lecture 3: Measserements \& Dynamics in Q M

Up to this point: Static /kinematic part of QM
Recall: \& pure quartan state is given by a Normalized vector $\langle u\rangle \in \mathbb{C}^{n}=H$
A mired quantum state is given by a matier $s \in L(H), S \geqslant 0, \operatorname{tr}(\beta)=1$

Which of the two is more general?
Obvious : $\left|2_{F}><4\right| \geqslant 0$ \& $\operatorname{tr}\left(\left|2><7_{F}\right|\right)=1$ \rightarrow density matrix

Bat also: Far every $S=\sum_{i}$, $|i><i| \in L(H)$ 7 (infinitely many) pure states $\left|u_{1}\right\rangle=\left.\sum_{i} \sqrt{\lambda_{i}}|i\rangle\left|v_{i}\right\rangle \in H \oplus H\right|_{2}$, sud that $\operatorname{tr}_{2}\left(\left|z_{6}\right\rangle<\psi_{1} \mid\right)=S$ (Purification)

F how that $s \geqslant 0=s=s^{+}$

Technically: pure state QM "includes everything" Church of the large filbert space

Why care about wised states / nou-unitary- degnomis?
1.) Often: Only access to part of a system
(Recall: reduced states of entangled states are mixed)
2.) External noise /intacations lead to uncertainty ubout "what pure" state
L) Necessitates unseen ble descriphoo

$$
B=\sum_{i} \lambda_{\substack{ \\\text { probability }}}\left|i x c_{i}\right|
$$

3. Axiomatically: Mired states as the most general object that cocutains all statistical ifacuation \rightarrow Gleason's theorem (see ar $X_{i V} V$:quai t-ph) 9909073)
measurement

states evolution

Mecosurements:

1. Projective measurements

Recall: Let $A=A^{+}$be an observable with $A=\sum_{\alpha} a_{\alpha}|\alpha\rangle \alpha \alpha \mid$.

Set $\pi_{\alpha}:=|\alpha\rangle\langle\alpha|$. Then, measuring th is ibsen vale on pure state $|z\rangle \in \mathbb{C}^{d}$ yields outcome a_{α} with probability

$$
\underbrace{\mathbb{P}\left(a_{\alpha}\right)=\mid\left.\langle\alpha| \psi s\right|^{2}=\operatorname{tr}\left(|\psi s<\psi| \pi_{\alpha}\right)}_{\text {"Born Rule"' }}
$$

By linearity, this extends fo unixed states, i.e. the probability to observe a_{α} when measuring the observable A on a mixed stake B is given by

Projection -valued measure (PM)

Call outcomes are perfectly distriguichoble)

Are PVMs all the is ?
2. PoUTs

Recall: Projectors have positive regenvolues (show this!)

$$
\text { i.e. } \pi_{\alpha} \geqslant 0
$$

\rightarrow Replace projectors in POVM with positive matrices $\left\{E_{\alpha}\right\}$, such that:

Guarantees
positivity of probabilities
number of outcomes does not have to cericide wish the diversion of s

Note: $E_{\alpha} E_{\alpha^{\prime}}+\delta_{\alpha^{\prime}} E_{\alpha} \quad$ (unlike $\pi_{\alpha} \pi_{\alpha^{\prime}}=\delta_{\alpha^{\prime}} \pi_{\alpha}$)

Obvious: $E_{\alpha}=T_{\alpha}$ is a possible choice of POVM

$$
L_{\text {p pros }} \subseteq \text { Pours }
$$

Example: SIC-POVM: $\left\{\left|\phi_{\alpha}><\phi_{\alpha}\right|\right\}_{\alpha=0}^{2}$ on quit.

$$
\left\langle\oint_{\alpha} \mid \phi_{\beta}\right\rangle \neq \delta_{\alpha \beta} \quad \text { (check wikipedia) }
$$

Do POVMs wake physical sense?
von-Nenmann prescription: of a measurement
system is probed by coupling it to a detector and reading out the detector.

Pictographically:
Detector
 pure projective measurement
system

$$
\begin{aligned}
& \Rightarrow[\mathbb{P}(\alpha)=\operatorname{tr}[\left(U(\rho \otimes|0\rangle\langle o|) u^{+}\right)(\overbrace{1|\otimes| \alpha\rangle<\alpha \mid}^{\cong \pi_{\alpha}})]= \\
& =\sum_{i \beta}\langle i \beta| U(\beta \otimes|0\rangle<0 \mid) U^{+}(1 \rho|\alpha\rangle\langle\alpha|)|i \beta\rangle \\
& =\sum_{i}\langle i|\left(\langle\alpha| u|O\rangle \rho\langle o| u^{+}|\alpha\rangle\right)|i\rangle \\
& =\operatorname{tr}\left(\langle\alpha| u|0\rangle s\langle o| u^{+}|\alpha\rangle\right) \\
& =\operatorname{tr}(\rho<\underbrace{\left.0\left|u^{r}\right| \alpha\right\rangle\langle\alpha| U|0\rangle}_{=: E_{\alpha}})=: \operatorname{tr}\left(S E_{\alpha}\right)]
\end{aligned}
$$

i) $\sum_{\alpha} E_{\alpha}=\sum_{\alpha}\left\langle\underset{L_{j} \in H_{2}}{\left.O\left|u^{+}\right| \alpha\right\rangle\langle\alpha| U|O\rangle=\mathbb{1} \text { (normalization) }}\right.$
ii) $E_{\alpha}=\langle 0| u^{t}|\alpha\rangle\langle\alpha| U|0\rangle=: x_{\alpha}^{+} x_{\alpha} \geqslant 0$ (positivity)
show that $A^{+} A \geq 0 \quad \forall A$ I
Every projective measurement leads to a PoM

Does the converse hold?
Lo Can every Porte be understood as coming from a . Projective measurement in a leger space

Nainark Dilation
Given a POVM $\left\{E_{\alpha}\right\}$, let us construct an isometry

$$
\begin{aligned}
V:= & \left.\sum_{\alpha}{\sqrt{E_{\alpha}}}^{3}|\alpha\rangle \text { i i.e. } \quad V_{i \alpha i j}=\left.\langle i \alpha| V\right|_{j}\right\rangle=\langle i| \sqrt{E_{\alpha}}|j\rangle \\
& \left.{ }^{2}\right\rangle \\
& \sqrt{E_{\alpha}} \sqrt{E_{\alpha}}=E_{\alpha}
\end{aligned}
$$

This is indeed an isometry, since

$$
V^{+} V=\sum_{\gamma \alpha} \sqrt{E}_{\gamma}^{+} \sqrt{E_{\alpha}}\langle\underbrace{\gamma|\alpha\rangle}_{S_{\gamma \alpha}}=\sum_{\alpha} E_{\alpha}=\mathbb{1}
$$

Pictographically: $\left.\quad V=\left(\widetilde{ }^{d_{2}}\right)\right\} d_{1} x d_{2}$
$d_{2}=$ number of POVM elements

Due to $V+V=1$, all columns of V are orthonormal and V can thus be understood as part of a unitary U on $H_{1} \otimes H_{2}$ such that

$$
\left.\left.V_{i \alpha_{i j}}=\langle i \alpha| v|j\rangle=\left.\langle i \alpha| u\right|_{j o\rangle}\right\rangle\left(=\left.\langle i| \sqrt{E_{\alpha}}\right|_{j}\right\rangle\right)
$$

For this unitary, by construction, we obtain

$$
\underbrace{\operatorname{tr}\left(U(S \otimes|0>0|) u^{t}(1 \otimes|\alpha>\alpha|)\right)}_{\text {Non- Neman - measurement }}=\operatorname{tr}\left(S E_{\alpha}\right)
$$

Every Porn can be understood as a volNewman measurenet on a larger space "Naimerk dilation"
z, so fa

Church of the larges tiller space.
3.1 CP and CPTP maps - a mathematical interlude

Above, we have actually proven user than "jut" the Nainarle dilation. For a given POVM element E_{α}. let K_{α} be sud that $E_{\alpha}=K_{\alpha}^{+} K_{\alpha}$ (i.e. K_{α} is on s of the wor-umique squareroots of E_{α})
\rightarrow exists, and are related by isometry

$$
k_{\alpha}=V \underbrace{\sqrt{E_{\alpha}}}
$$

unique positive root of E_{α}.

Then, we have:

$$
\operatorname{tr}\left(\rho E_{\alpha}\right)=\operatorname{tr}\left(K_{\alpha} \rho k_{\alpha}^{t}\right)=\operatorname{tr}\left(\varepsilon_{\alpha}[S]\right)
$$

where $\varepsilon_{\alpha}: L\left(H_{1}\right) \rightarrow L\left(H_{1}\right)$ is a lima $m a p$ \},
pot is general, but lt's assume it for the moment.
\Rightarrow Above, we have proven that, for such a map $\varepsilon_{\alpha}[s]=K_{\alpha} \rho K_{2}^{r}$, there exists a unitary $U \in L\left(H_{1}\right.$ sH $\left.H_{2}\right)$
with $k_{\alpha}=\langle\alpha| U|0\rangle$. Consequently, we obtain:

$$
\frac{\varepsilon_{\alpha}[\rho]=\operatorname{tr}_{2}\left[u(\rho \otimes|0\rangle<c \mid) u^{t}(\mathbb{1} \otimes|\alpha\rangle\langle\alpha|)\right]}{\text { (show this) }}
$$

Pictographically:

Describes the transformation of the state s upon observing ortcane α.

The probability of an outcome is given by

$$
\mathbb{P}(\alpha)=\operatorname{tr}\left(\varepsilon_{\alpha}[\rho]\right) \quad\left(=\operatorname{tr}\left(k_{\alpha} 3 k_{\alpha}^{+}\right)=\operatorname{tr}\left(\rho E_{\alpha}\right)\right)
$$

since $0 \leq \mathbb{P}(\alpha) \leq 1$, we see that ε_{α} is trace nonwicreasing and from $\sum_{\alpha} E_{\alpha}=11$, we obtain

$$
\sum_{\alpha} \operatorname{tr}\left(\varepsilon_{\alpha}[s]\right)=\operatorname{tr}\left(\sum_{\alpha} \varepsilon_{\alpha}[s]\right)=: \operatorname{tr}(\varepsilon[s])=\operatorname{tr}(s)
$$

the $\operatorname{mp} \varepsilon$ is trace preserving.
We see that

$$
\begin{aligned}
\varepsilon[S] & =\sum_{\alpha} \operatorname{tr}_{2}\left[U(S \otimes|0\rangle<0 \mid) U^{+}(4 \otimes|\alpha\rangle<\alpha \mid)\right] \\
& =\operatorname{tr}_{2}\left[U(S \otimes|0\rangle<0 \mid) U^{+}\right]
\end{aligned}
$$

Pictographically:

What we have show on is thins, that any mop $\varepsilon_{\alpha}[s]=k_{\alpha} s k_{\alpha}^{t}$ that satisfies $k_{\alpha}^{+} k_{\alpha} \leq 1$ can be understood as cowing from - unitary dynames and a projective measurement on a larger filbert space.

Analogously, any map $\varepsilon[S]=\sum_{\alpha} k_{\alpha} \rho k_{\alpha}^{+}$with $\sum_{\alpha} k_{\alpha}^{+} k_{\alpha}=11$
can be understood as con ing from a burtary dynamics on a large Hilbert space and a discarding of the ouxitiory degrees of freedom.

