consequence, at a typical bias of

a few Volts, it should be possible to image conductors,

superconductors and small-gap or doped semiconduc-

tors but not molecules and insulating materials

due to the vanishing DOS in the probed energy range

(for most molecules the highest occupied and the

lowest unoccupied orbitals are separated by an energy

gap of several eV). However, the great majority

of molecules adsorbed on metallic substrates can be

easily imaged at moderate bias voltages. This is due to
the formation of a metal-organic interface which can

modify the molecular electronic properties leading to

a broadening of the initial discrete energy levels,

to a reduction of the gas-phase energy gap and

even to the development of new states if covalent

molecule-substrate bonds are established. All these

effects contribute to the DOS at EF and allow the

imaging process. Regarding insulating materials,

STM can only be done on films deposited onto con-

ductive substrates if they are thin enough to allow the

tunneling of electrons. These films are often used to

electronically decouple organic adsorbates from

metallic substrates.

The mechanism which allows the imaging of bio-

molecules such as DNA and proteins is currently still

under debate [17]. As these molecules have a very

large energy gap (5–7 eV) they can be considered as

insulating materials and the current measured in STM

experiments might be mediated by the thin water layer

surrounding the molecules in air. Metalloproteins have

also been imaged in their “natural” environment by

using EC-STM (▶EC-STM). Several reports have

shown that when these redox active molecules are

imaged under potentiostatic control, the tunneling cur-

rent can be mediated by their metal redox-center, with

enhanced conductivities measured for bias voltages

close to the redox potential.

Although STM is a surface sensitive method, it can

be also used to analyze buried interfaces and structures

in cross-sectional STM (XSTM) [18]. The specific

sample preparation in this technique requires brittle

materials such as oxide samples or semiconductor

wafers. A cross section of the structure to be analyzed

is prepared by cleaving the sample and positioning the

STM tip onto the exposed edge. In this way, various

physical properties can be probed, including the

morphology and abruptness of buried nanostructures

and interfaces, the alloying in epitaxial layers,

the spatial distribution of dopants and their electronic

configuration and the band offsets in semiconductor

heterojunctions. XSTM has also been used to

study, in real time, the changes occurring in semicon-

ductor quantum well laser devices under operating

conditions.

STM can further be employed for tracking dynamic

surface processes, provided that the corresponding

characteristic times are longer than the acquisition

time. By choosing optimized designs for the

piezo scanners and the electronic feedback,

http://dx.doi.org/10.1007/978-90-481-9751-4_100203
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video-rate instruments have been developed able to

record several tens of images per second and thereby

to follow mobility and assembly processes in real time

[19, 20].

When a tip with spin polarized electrons is used in

STM, besides the parameters already indicated in

Eq. 12, the local sample magnetization also influences

the tunneling current. In fact, due to the different

density of states at EF of “spin-up” and “spin-down”

electrons in magnetic materials, a spin polarized tip

causes a tunnel magnetoresistance effect which results

in a further contrast mechanism. This technique, called

spin-polarized STM (SP-STM), has been used both in

the presence and absence of an external magnetic field

for detecting magnetic domain structures and bound-

aries in ferro- and antiferromagnetic materials, visual-

izing atomic-scale spin structures and determining

spatially resolved spin-dependent DOS. An essential

aspect of SP-STM is the ability to control the magne-

tization direction of the tip which can be achieved

by evaporating different types of ferromagnetic or

antiferromagnetic thin films on nonmagnetic

tips. This technique is preferred to the use of bulk

magnetic tips since it reduces the magnetic stray

fields which can significantly modify the sample mag-

netization [21].

The ability of STM to identify and address

individual nano-objects has been used to measure the

conductivity of single molecules absorbed on metal

surfaces. While the tip is approached to the molecule

of interest at constant bias voltage, the current flowing

in the junction can be measured, thereby generating an

I(s) curve. Alternatively, I(V) curves can be recorded at
different s values. Since tip and substrate act as elec-

trodes, both methods enable information to be obtained

about the conductance of the individual molecule

embedded in the junction. These measurements

are often complemented by IETS experiments in

the same configuration. IETS might in fact help to

determine the arrangement and the coupling of the

junction, which has a significant influence on the

electronic and structural properties of the molecule.

Single molecule STM conductance experiments

represent an important source of information for

understanding mechanisms of electron transport in

organic molecules with applications in organic elec-

tronics and photovoltaics. They complement narrow

gap electrode and break junction techniques, having

the significant advantage of a highly localized
electrode which allows to address and characterize

individual molecules.

A similar type of application, although typically not

aimed at individual molecules, is at the basis of the

four point probe STM, where four STM tips, in addi-

tion to imaging, are used for local four point electric

conduction measurements. A scanning electron micro-

scope is installed above the STM enabling the posi-

tioning of the tips on the contact. The purpose of such

very complex instruments is to measure the charge

transport through individual nanoelectronic compo-

nents (in particular self-assembled ones) and to corre-

late this information with a local high-resolution

structural characterization.

Tip-Induced Modification

Besides being an extraordinary instrument for the char-

acterization of structural, electronic, vibrational, opti-

cal, and magnetic properties of surfaces with

subnanometer resolution, STM has also developed as

a tool to modify and nanoengineer matter at the single

molecule and atom scale.

By decreasing the distance between the tip and the

sample in a controlled way, indentations can be pro-

duced in the substrate with lateral sizes down to a few

nm. Nanolithography can also be performed by tunnel-

ing electrons into a layer of e-beam photoresist

(▶SU-8 Photoresist), thereby reaching a better reso-

lution compared to standard electron beam lithography

(EBL). Many other STM-based nanopatterning and

nanofabrication techniques have been developed

based on a number of physical and chemical principles

including anodic oxidation, field evaporation, selective

chemical vapor deposition, selective molecular

desorption, electron-beam induced effects, and

mechanical contact. All these methods exploit the

extreme lateral localization of the tunneling current

and can be applied in air, liquids and vacuum.

However, the nanotechnological application that

gained most attention is the ability to manipulate indi-

vidual atoms and molecules on a substrate. This is

possible due to a controlled use of tip-particle forces

and is typically done in UHV and at low temperatures.

The first atomic manipulation experiment was

performed by Eigler and Schweizer in 1989 [2]. This

phenomenal result fulfilled Richard Feynman’s proph-

ecy that “ultimately-in the great future-we can arrange

the atoms the way we want; the very atoms, all the way

down!” [3].

http://dx.doi.org/10.1007/978-90-481-9751-4_360
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During a lateral manipulation experiment, the tip is

first placed above the particle to be moved (for exam-

ple an atom) and the tunneling current is increased

while keeping a constant voltage. This results in

a movement of the tip toward the atom, see Eq. 12.

If their separation is reduced below 0.5 nm, Van der

Waals forces start to come into play together with

attractive and repulsive chemical interactions. When

these forces equal the diffusion energy barrier, a lateral

displacement of the tip can induce a movement of the

atom parallel to the surface. After the desired final

position is reached, the tip is retracted by reducing

the tunneling current to the initial value, leaving the

atom in the selected place. Depending on the tip-

particle distance and therefore on the strength and

nature of the interaction, different manipulation

modes including pulling, pushing, and sliding [22]

were identified and used to move different types of

atoms and molecules.

Thanks to this technique, it was possible to fabricate

artificial nanostructures such as the quantum corral
[23] and to probe quantum mechanical effects like

the quantum confinement of surface state electrons or

the quantum mirage. Lateral STM manipulation has

also been used to switch between different adsorption

configurations and conformations of molecules on sur-

faces and to modify their electronic properties in

a controlled way [24].

A further application of STM manipulation is the

synthesis of newmolecular species based on the ability

of STM to form and break chemical bonds with atomic

precision. Reactants are brought close together on the

surface and the actual reaction is realized by applying

a voltage pulse or by exciting vibrational modes

through inelastically tunneling electrons. Examples

of this technique include the dissociation of diatomic

molecules, the Ullmann reaction, the isomerization of

dichlorobenzene and the creation of metal-ligand

complexes.

The STM tip has also been used to perform vertical

manipulations of nanoparticles where an atom (or mol-

ecule) is deliberately transfered from the surface to the

tip and vice versa by using the electric field generated

by the bias voltage. In contrast to the lateral manipu-

lation, here the bonds between the surface and the atom

are broken and re-created [25]. By approaching the tip

at distances of a few Å from the chosen particle chem-

ical interactions are established that reduce the atom-

surface binding energy. If a voltage pulse is applied
under these conditions, the resulting electric field (of

the order of 108 V/cm) can be enough to induce the

particle desorption. The vertical manipulation tech-

nique has also been used as a means to increase the

lateral resolution of STM. In fact, the controlled

adsorption of a specific molecule onto the tip often

makes it “sharper” and can add a chemical resolution

capability if the DOS of the extra molecule acts as

an “energy filter.”

A related effect is exploited in the recently pro-

posed scanning tunneling hydrogen microscopy

(STHM) technique. In STHM, the experimental

chamber is flooded with molecular hydrogen while

the tip is scanned in constant height mode at very

close distances over the surface. H2 can get trapped

in the tip-sample junction and its rearrangement dur-

ing scanning of the surface generates a new contrast

mechanism based on the short-range Pauli repulsion.

This is extremely sensitive to the total electron

density, thereby endowing the STM with similar

imaging capabilities to non-contact AFM

(▶AFM, Non-contact Mode) and making it able to

resolve the inner structure of complex organic mole-

cules [26].
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Definition

Scanning tunneling spectroscopy (STS) is a technique

that allows the study of the electronic structure of

surfaces with atomic resolution.
Overview

Scanning tunneling microscopy (STM) was histori-

cally the second technique that could image individual

atoms one by one. It was invented in 1981–1982 by

Gerd Binnig and Heindrich Rohrer [1], long after the

technique of field ion microscopy (FIM) developed in

1951 by Erwin M€uller [2].

In STM a sharp tip probes the surface of interest by

allowing electrons to tunnel quantum-mechanically

between the tip and the surface. Because such tunnel-

ing is extremely sensitive to the distance between tip

and surface, one gets high resolution perpendicular to

the surface. Assuming a constant density of states on

the surface, when the STM tip is scanned over the

sample surface while keeping the tunneling current

constant, the tip movement depicts the surface topog-

raphy, because the separation between the tip apex and

the sample surface is always constant. It is worth

noting that STM not only converts the spatial change

in the tunneling current into a highly detailed topo-

graphic image of surfaces with constant density of

states, but also the tunneling current changes with the

available surface electronic states. This dependence of

the tunneling current on the surface electronic struc-

ture together with the high spatial resolution of STM

allows us to study the electronic structure of the
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surfaces with atomic resolution. The technique is

known as scanning tunneling spectroscopy (STS).
Scanning Tunneling Spectroscopy Theory

Most theoretical treatments applied today to describe

the tunneling process in an STM start from the formal-

ism of the transfer Hamiltonian developed by Bardeen

in 1961 [3] for the study of superconducting tunnel

junctions. In this approach, the electronic structure and

electron wave functions of both electrodes are calcu-

lated assuming no interaction between them and after-

ward the tunneling current is calculated [3]. Figure 1a

shows the scheme of the tunnel junction in a STM

where one of the electrodes is a tip. Figure 1b shows

the energy diagram of the tunnel junction. In this

diagram the vertical axis represents energy. Et and Ct

are the energy and wave function of the states of the

electrode “tip” in the absence of electrode “sample.” Es

and Cs are the energy and wave function of the states

of the electrode “sample” in the absence of electrode

“tip.” ft, fs, EF
t, EF

s, rt, rs are the work functions,

Fermi energies, and densities of states (DOS) of elec-

trode “tip” and “sample,” respectively, and V is the

voltage applied to electrode “sample.” When the dis-

tance between the electrodes is small enough, the over-

lap between their wave functions is significant and the

probability of electron transfer between the two elec-

trodes by tunneling starts to be noticeable. In the

absence of applied voltage, the Fermi levels of the

two electrodes are aligned and no net tunneling current
flows. However, by applying a voltage V the Fermi

levels move with respect to each other opening an

energy window, eV, where electrons from one elec-

trode can tunnel to the empty states of the other and,

thus, the tunneling current starts to flow.

In 1983, Tersoff and Hamann applied the Bardeen’s

formalism to the STM, replacing one of the electrodes

by a point [4, 5, 6]. The tip was shaped like an s orbital

centered at the tip position and the calculated tunneling

matrix elements proved to be proportional to the

amplitude of the wave functions of the sample at the

position of the tip. If the distance between tip and

sample is not very large (few ångstroms), the bias

voltage small and the temperature low, the tunneling

current can be written as follows:

I /
Z eV

o

rsð~rs;EÞrtð~rs;E� eVÞTðE; eV; d;fÞdE (1)

where~rs is the tip position over the sample surface, d is

the distance between tip and sample, and T is the

transmission probability that depends on the energy

of the states involved, the bias voltage applied between

tip and sample, the distance between tip and sample,

and the tunneling barrier height, which is related with

the tip and surface work functions. This equation indi-

cates that the tunneling process depends, for a given

energy, on three interconnected parameters, i.e., the

tunneling current I, the bias voltage V, and the tip

sample separation d. Almost all attempts to explore

these complex dependences of the tunneling current

(and simultaneously extend the performance of STM)
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have been demonstrated by the late 1980s [7]. Scan-

ning tunneling spectroscopy measures the relation

between any two of while keeping fixed the third one.

This gives three modes of spectroscopy measurements:

(1) I-V curves, where the variation of the tunneling

current with the bias voltage is measured for a fixed

distance between tip and sample, (2) I-z curves, where

the variation of the tunneling current with the distance

between tip and sample is measured for a fixed bias

voltage V, and (3) V-z curves, where the variations in

the tip sample distance are measured as function of the

bias voltage for a fixed tunneling current.

In these three modes energy conservation for the

tunneling electrons is assumed. If electrons change

their energy during the tunneling process by an inelas-

tic process, the inelastic electron tunneling spectros-

copy (IETS) mode is possible. Finally, if the STM tip

and the sample are magnetic, the tunneling current

depends on the relative orientation of the magnetiza-

tion of both tip and sample. This mode is called spin

polarized scanning tunneling microscope (SP-STM)

and allows the study of magnetic properties with

atomic resolution. In the following the five modes

will be discuss in detail.
S

Scanning Tunneling Spectroscopy Modes

I-V Curves

I-V measurements are the most widely used spectro-

scopic technique in STM experiments. If the tunneling

current (Eq. 1) is differentiated with respect to the bias

voltage the following expression is obtained:

dI

dV
/ rtð0ÞrsðeVÞTðeV; eV; d;fÞ

þ
Z eV

0

rtðE� eVÞrsðEÞ
dTðE; eV; d;fÞ

dV
dE

þ
Z eV

0

rsðEÞ
drtðE� eVÞ

dV
TðE; eV; d;fÞdE

Assuming a constant density of states for the tip, the

third term is zero, but, it should be mentioned that,

often, the tip electronic states have a strong influence in

the STS spectra [8]. Another common simplification is

to assume that the transmission coefficients are con-

stant in the voltage range explored in the measurement.

Then the second term also vanishes and the expression

becomes:
dV
/ rtð0ÞrsðeVÞTðeV; eV; d;fÞ

In general the experimentally determined differen-

tial tunneling conductance is widely accepted as

a good approximation to the DOS of the surface (mod-

ulated by the specific transmission of the barrier) at an

energy value of eV, with V being the bias voltage

applied between tip and sample.

Figure 2 shows an STS experiment performed on

the Cu(111) surface in which the transmission proba-

bility (see Eq. 1) can be seen to depend on the energy

parallel to the surface. Figure 2a shows the bulk band

projection of Cu(111) along the GM direction of the

surface Brillouin zone. Bulk bands are represented in

gray and the projectional bandgap in white. The gray

line corresponds to the dispersion relation of Shockley

surface state of Cu(111). The surface state can be seen

as a two-dimensional electron gas with the bottom of

the band at�0.44 eV and an effective mass m*¼ 0.42

me. Therefore, disregarding any contribution from the

bulk electronic structure, the LDOS expected around

the Fermi level of Cu(111) is a step function centered

at the bottom of the band. This step function is shown

in Fig. 2b. Figure 2c shows an STS spectrum taken on

the Cu(111) surface. The experimental data correspond

to the dots. The spectrum has a peak at �0.38 eV

superimposed on a background which decays with

increasing energy. The bottom of the surface state

band corresponds to the point halfway up the peak

(dashed line in Fig. 2c). The line in the graphic is

a fit to the background that reflects the contribution of

the bulk states. As the bias voltage approaches the

Fermi level from below, the kk of the accessible bulk

states increases, so that they present a smaller effective

perpendicular energy which means a smaller transmis-

sion probability and, thus, they contribute less to the

spectrum. On the other hand, the peak at �0.38 eV

corresponds to the sharp increase in the LDOS associated

to the bottom of the surface state, superimposed on the

background due to the bulk bands. Although the LDOS

of a 2D is a step function to a constant value, the peak in

the spectrum instead of staying constant for energies

higher than the bottom of the band (�0.44 eV), decreases
with increasing energy. This reduction in the signal with

energy reflects the dispersion of the surface state, i.e., the

fact that the kk of the surface state increases alsowhen the
energy increases. Accordingly, the transmission proba-

bility (and the signal in the spectrum) gets smaller.
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Scanning Tunneling Spectroscopy, Fig. 2 (a) Shows the

bulk band projection of Cu(111) along the GM direction of the

surface Brillouin zone. Bulk bands are represented in gray, and
in white the projectional bandgap. The gray line corresponds to

the dispersion relation of surface state of Cu(111). (b) Expected
density of states for a two-dimensional electron gas. (c) An STS
spectrum taken on the surface Cu(111). The experimental data

correspond to the dots
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Experimentally in order to record I-V curves, the

distance between tip and sample has to be kept con-

stant during the measurement time. This can be done in

different ways. In one of them the tip is placed at

a desired position on the surface and at the desired

distance from the surface. The distance between tip

and sample is dictated by the values of the tunneling

current and the bias voltage used in the topographic

image. The feedback circuit, that keeps the tunneling

current constant adjusting the tip sample distance, is

disconnected and then the voltage V is ramped and

the tunneling current is recorded over the desired

bias voltage range. The dI/dV values are obtained

by numerical differentiation of the I-V curves. If the

measurement is repeated in every pixel of

a topographic image, the method is called current

imaging tunneling spectroscopy (CITS) and provides

with a map of the spatial distribution of the LDOS on

the surface.

Another method is to detect directly the dI/dV signal

using a lock-in amplifier. In order to do that, a small

high-frequency sinusoidal signal, Vmod sin(ot), is

superimposed on the bias voltage between tip and

sample. The modulation causes a sinusoidal response

in the tunneling current and the amplitude of the

modulated current is sensitive to dI/dV. For a small

applied sinusoidal signal, the modulated current can be

Fourier decomposed on the applied modulation fre-

quency o:
IðVbias; tÞ ¼ IðVbiasÞ þ bias

dV
Vmod sinðotÞ

þ d2IðVbiasÞ
dV2

V2
mod

4
sinð2otÞ þ � � � (2)

The first harmonic, which is proportional to the

differential conductance (dI/dV), can be extracted by

means of lock-in detection and the spatial variation of

the dI/dV signal can be mapped in certain area of the

surface. During a constant current topographic image,

the dI/dV signal is simultaneously recorded in each

point of the image at a certain bias voltage. The result

is a map that reflects the LDOS of a surface area at

a defined energy eV. Since the feedback loop is

connected during the topographic image, the fre-

quency of the modulated signal needs to be higher

than the cutoff frequency of the feedback loop

response in order to keep the tip distance constant

during the acquisition of the data.

I-Z Curves

In the simplest theoretical treatment of the

tunneling process for a metal-vacuum-metal tunnel

junction [7] where the bias voltage is much smaller

than the work function (assumed to be the same for

both metals), the problem is reduced to a square poten-

tial barrier as shown in Fig. 3. The wave function

that describes an electron in the tunneling barrier is

given by:



cðzÞ ¼ cð0Þe�kz

φt φs

EF

EF

eV

Scanning Tunneling Spectroscopy, Fig. 3 One dimensional

metal-vacuum-metal tunnel junction. Both the sample, in red,
and the tip, in blue, are modeled as semi-infinite pieces of free

electronmetals. The tunneling probability depends on the exponen-

tial decay of the electrons wave function into the vacuum barrier.

The bias voltage is small enough to consider a square barrier
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where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðfÞp
�h

is the decay constant that describes the probability

of finding the electron along the +z direction and depends

on the surface work function (F). The tunneling proba-

bility for a given distance, d, between tip and sample is:

P / jcð0Þj2e�2kd

and the tunneling current is proportional to the number of

occupied states available in the energy interval defined

by the bias voltage applied between tip and sample, and

therefore the tunneling current can be written as follows:

I /
XEF

En¼EF�eV
jcnð0Þj2e�2kd

If the bias voltage is small enough to consider the

density of states constant, the equation can be written

in terms of the Local Density of States (LDOS) at the

Fermi level. At a position d and energy E, the LDOS of

the sample can be expressed as:

rsðd;EÞ 

1

e

XE
En¼E�e

jcnj2
for small enough e. The tunneling current in terms of

the surface LDOS at the Fermi level is:

I / Vrsð0;EFÞe�2kd

Assuming a typical value of 4 eV for the work

function, k ¼ 1.025 Å�1. From the expression above,

the dependence of the logarithm of the tunneling cur-

rent with respect to distance is a measure of the work

function, or more precisely, of the tunneling barrier

height. The corresponding expression is:

f � 0:95
dlnI

dz

� �2

The measurement of the apparent barrier height can

be carried out by approaching or retracting the tip from

the sample and recording the tunneling current. In

order to measure the spatial change in apparent barrier

height, a small modulation in the separation between

the tip and the sample is introduced at high frequency

and the modulated tunneling current is measured using

a lock-in amplifier. This type of measurement gives the

apparent barrier height at certain bias voltage and at

certain distance from the surface. Measurements

performed with different bias voltages or different tip

sample distance may give different values for the

apparent barrier height [7]. It is important to realize

that the apparent barrier height is different from the

work function in traditional surface science but is

closely related; the apparent barrier height measures

the spatial correlation of the overlap between the wave

functions of the tip and the sample.

Z-V Curves

In Z-V measurements the bias voltage is ramped at

a fixed tunneling current, and the tip-sample separation

is constantly adjusted. When the applied voltage

exceeds the sample or tip work function (depending

on the sign of the bias voltage), there is a transition

from the vacuum tunneling regime to the field

emission regime. In the field emission regime,

a triangular potential well is formed between tip and

sample due to the bias voltage applied in the tunneling

junction. In this triangular potential well, the existence

of quantum well states leads to resonances in the elec-

tron transmission at certain energies, as illustrated

in Fig. 4.
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Scanning Tunneling Spectroscopy, Fig. 4 Diagram of the

tunnel junction when the positive bias voltage (eV) is larger than

the work function of the sample. The electrons from the tip

tunnel through a narrow (dT) triangular potential barrier to be

afterward trapped in a triangular potential well. The first two
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Scanning Tunneling Spectroscopy, Fig. 5 Black curve, tip
displacement as function of the tunneling bias voltage. The field

emission resonances appear as wiggles on the curve.Gray curve,
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peaks that allow a precise determination of the energy
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These transmission resonances show up as wiggles

in the Z-V data (black curve in Fig. 5) and are closely

related to the image states. Image states are unoccupied

states bound by the classical image-charge response of

metallic surfaces and have a free-electron-like disper-

sion parallel to the surface. The inverse dependence on

distance from the surface of the image potential leads

to a Rydberg-like series of states that converges to the

continuum at the vacuum level (Evac). Inverse photo-

emission studies of the image potential states have

shown experimentally that the energy position of the

Rydberg series is tied to the local surface potential of

the material. In STM the electric field across the tunnel

junction causes a Stark shift of these states, expanding

the image state spectrum into a resonance spectrum

associated with the triangular potential well (Fig. 5).

Following the analysis performed by Gundlach in the

1960s [9], the resulting energy spectrum can be written

as follows:

En ¼ fþ aðn� 0:25Þ2=3F2=3

where f is the surface work function, a is a constant,

F is the electric field between tip and sample, and n is

the quantum number of the states. These field emission

resonances (FERs) were experimentally observed in
field ion microscopy (FIM) by Jason [10] and with an

STM by Binnig et al. [11] and since then have been

used to chemically identify different transition metals

on surfaces, to obtain atomic resolution on insulating

surfaces (e.g., diamond), or to study local changes in

the surface work function [12].

The experiments are typically performed with the

feedback loop on to keep the current constant. The tip

movement is recorded as a function of the bias voltage

and afterward the curves are numerically differentiated

to obtain the energy position of the field emission

resonances, as shown in the Fig. 5 (red curve).

Spin Polarized Tunneling Spectroscopy

In 1975 Julliére [13] discovered spin-dependent

tunneling between two planar ferromagnetic elec-

trodes separated by an insulating tunnel barrier,

which has become the basis for the development of

magnetic random access memories and the spin polar-

ized version of the STM. In fact, the tunneling current

between a magnetic sample and an STM tip (covered

with a magnetic thin film) shows an asymmetry in

the spin population. The magnitude of the tunneling

conductance between two magnetic electrodes with

directions of the respective magnetization differing

by a certain angle depends on the cosine of this

angle. Spin polarized tunneling with an STM was

observed in 1990s byWiesendanger [16]. The spectro-

scopic mode of spin polarized STM is based on using

the different intensity of certain features in differential



Scanning Tunneling
Spectroscopy, Fig. 6 (a)
Model showing the layered

antiferromagnetic structure

of Mn films grown on Fe(001).

(b) STM topographic

(100 	 78 nm) image of

6.5 mL of Mn grown on

Fe(001). (c) Spatially resolved
spectroscopic image measured

simultaneously with the

topography shown in (b)
where the dI/dV signal shows

low and high levels depending

on the relative directions of

magnetization of tip and

surface terrace revealing the

topological antiferromagnetic

order of the Mn(001) surface
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conductance spectra as source of contrast to image

magnetic domains and domain walls with atomic res-

olution [16].

Magnetic domain observations in antiferromagnetic

materials have been difficult in the past due to the

limited number of experimental techniques that are

sensitive to domain states in antiferromagnetic crys-

tals. Another aspect that hampered the studies of anti-

ferromagnetic materials was the limited spatial

resolution of the available techniques. Mn and Cr

crystals or thin films of these materials exhibit quite

complex spin structures. The crystallographic structure

of Mn thin films grown on Fe(001) is body-centered

tetragonal. In this crystallographic structure, the Mn

magnetic structure is layered antiferromagnetic. These

means that the magnetization orientation rotates by

180� in every layer, as can be seen in Fig. 6a. The tip

magnetization direction is constant in the experiment

and the magnetization direction of the sample rotates

by 180� every time the tip crosses a step on the surface.

The change in the magnitude of the tunneling conduc-

tance can be measured on every pixel of the topo-

graphic image and an image of the magnetic domains

is obtained, as can be seen in Fig. 6b, c. In those

domains where the magnetization of tip and sample

are aligned, the tunneling conductance is higher

(brighter color) and on those areas where are antipar-

allel the tunneling conductance is lower (darker

colors).
Vibrational Spectroscopy (Inelastic Electron

Tunneling Spectroscopy)

In the previous sections, elastic tunnel processes,

where the tunneling electrons do not change their

energy, have been discussed. However, in certain

cases, i.e., for molecules adsorbed on surfaces or sam-

ples with easy excitation of phonons, there is a small

fraction of electrons that lose energy in the tunneling

process [14]. For bias voltages larger than

corresponding the quantum of vibration, ħo, a new

tunneling channel, i.e., inelastic channel, opens up (as

illustrated in Fig. 7a). The inelastic channel acts in

addition to the elastic channel, and increases slightly

the differential conductance (dI/dV) of the junction

(Fig. 7b upper panel). Although vibrations of mole-

cules were detected in the 1960s by tunneling in

extended tunneling junctions with insulating layers

spray coated with molecules, the use of STM facilitates

the acquisition of vibrational spectra in single mole-

cules in well-characterized environments and was

pioneered by Wilson Ho [14].

In practice the change in conductance is smaller

than 10% and can be detected only under very severe

conditions of stability of the tunnel junction and

energy resolution (i.e., with the STM at low tempera-

tures). The vibrational modes are detected as peaks in

the second derivative of the tunneling current (Fig. 7b

lower panel) measured bymeans of lock-in techniques.

Equation 2 shows that the magnitude of the second



Tip

Sample

EF
t

hω
hω hω V

Vhω

hω

ba

EF
s

dI
dV

d2I
dV2

Scanning Tunneling Spectroscopy, Fig. 7 (a) Energy dis-

tance diagram of the tunneling processes with an applied bias

voltage V. When eV is larger than the energy of the molecular

vibration (ħo), empty final states at the Fermi level of the sample

become accessible and the inelastic channel opens up. (b) The

opening of the inelastic channel causes a sharp increase in the

tunneling conductance (upper panel) or peaks in the second

derivative (lower panel). The activation channel is symmetric
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Scanning Tunneling Spectroscopy, Fig. 8 (a) Model of the

adsorption of CO molecules on Cu(111). The molecule adsorbs

perpendicular to the surface with the carbon (in gray) chemically

bonded to the surface copper atoms. (b) STM topographic image

measured using a tunneling current of 1 nA and a sample bias

voltage of 0.25 V. (c) Vibrational spectra of CO on Cu(111): the

peaks at �5 mV and �35 mV are due to excitation of the CO

frustrated rotation and translation with respect to the Cu(111)

surface
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harmonic of the tunneling current is proportional to

d2I/dV2. In practice, a small (�3 mV) ac component is

added to the bias voltage, the dc component of the bias

voltage is scanned across the selected energy range,

and the variations in d2I/dV2 are recorded. The width

of the peaks is given by the Fermi energy distribution,

i.e., the FWHM is 3.5kBT (1.2 mV at 4 K).

A common observation in IETS spectra is that

peaks at certain values of positive voltages appear as

dips at opposite polarity. The symmetry position with

respect to the zero bias of the features observed is

a fingerprint of their inelastic origin. Differences in

the density of states of the electrodes, however, may
change the peak intensity. The observed symmetry

implies that the inelastic processes are accessible for

electrons tunneling on both directions. Selection rules

for which modes are detectable, unlike Raman or

infrared spectroscopy, seems to depend on the symme-

try of the molecular state involved in the tunneling

process.

A well-studied system are CO molecules adsorbed

on Cu(111). It is known that the CO molecules adsorb

on the surface on top of the copper atoms with the

oxygen pointing toward the vacuum and the carbon

chemically bonded to the copper surface, as shown in

Fig. 8a. Figure 8b shows a topographic STM image of
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several CO molecules adsorbed on Cu(111) at 4.6 K

measured with a tunneling current of 1 nA and a bias

voltage of �0.25 V. With these values the CO mole-

cules are imaged as a round depression because the

chemical bond between the molecule and the Cu(111)

surface reduces the electron density around the Fermi

level. In order to measure the vibrational spectra, the

tip is positioned over the center of the CO molecule.

With the feedback off, the sample bias voltage is

ramped over the range of the vibrational peaks while

a sinusoidal bias modulation is superimposed. The

derivative of the conductance exhibits peaks at

the molecular vibration energy. For CO on Cu(111)

the vibration spectra are characterized by two features

at about 5 and 35 meV, as can be seen in Fig. 8c. These

peaks are assigned to the two degenerated transverse

vibration modes: the frustrated translation and the

frustrated rotation, respectively.
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