Study Design II

Alison Merikangas
23 September 2009
Outline

• Types of Studies
 – Randomized Trial
 – Case-Control Studies
 – Cohort Studies
• Relative Risk & Odds Ratios
• Bias & Confounding
• Validity & Precision
• Data Management & Storage
• Literature Example
• Further Reading
Types of Studies
Randomized Trial

Study Population

Randomly Assigned

Current Treatment
 - Improve
 - Do Not Improve

New Treatment
 - Improve
 - Do Not Improve
Randomization

• Randomization is the process by which allocation of subjects to treatment groups is done by chance, without the ability to predict who is in what group
• Prevent bias in allocating subjects to treatment groups (avoid predictability)
• Achieve comparability between the groups (there is no guarantee)
• How to assign random numbers:
 – Table of random numbers
 – An allocation scheme
 – Computers or calculators
 – Random number websites (random.org)
Case-Control Studies

Have the Disease

Were Exposed

Were Not Exposed

Do Not Have the Disease

Were Exposed

Were Not Exposed
Case & Control Selection

“Total” Population

Reference Population

Cases

Controls
Matching

• Intended to circumvent selection bias – match those with similar characteristics that might affect the study outcome (e.g. age, sex, and race)
 – Individual matching (matched pairs)
 • Must use matched tests
 – Group matching (frequency matching)
• Cannot study the effect that the “matching characteristic” has on the outcome
• Matching on many variables may make it difficult to find an appropriate control
Blinding

- Blinding is used to increase the objectivity of the persons dealing with the randomized study
 - Mask subjects (& caregivers)
 - Placebo or sham treatment
 - Mask observers
 - Mask data collectors
 - Mask data analysts
Odds Ratio in a Case-Control Study

The odds ratio (OR) is calculated as:

\[
OR = \frac{ad}{bc}
\]

First Select

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Not Exposed</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>Totals</td>
<td>(a + c)</td>
<td>(b + d)</td>
</tr>
<tr>
<td>Proportions exposed</td>
<td>(\frac{a}{a + c})</td>
<td>(\frac{b}{b + d})</td>
</tr>
</tbody>
</table>
Prospective & Retrospective Cohort Studies

Defined Population

Prospective

2009

Exposed

Disease

No Disease

Disease

No Disease

Retrospective

2029

Not exposed

2029

2019

2019

2009

NOT Randomly Assigned
Relative Risk in a Cohort Study

\[
RR = \frac{\frac{a}{a + b}}{\frac{c}{c + d}}
\]

<table>
<thead>
<tr>
<th>Disease</th>
<th>No Disease</th>
<th>Totals</th>
<th>Incidence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
<td>(a + b)</td>
</tr>
<tr>
<td>Not exposed</td>
<td>c</td>
<td>d</td>
<td>(c + d)</td>
</tr>
</tbody>
</table>

First select

Then follow

RR and Association with Disease

- Relative risk expresses the magnitude of the association between the exposure and the disease, a key consideration for inference about etiology. It does not depend on exposure prevalence.
When RR and OR are used

• Relative risk
 – Randomized controlled trials
 – Cohort studies

• Odds ratio
 – Case-control studies
 – Retrospective studies (Cohort studies)
Meaning of RR/OR

• An RR/OR of 1
 – no difference in risk between the two groups

• An RR/OR of < 1
 – the event is less likely to occur in the experimental group than in the control group

• An RR/OR of > 1
 – the event is more likely to occur in the experimental group than in the control group
If a rare disease...

Both \(\frac{a}{a + b} \) and \(\frac{c}{c + d} \) will be very small, so

\[
\frac{R}{O} = \left(\frac{\frac{a}{a+b}}{\frac{ad}{bc}} \right) \cdot \left(\frac{\frac{c}{c+d}}{\frac{bc}{ad}} \right) = \left(\frac{a}{a+b} \right) \times \frac{bc}{ad} = \left(\frac{abc}{a+b} \right) = \left(\frac{b}{a+b} \right) \approx 1
\]

But what if the disease is common?
The relationship between risk ratio (RR) and odds ratio by incidence of the outcome.

Other Study Designs

• Nested Case-Control Studies
• Case-Cohort Studies
• Case-Crossover Studies
• Cross-Sectional Studies
 – AKA Prevalence Study
Other measures of association

- Relative rates
- Relative odds
- Relative hazards
- Attributable risk
 - In the exposed
 - Population
Sample Size

To estimate sample size:
1. The difference in response rates to be detected
2. An estimate of the response rate in one of the groups
3. Level of significance (α)
4. The value of the power desired ($1-\beta$)
5. Whether the test should be one-sided or two-sided
Statistics - Hypothesis Test

<table>
<thead>
<tr>
<th>Null Hypothesis</th>
<th>Null Hypothesis True</th>
<th>Null Hypothesis False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject Null Hypothesis</td>
<td>Type I Error (α) Significance Level</td>
<td>Correct $(1-\alpha)$ Confidence Level</td>
</tr>
<tr>
<td>Fail to Reject Null Hypothesis</td>
<td>Correct $(1-\beta)$ Power</td>
<td>Type II Error (β)</td>
</tr>
</tbody>
</table>
Bias & Confounding
Information Bias

• Distortion of the estimate of effect due to measurement error or misclassification of subjects on one or more variables
 – Recall bias
 – Reporting bias
 – Instrument bias

• When information is incorrect, there is misclassification
 – Differential misclassification occurs when the level of misclassification differs between the two groups
 – Non-differential misclassification occurs when the level of misclassification does not differ between the two groups
Selection Bias

• Fundamental bias of assignment
• Distortion in the estimate of effect resulting from the manner in which subjects are selected for the study population
Confounding

Due to Confounding

Factor X

Disease

Causal

Observed Association
Validity & Precision
Accuracy vs. Precision

High accuracy, but low precision

High precision, but low accuracy
Random Error

• A problem of precision
• Essentially attributable to sampling variation
 – Depends on study design
 • E.g. sample size considerations
 – Statistical characteristics of the estimator
 • E.g. variance
Systemic Error

• A difference between what the estimator is actually estimating and the true effect measure of interest

• Attributable to:
 – Methodological aspects of study design or analysis
Internal vs. External Validity

Population
- Study
- Actual
- Target
- External

Validity
- Sample
- Inference
- Internal
- External
Extrapolation

• Conclusions for a study are drawn for the target population
• The target population may be similar to those included in the investigation, or may include a range of data not represented in the study sample
• Often we want to map results onto the population at large
At-risk Groups

$$AR\% = \frac{RR - 1}{RR} \times 100$$

<table>
<thead>
<tr>
<th>Relative Risk</th>
<th>Attributable Risk %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
</tr>
</tbody>
</table>
Populations or Communities

\[
PAR\% = \frac{b(RR - 1)}{b(RR - 1) + 1} \times 100
\]

- PAR = population attributable risk
- RR = relative risk
- b = proportion of population with the risk factor

<table>
<thead>
<tr>
<th>RR</th>
<th>b</th>
<th>PAR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>0.10</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>0.50</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>0.50</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>95</td>
</tr>
</tbody>
</table>
Data Management & Storage

• It is ideal to plan for data management before you begin a study
 – How data is stored
 – Type of variables
 – How data will be analyzed
Population-based linkage analysis of schizophrenia and bipolar case–control cohorts identifies a potential susceptibility locus on 19q13

C Francks¹, F Tozzi¹, A Farmer², JB Vincent³, D Rujescu⁴, D St Clair⁵ and P Muglia¹

¹Division of Medical Genetics, GlaxoSmithKline, Verona, Italy; ²MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK; ³Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada; ⁴Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians University, Munich, Germany and ⁵Department of Mental Health, University of Aberdeen, Aberdeen, UK
Further Reading

• Textbooks

• JHU Opencourseware
 – Sukon Kanchanaraksa, PhD, Johns Hopkins University
 – Marie Diener-West, PhD, Johns Hopkins University

• Articles